曾谨言量子力学第4章
量子力学 第四版 卷一(曾谨言 著) 答案----第4章-2

ˆ 的本征态下, L x = L y = 0 。(提示:利用 L y L z − Lz L y = iL x ,求平均。) 4.29 证明在 L z
证:设 ψ 是 L z 的本征态,本征值为 m ,即 L z ψ
= m ψ
∴
[L
y
, L z = L y L z − L z L y = iL x , 1 Ψ Ly Lz Ψ i 1 = m Ψ Ly Ψ i
(
1 2 C 2 1 C1 0 = 1 ,相应的几率为 C1 ; 2 4 0
)
1 L x 取 − 的振幅为 1 − 2
总几率为 C1
2
(
1 2 C 2 1 C1 0 = 1 ,相应的几率为 C1 。 2 4 0
)
2) L x 在 l = 2 的空间, L2 , L z 对角化表象中的矩阵 利用
1 − 2 1 6a , d = − 2a , e = a ,本征矢为 6 ,在 C 2Y20 态下,测得 L x = − 2 的 4 − 2 1
将它们代入(3)就得到前一法(考虑 l x , l y 对称)得到相同的结果。
l x2 =
1 [(l + m)(l − m + 1) 2 + (l − m)(l + m + 1) 2 ] 4 1 = [l (l + 1) − m 2 ] 2 2
ˆ lˆ , lˆ lˆ 没有贡献,(3)(4)应有相同的结果。第二种方法运用角动量一般理论,这 又从(4)式看出,由于 l + + − −
2
将上式在 lm 态下求平均,因 Lz 作用于 lm 或 lm 后均变成本征值 m ,使得后两项对平均值的贡献互相抵 消,因此 又
曾谨言量子力学课后答案

h2 2m
∇
2ψ
(rv,
t
)
+
[V1
(rv
)
+
iV2
(rv
)]ψ
(rv,
t
)
V1 与V2 为实函数。
4
(1)
(a)证明粒子的几率(粒子数)不守恒。
(b)证明粒子在空间体积τ 内的几率随时间的变化为
( ) d
dt
∫∫∫ τ
d
3 rψ
*ψ
=
−
h 2im
∫∫
S
ψ
*∇ψ
−ψ∇ψ *
v ⋅ dS +
2V2 h
(1) (2)
5
取(1)之复共轭:
−
ih
∂ψ * 1 ∂t
= −
h2 ∇2 2m
+
V
ψ
* 1
ψ
2
×
(3)
−ψ
* 1
×
(2),得
(3)
对全空间积分:
( ) ( ) − ih
∂ ∂t
ψ *ψ 12
=
−
h2 2m
ψ
2
∇
2ψ
* 1
−ψ 1*∇ 2ψ
2
∫ ∫ [ ] − ih d dt
d
3 rψ
* 1
(rv,
d
3rψ
*
−
h2 2m
∇
2
ψ
(动能平均值)
=
−
h2 2m
∫
d
3
r
[∇
⋅
(ψ
*∇ψ
)
−
(∇ψ
*
)⋅
(∇ψ
曾谨言量子力学课后答案

= V (x)
x=a
=
1 mω 2 x 2 。 2
−a
0a x
由此得
a = 2E / mω 2 ,
(2)
x = ±a 即为粒子运动的转折点。有量子化条件
∫ ∫ ∫ +a p ⋅ dx = 2
2m(E − 1 mω 2 x 2 ) dx = 2mω 2 +a
a 2 − x 2 dx
−a
2
−a
= 2mωa 2 ⋅ π = mωπ a 2 = nh
因而平面转子的能量
Em = pϕ2 / 2I = m2h 2 / 2I , m =1, 2,3,L
第二章 波函数与 Schrödinger 方程
2.1
设质量为
m
的粒子在势场V
v (r )
中运动。
∫ (a)证明粒子的能量平均值为 E = d 3r ⋅ w ,
w = h 2 ∇ψ *ψ +ψ *Vψ 2m
(3)
w = h 2 ∇ψ * ⋅ ∇ψ +ψ *Vψ , 2m
(4)
且能量平均值
∫ E = d 3r ⋅ w 。
(b)由(4)式,得
∂w ∂t
=
h2 2m
∇ψ. *⋅ ∇ψ
+
∇ψ
*
⋅ ∇ψ.
.
+ψ * Vψ
+ψ
*V ψ.
=
h2 2m
∇
⋅
ψ.
*
∇ψ
+ψ.
∇ψ
*
(能量密度)
(b)证明能量守恒公式
∂w ∂t
+
∇
⋅
v s
=
曾谨言《量子力学教程》(第3版)配套题库【课后习题-力学量随时间的演化与对称性】

第4章力学量随时间的演化与对称性4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ1、φ2、φ3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi 子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态的构造方式如下:Bose子体系态(共6种,均为交换对称态)有Fermi子体系态(反对称态)只有3种:当全同粒子体系的粒子数超过两个时,一般来说,对于粒子间的交换完全对称的状态(适用于Bose子)数目与完全反对称的状态(适用于Fermi子)数目之和,总是小于没有对称性限制的体系状态(适用于经典粒子)总数.亦即,后者除了完全对称态和完全反对称态,还有一些没有对称性或只有混杂对称性的状态.例如,由三个全同粒子组成的体系,如可能的单粒子态有3种,则在Boltzmann统计、Bose统计、Fermi统计下,体系的可能态数目分别为27、10和1.4.3 设体系由3个粒子组成,每个粒子可能处于3个单粒子态(φ1,φ2和φ3)中任何一个态,分析体系的可能态的数目,分三种情况:(a)不计及波函数的交换对称性;(b)要求波函数对于交换是反对称;(c)要求波函数对于交换是对称.试问:对称态和反对称态的总数为多少?与(a)的结果是否相同?对此做出说明.解:(a)不计及波函数的交换对称性,其可能态的数目为33=27;(b)要求波函数对于交换是反对称的,其可能态的数目为1;(c)要求波函数对于交换是对称的,其可能态的数目为1+6+3=10(参见《量子力学教程》4.5.4节,94页的例题).对称态和反对称态的总数=10+1=11,而不计及交换对称性的量子态的数目(即(a)的结果)为27,两者并不相同.原因在于全同粒子的交换对称性对量子态的限制所造成.4.4 设力学量A不显含t,H为体系的Hamilton量,证明证明:对于不显含t的力学量A,有上式两边再对t求导,则有即4.5 设力学量A不显含t,证明在束缚定态下证明:定态是能量本征态,满足对于束缚态,是可以归一化的,即取有限值.而对于不显含t的力学量A,因此4.6 表示沿z方向平移距离口的算符.证明下列形式波函数(Bloch波函数):是D x(a)的本征态,相应本征值为证明:利用可得而对于形式为的波函数所以,即是D x(a)的本征态,相应本征值为e-ika.4.7 设体系的束缚能级和归一化能量本征态分别为En和,n为标记包含Hamilton 量H在内的力学量完全集的本征态的一组好量子数.设H含有一个参数A,证明此即Feynman-Hellmann定理.【证明见《量子力学习题精选与剖析》[下],5.1题.】5.1 设量子体系的束缚态能级和归一化能量本征态分别为E n和(n为量子数或编号数),设λ为Hamilton算符H含有的任何一个参数.证明(1)这称为Feynman-Hellmann定理.以后简称F-H定理.证明:满足能量本征方程(2)其共轭方程为(2')视λ为参变量,式(2)对λ求导,得到(3)以左乘式(3),利用式(2')和归一化条件,即得式(1).4.8 设包含Hamilton量H在内的一组守恒量完全集的共同本征态和本征值分别为丨n>和E n,n为一组完备好量子数.证明,力学量(算符)F随时间的变化,在此能量表象中表示为【证明见《量子力学习题精选与剖析》[下],2.1题.】2.1 给定总能量算符H(,,p),以表示其本征值和本征函数.态矢量简记为按照Heisenber9运动方程,力学量算符A(r,p)的时间变化率为(1)定义能量表象中矩阵元(2)证明(3)其中。
量子力学第4章(曾谨言)

15
ˆ ˆ 例题:求x、p x 和H在一维谐振子能量表象中的 矩阵表示。 【解】同理可得 p jk ia ( (k 1) / 2 j ,k 1 k / 2 j ,k 1 ) ( p jk ) ia 0 1/ 2 0 0 . 1/ 2 0 2/2 0 . 0 2/2 0 3/ 2 . . 0 . 3 / 2 . 0 . . . 0
已知a和a可以通过幺正变换相联系,即a Sa, S11 幺正矩阵S ( Sk ) S 21 . S12 S 22 . . . , Sk ( , k ) .
可以证明,矩阵L ( Lkj )和L ( L )可以通过 幺正矩阵S相变换:L SLS 1
因此,在离散表象中量子力学的诸方程的 形式如下:
20
1 ,两态正交: 0 (1)态的归一:
(2)力学量的平均值(若 已归一)
F F (3)本征方程: F ,
,
d H(t ), (4)Schrodinger方程: i dt
以上各式中的乘法均理解为矩阵(包括列、 行矢量)乘法。
c( p, t ) ( x )( x, t )dx,
p
( x)
p
1 i exp px 2
( x, t ) 和 c( p, t )
可以互求,它们包含同样多的信息。 称这样做是变换到了动量表象,
3
2 一般情形。力学量 Q ,本征值离散,本征集为 {q1 , q2 , } ,本征函数系为 {u1 ( x ), u2 ( x ), } 则波函数可以本征函数展开
( x, t ) an (t )un ( x),
曾谨言 量子力学第一卷 习题答案解析4第四章

物 83-309 蒋
= (qp − pq) fp + hipf = hi( fp + pf )
(3) [ q, f ( q ) p 2 ] = 2ihfp [证明]同前一题论据:
[ q, fp 2 ] = qfpp − fppq = fqpp − fppq
(A先假定已经
运用这个关系于下面的计算:
ˆ )ϕdτ ≡ ψ • ΣA P ˆ ϕdτ ∫∫∫ψ • F ( P ∫∫∫
n n
τ
τ
ˆ nϕdτ = ∑ An ∫∫∫ψ • P n >0 τ ˆ (P = ∑ An ∫∫∫ψ • P ˆ n −1 ϕ )dτ ˆ ψ ) • (P ˆ n −1 ϕ )dτ = ∑ An ∫∫∫ ( P ˆ (P = ∑ An ∫∫∫ ( Pψ ) • P ˆ n − 2 ϕ ) dτ ˆ •P ˆψ )P ˆ (P ˆ n −3 ϕ ) dτ = ∑ An ( P ˆ 2ψ ) • P ˆ (P ˆ n −3 ϕ ) dτ = ∑ An ∫∫∫ ( P ˆ 2ψ ) • P ˆ (P ˆ n − 4 ϕ ) dτ = ∑ An ( P ˆ 2ψ ) • P ˆ( P ˆ n− 4 ϕ ) dτ = ⋯⋯ ∑ An ∫∫∫ ( P ˆ )ψ ] • ϕdτ = ∫∫∫ [ F ( P τ ˆ ) 满足厄密算符的定义。 F (P
= fqpp − fp(qp − hi) = fqpp − fpqp + hifp
= f ( qp − pq ) p + hifp = 2hifp
(4) [ p , p 2 f ( q)] =
量子力学——第四章作业参考答案

( p × l − l × p )x ,
2 ( p × l − l × p)y , ⎡ ⎣l , p ⎤ ⎦ z = i ( p × l − l × p ) z ,因此
同理 ⎡ ⎣l , p ⎤ ⎦y = i
i
2 ( p × l − l × p) = ⎡ ⎣l , p ⎤ ⎦。
3.10 证明: (a) pr =
可见, ( r × l − l × r ) = r × l − l × r , r × l − l × r 为厄米算符。
+
3.3
证明:一维情况下,由 x 和 p 的对易关系 [ x, p ] = i , 可得 从而
(6) (7)
xp = i + px , px = xp − i
,
m −1 n m n +1 [ p, F ] = ∑ Cmn ( px m p n − x m p n+1 ) = ∑ Cmn ⎡ ⎣( xp − i ) x p − x p ⎤ ⎦ m,n =0 ∞ m,n =0
∂ F。 ∂x
(8)
=
m ,n =0
mn
= −i
m,n =0
∑C
mn
mx m −1 p n = −i
同理,可得 [ x, F ] = i 3.4 证明:
∂ F。 ∂p
(9)
[ AB, C ] = ABC − CAB = ( ABC + ACB ) − ( ACB + CAB )
= A [ B, C ]+ − [ A, C ]+ B
(b) pr =
1⎛r r ⎞ 1 ⎡r r ⎛ r ⎞⎤ ⎜ i p + p i ⎟ = ⎢ i p + i p − i ⎜ ∇i ⎟ ⎥ 2⎝ r r ⎠ 2 ⎣r r ⎝ r ⎠⎦
曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-力学量随时间的演化与对称性(圣才出

第4章 力学量随时间的演化与对称性4.1 复习笔记一、力学量随时间的演化1.守恒量对于力学量A ,其平均值随时间变化关系式如下A tH A i dt A d ˆ]ˆ,ˆ[1∂∂+=η 故对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,力学量A 对应算符不显含时间t ,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变.则把A 称为量子体系的一个守恒量.2.能级简并与守恒量的关系(1)守恒量与简并关系的定理定理 设体系有两个彼此不对易的守恒量F 和G ,即[F ,H]=0,[G ,H]=0,但[F ,G ]≠0,则体系能级一般是简并的.推论 如果体系有一个守恒量F ,而体系的某条能级部简并(即对应于某能量本征值E 只有一个本征态E ψ),则E ψ必为F 的本征态.(2)位力(virial )定理当体系处于定态下,关于平均值随时间的变化,有一个有用的定理,即位力virial )定理.设粒子处于势场V (r )中,Hamilton 量为)(2p 2r V mH += 则位力定理表述如下位力定理推论:若势场函数V(r)为r 的n 次齐次式,则有推论V T 2n =二、波包的运动,Ehrenfest 定理设质量为m 的粒子在势场V (r )中运动,用波包ψ(r ,t )描述.设粒子的Hamilton 量为)(2p 2r V mH += 作如下定义:则Ehrenfest 定理表述如下:三、Schr ödinger 图像与Heisenberg 图像(1)(1)式这种描述方式称为Schrödinger 图像(picture ).亦称Schrödinger 表象. 在Schtodlnger 图像中,态矢随时间演化,遵守Schrödinger 方程,而算符则不随时间的变化;与此相反,在Heisenberg 图像中,则让体系的态矢本身不随时间的变化而算符切随时间的变化,遵守Heisenberg方程.四、守恒量与对称性的关系1.对称性变换[Q,H]=0 (2)凡满足式(2)的变换,称为体系的对称性变换.物理学中的体系的对称性变换,总是构成一个群,称为体系的对称性群(symmetrygroup).2.对称性对应守恒量体系在Q变换下的不变性[Q,H]=0,应用到无穷小变换,就导致F就是体系的一个守恒量.这充分说明对称性变换Q必定对应一个守恒量F.典型的两个例子是:平移不变性对应动量守恒,空间旋转不变性对应角动量守恒.五、全同粒子体系与波函数的交换对称性1.全同粒子体系的交换对称性(1)全同性原理全同性原理:任何可观测到,特别是Hamilton量,对于任何两个粒子交换是不变的,即交换对称性.凡满足P ijψ=ψ的.称为对称(symmetric)波函数;满足P ijψ=-ψ的称为反对称(anti—symmetrle)波函数.(2)玻色子与费米子凡自旋为 整数倍(s=0,1,2,…)的粒子,波函数对于两个粒子交换总是对称的,如π介子(s=0).光子(s=1).在统计方法上,它们遵守Bose统计,故称为Bose 子.凡自旋为h的半奇数倍(s=1/2,3/2,…)的粒子,波函数对于两粒子交换总是反对称的,如电子,质子,中子等.它们遵守Fermi统计,故称为Fermi子.2.两个全同粒子组成的体系Pauli不相容原理:不允许有两个全同的Fermi子处于同一个单粒子态.Pauli原理是一个极为重要的自然规律,后来从量子力学波函数的反对称性来说明Pauli原理的是Heisenberg,Fermi和Dirac的贡献.3.N个全同Fermi子组成的体系设N个Fermi子分别处于k2<k z<…<k N态下,则反对称波函数可如下构成(3)P代表N个粒子的一个置换(permutation).式(3)常称为slater行列式,是归一化因子.4.N个全同Bose子组成的体系Bose子不受Pauli原理限制,可以有任意数目的Bose子处于相同的单粒子态.设有n i个Bose子处于k,态上(i=1,2,…,N),则该体系的归一化的对称波函数可表为4.2 课后习题详解4.1 判断下列提法的正误:(正确○,错误×)(a)在非定态下,力学量的平均值随时间变化;(×)(b)设体系处于定态,则不含时力学量的测值的概率分布不随时间变化;(○)(c)设Hamilton量为守恒量,则体系处于定态;(×)(d)中心力场中的粒子,处于定态,则角动量取确定值;(×)(e)自由粒子处于定态,则动量取确定值;(×)(f)一维粒子的能量本征态无简并;(×)(g)中心力场中的粒子能级的简并度至少为(2ι/+1),ι=0,1,2,….(○)4.2 设体系有两个粒子,每个粒子可处于三个单粒子态φ 1、φ 2、φ 3中的任何一个态.试求体系可能态的数目,分三种情况讨论:(a)两个全同Bose子;(b)两个全同Fermi 子;(c)两个不同粒子.【解答与分析见《量子力学习题精选与剖析》[下],7.1题.】7.1 考虑由两个全同粒子组成的体系.设可能的单粒子态为φ1、φ2、φ3,试求体系的可能态数目.分三种情况讨论:(a)粒子为Bose子(Bose统计);(b)粒子为Fermi子(Fermi统计);(c)粒子为经典粒子(Boltzmann统计).解:以符号△、○、口分别表示φ1、φ2、φ3态.Bose子体系的量子态对于两个粒子的交换必须是对称的,Fermi子体系则必须是反对称的,经典粒子被认为是可区分的,体系状态没有对称性的限制.当两个粒子处于相同的单粒子态时,体系的状态必然是交换对称的,这种状态只能出现于Bose子体系和经典粒子体系,体系波函数的构造方式为当两个粒子处于不同的单粒子态(φi和φj,i≠j)时,如果是经典粒子,有两种体系态,即由单粒子态φi和φj可以构成对称和反对称的体系态各一种,即对称态适用于Bose子体系,反对称态适用于Fermi子体系.对于两粒子体系来说,Bose子体系的可能态总数与Fermi子体系的可能态总数之和,显然正好等于经典粒子(可区分粒子)体系的可能态总数.如可能的单粒子态为k个,则三种两粒子体系的可能态数目如下:经典粒子N=k2本题k=3,Fermi子、Bose子、经典粒子体系的可能态数目分别为3、6、9.体系态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r·p的平均值随时间的变化为
i d rˆ pˆ [rˆ pˆ, Hˆ ] 1 [rˆ pˆ, pˆ 2 ] [rˆ pˆ,Vˆ(r )]
dt
2m
对定态有
i
pˆ 2
rˆ
Vˆ
m
d rˆ pˆ 0 dt
则
1 pˆ 2 rˆ Vˆ
m
2Tˆ rˆ Vˆ
证明: [rˆ pˆ ,Vˆ(r )]
Hˆ E , Fˆ F
又因为 [G, H]=0, 则
HˆGˆψ GˆHˆψ GˆEψ EGˆψ
即GΨ也是H的本征函数,对应的本征值也是E, 即体系的能级是简并的。
推论: 如果体系有一守恒量F,而体系的某条能级并不
简并,即对应某个能量本征值E只有一个本征态 ΨE,则ΨE必为F 的本征态。
证明:设ΨE是一能量本征态。因F是守恒量,则[F, H]=0
Pˆ n (x) n (x) (1)n n (x)
结论: 体系的守恒量总是与体系的某种对称性相联系,而能级 简并也往往与体系的某种对称性相联系。在一般情况下, 当能级出现简并时,可以根据体系的对称性,找出其守 恒量。
位力定理: 设粒子处于势场V(r),其哈密顿为
Hˆ pˆ 2 / 2m Vˆ(r )
(2) 量子体系的各守恒量并不一定都可以同时取确定值。
5. 守恒量与定态
(1) 定态是体系的一种特殊状态,即能量本征态,而守恒量则 是一种特殊的力学量,与体系的Hamilton量对易。
(2) 在定态下一切力学量的平均值和测值概率都不随时间改变; 而守恒量则在一切状态下的平均值和测值概率都不随时间 改变
结论: 如果力学量A不含时间,若[A, H]=0(即为守恒量),则 无论体系处于什么状态,A的平均值和测值概率均不随时间变化。
4. 经典与量子力学中的守恒量间的关系
(1) 与经典力学中的守恒量不同,量子力学中的守恒量不一定取 确定的数值. 若初始时刻体系处于守恒量A的本征态,则体系 将保持在该本征态。此态对应的量子数将伴随终生,因此守 恒量的本征态对应的量子数称为好量子数。
t
则 d Aˆ (t) 1 [Aˆ, Hˆ ]
dt
i
若 [ Aˆ, Hˆ ] 0
d Aˆ (t) 0 dt
可见:若力学量A与体系的哈密顿量对易,则A为守恒量。
3. 守恒量的性质
选包括H和A在内的一组力学量完全集,则
Hˆ k Ek k , Aˆ k Ak k
体系的任意量子态可表示为
ψ (t) ak (t)ψk , ak (t) (ψk ,ψ (t))
HˆFˆψE FˆHˆψE FˆEψE EFˆψE
即FΨE也是一个能量本征态,对应的本征值也是E. 根据假定能级不简并,则必有
FˆψE FψE
即ΨE也是F的本征态,对应的本征值是F´.
例如: 一维谐振子势中粒子的能级并不简并,空间反射算符P为 守恒量, [P,H]=0, 则能量本征态必为P的本征态,即有确 定的宇称。事实上,也确是如此,
守恒的条件?
d dt
Aˆ (t)
t
,
Aˆ,Aˆ t源自,Aˆ t
Hˆ
i
,
Aˆ
,
Aˆ
H
i
,
Aˆ
t
Note
i Hˆ
t
1 i
, HˆAˆ
1 i
(
,
Aˆ Hˆ
)
,
Aˆ
t
1 i
(
,[
Aˆ ,
Hˆ ]
)
,
Aˆ
t
1 i
[ Aˆ,
Hˆ
]
Aˆ t
若力学量不显含时间,即
Aˆ 0
]
[zpˆ z
,
pˆ z2 ]
2i
pˆ x2 2i
pˆ
2 y
2i
pˆ z2
2i pˆ 2
思考题: r·p并不是厄米算符,应进行厄米化
rˆ pˆ 1 (rˆ pˆ pˆ rˆ) 2
这是否会影响位力定理得证明。
答:从位力定理的证明可以看出,将r·p厄米化后并不能影响 到定理的证明。
例题1 设V(x,y,z)是x,y,z的n次齐次函数,即
1. 经典物理中的守恒量
守恒量:力学量的值不随时间变化 动量守恒: 质点受的合外力为零 机械能守恒:外力和内非保守力不做功 角动量守恒:质点所受到的合外力矩为零
2. 量子力学中的守恒量 守恒量:在任意态下力学量的平均值不随时间变化
在任意量子态ψ下,力学量A的平均值为 Aˆ (t) (t), Aˆ (t)
[xˆpˆ x ,Vˆ(r )] [ yˆpˆ y ,Vˆ(r )] [zˆpˆ z ,V (r )]
xˆ(i Vˆ(r )) yˆ(i Vˆ(r )) zˆ(i Vˆ(r ))
x
y
z
i rˆ Vˆ(r )
[r pˆ , pˆ 2 ]
[xpˆ x
,
pˆ x2 ]
[
ypˆ y
,
pˆ
2 y
例题1 判断下列说法的正误
(1)在非定态下,力学量的平均值随时间变化(错) (2) 设体系处在定态,则不含时力学量测值的概率不随时间变化(对) (3)设哈密顿量为守恒量,则体系处在定态(错) (4) 中心力场中的粒子处于定态,则角动量取确定的数值(错) (5) 自由粒子处于定态,则动量取确定值(错) (能级是二重简并的) (6)一维粒子的能量本征态无简并(错) (一维束缚态粒子的能量本征态无简并)
第4 章 力学量随时间的演化与对称性
§4.1 力学量随时间的演化 §4.2 波包的运动,Ehrenfest定理 §4.3 Schrödinger 图像与Heisenberg图像 §4.4 * 守恒量与对称性的关系 §4.5 全同粒子体系与波函数的交换对称性
§4.1 力学量随时间的演化 4.1.1 守恒量
证明: 对于属于能量E的任何两个束缚态波函数有 ψ1ψ2 ψ2ψ1
则 1 /1 2 / 2
两边同时积分得 ψ1 Cψ2
4.1.2 能级简并与守恒量的关系
定理 设体系有两个彼此不对易的守恒量F和G,即 [F,H]=0,[G,H]=0,[F,G]≠0, 则体系能级一般是简并的。
证明: [F, H]=0,则F, H有共同的本征函数ψ
k
在Ψ态下,测力学量A的Ak的概率为 ak (t) 2 则该概率随时间的变化为
d dt
ak (t) 2
dak dt
ak
复共轭项
(t)
t
,
k
(
k
,
(t ))
复共轭项
Hˆ
i
(t)
,
k
(
k
,
(t ))
复共轭项
1 i
(
(t), Hˆ k
)( k ,
(t ))
复共轭项
Ek i
( (t), k ) 2 复共轭项 0