初一上学期数学练习题及答案
初一上册数学练习题及答案

初一上册数学练习题及答案初一上册数学是中学数学教育的起点,涵盖了许多基础的数学概念和运算。
以下是一些适合初一学生的数学练习题及答案,以帮助学生巩固所学知识。
# 练习题1. 有理数的加减法计算下列各题:(a) \( 3 - 7 \)(b) \( -5 + 8 \)(c) \( 4 - (-3) \)2. 有理数的乘除法计算下列各题:(a) \( (-2) \times (-3) \)(b) \( 7 \div (-3) \)(c) \( (-4) \times 8 \div 2 \)3. 绝对值求下列各数的绝对值:(a) \( |-12| \)(b) \( |0| \)(c) \( |-\frac{1}{3}| \)4. 代数式求值已知 \( a = 2 \),\( b = -1 \),求下列代数式的值:(a) \( a + b \)(b) \( a - b \)(c) \( ab \)5. 一元一次方程解下列一元一次方程:(a) \( x + 3 = 10 \)(b) \( 2x - 5 = 15 \)(c) \( 3x + 4 = 2x + 11 \)# 答案1. 有理数的加减法(a) \( 3 - 7 = -4 \)(b) \( -5 + 8 = 3 \)(c) \( 4 - (-3) = 4 + 3 = 7 \)2. 有理数的乘除法(a) \( (-2) \times (-3) = 6 \)(b) \( 7 \div (-3) = -\frac{7}{3} \)(c) \( (-4) \times 8 \div 2 = -32 \div 2 = -16 \)3. 绝对值(a) \( |-12| = 12 \)(b) \( |0| = 0 \)(c) \( |-\frac{1}{3}| = \frac{1}{3} \)4. 代数式求值(a) \( a + b = 2 + (-1) = 1 \)(b) \( a - b = 2 - (-1) = 3 \)(c) \( ab = 2 \times (-1) = -2 \)5. 一元一次方程(a) \( x + 3 = 10 \) 解得 \( x = 10 - 3 = 7 \)(b) \( 2x - 5 = 15 \) 解得 \( 2x = 20 \) 从而 \( x = 10 \)(c) \( 3x + 4 = 2x + 11 \) 解得 \( x = 11 - 4 = 7 \)希望这些练习题和答案能够帮助初一的学生更好地理解和掌握数学基础知识。
初一上册数学练习题及答案

初一上册数学练习题及答案一、选择题1. 下列哪个选项不是整数?A. -3B. 0C. 5D. 2.5答案:D2. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C3. 下列哪个选项是偶数?A. 3B. 7C. 8D. 11答案:C二、填空题4. 一个数的相反数是-8,那么这个数是______。
答案:85. 如果一个数的平方是36,那么这个数是______。
答案:±66. 一个数的立方是-27,那么这个数是______。
答案:-3三、计算题7. 计算下列各题,并写出计算过程:(1) (-2) × (-3)答案:原式 = 6(2) 12 ÷ (-3)答案:原式 = -4(3) 5 - (-3)答案:原式 = 5 + 3 = 8四、解答题8. 一个数的3倍加上5等于22,求这个数。
解:设这个数为x,根据题意可得方程 3x + 5 = 22,解得 x = (22 - 5) ÷ 3 = 17 ÷ 3 = 5.67(保留两位小数)9. 一个长方形的长是宽的3倍,如果宽增加2米,长不变,面积就增加12平方米,求长方形原来的长和宽。
解:设原来宽为w米,长为3w米,根据题意可得方程(3w) × (w + 2) - 3w × w = 12,解得 w = 2,所以原来的长为3 × 2 = 6 米,宽为 2 米。
五、应用题10. 一个班级有40名学生,如果每名学生平均分得的书本数增加2本,那么班级总共需要增加80本新书。
求原来每名学生平均分得的书本数。
解:设原来每名学生平均分得的书本数为x本,根据题意可得方程 40x + 80 = 40(x + 2),解得 x = 2,所以原来每名学生平均分得的书本数为2本。
本练习题旨在帮助初一学生巩固数学基础知识,提高解题能力。
希望同学们认真完成,如有不懂之处,请及时向老师请教。
人教版 七年级数学上册 3.4 实际问题与一元一次方程 同步练习(含答案)

人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习一、选择题1. 小明所在城市的“阶梯水价”收费办法如下:每户每月用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元.小明家今年5月份用水9吨,共交水费44元,根据题意列出关于x的方程,正确的是()A.5x+4(x+2)=44B.5x+4(x-2)=44C.9(x+2)=44D.9(x+2)-4×2=442. 学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是()A.80分B.76分C.75分D.70分3. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是()A.350元B.400元C.450元D.500元4. 某市出租车的收费标准是起步价5元(行驶路程不超过3 km,都需付5元车费),超过3 km,每增加1 km,加收1.2元(不足1 km的按1 km收费). 某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是()A.8 km B.9 kmC.6 km D.10 km5. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米6. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -377. 小明前年用一笔钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年他将得到利息288元,则小明前年买理财产品的钱数为( ) A .6400元 B .3200元 C .2560元D .1600元8. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人9. 为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可打8折.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款() A.140元B.150元C.160元D.200元10. 《算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少.”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字.已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+12x+14x=34685二、填空题11. 某商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品的进价是元.12. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.13. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.14. 2019·芜湖南陵期末某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠5000册,实际捐赠时学生比原计划多捐了15%,教师比原计划多捐了20%,实际共捐赠5825册,则原计划学生捐赠图书________册.15. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.16. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A地区的物资比发往B地区的物资的1.5倍少1000件,则发往A地区的生活物资为________件.三、解答题17. 某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校的矿泉水件数的2倍少400件.求该企业捐给甲、乙两所学校各多少件矿泉水.18. 一块金与银的合金重250克,放在水中减轻了16克,已知金在水中质量减轻119,银在水中质量减轻110.求这块合金中含金、银各多少克.19. 某班进行期中考试后,班长安排小明购买奖品准备奖励成绩优异的学生.如图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本;(2)请你解释:小明为什么不可能找回68元?20. 如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.21. 为庆祝六一儿童节,某市中小学统一组织文艺会演.甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上(含91套)每套服装的价格60元50元40元如果两所学校分别单独购买服装,那么一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装可以节省多少钱?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法、绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装的方案.人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习-答案一、选择题1. 【答案】A[解析] 由题意可得5x+(9-5)(x+2)=44,即5x+4(x+2)=44.故选A.2. 【答案】B[解析] 根据表格数据,A学生答对20道题得100分,可知答对一题得100÷20=5(分).设答错或不答一道题得x分,由B学生答对18道题,答错2道题得88分,可得18×5+2x=88,解得x=-1,故答错或不答一题扣1分.小亮答对16道题,则有16×5+(-1)×(20-16)=76(分).故选B.3. 【答案】B[解析] 本题相等关系是:利润率=20%,根据相等关系建立方程可得解.设这批服装每件的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.4. 【答案】A[解析] 设此人坐车行驶的路程最多为x km ,则有5+(x -3)×1.2=11,解得x =8.5. 【答案】A[解析] 根据题意和图形可以列出相应的方程,从而可以解答本题.由题意可得5x +2×4=a ,解得x =a -85.故选A.6. 【答案】B7. 【答案】B[解析] 设小明前年买理财产品的钱数是x 元.由题意得4.5%x×2=288,解得x =3200.即小明前年买理财产品的钱数为3200元.8. 【答案】A[解析] 设大和尚有x 人,则小和尚有(100-x)人,根据相等关系:大和尚吃的馒头个数+小和尚吃的馒头个数=100,可列方程为:3x +100-x3=100.解方程可得x =25.所以大和尚25人,小和尚75人.故选A.9. 【答案】B[解析] 此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解. 设小慧同学不买卡直接购书需付款x 元, 则有20+0.8x =x -10, 解得x =150,即小慧同学不买卡直接购书需付款150元.故选B.10. 【答案】A二、填空题11. 【答案】21 [解析]设该商品的进价为x 元,根据题意得:28×0.9-x=20%x ,解得x=21.12. 【答案】180 [解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x 千米/时,则甲车的速度为1.2x 千米/时.根据题意,得2·1.2x +2x =660,解方程,得x =150.150×1.2=180(千米/时).13. 【答案】6[解析] 设蜘蛛有x 只,则蜻蜓有2x 只,由题意,得8x +2x·6=120,解得x =6.14. 【答案】3500[解析] 设原计划学生捐赠图书x 册,则教师捐赠图书(5000-x)册.依题意得15%x +(5000-x)×20%=5825-5000,解得x =3500.15. 【答案】3[解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x8=1, 解得x =2,x +1=3. 故甲一共做了3天.16. 【答案】3200[解析] 设发往A 地区的生活物资为x 件,则发往B 地区的物资为(6000-x)件.依题意可列方程x =1.5×(6000-x)-1000,解得x =3200.三、解答题17. 【答案】解:设该企业捐给乙校x 件矿泉水,则捐给甲校(2x -400)件矿泉水. 根据题意,得x +(2x -400)=2000. 解得x =800, 所以2000-x =1200.答:该企业捐给甲校1200件矿泉水,捐给乙校800件矿泉水.18. 【答案】解:设这块合金中含金x 克,则含银(250-x)克.根据题意,得119x +110(250-x)=16. 解得x =190.250-x =250-190=60.答:这块合金中含金190克,含银60克.19. 【答案】解:(1)设买了x 本单价为5元/本的笔记本,则买了(40-x)本单价为8元/本的笔记本,依题意,得5x +8(40-x)=300-68+13. 解得x =25.40-x =15.答:单价为5元/本和8元/本的笔记本分别买了25本和15本.(2)解法一:由(1)知应找回的钱款为300-5×25-8×15=55(元)≠68元,故不可能找回68元.解法二:设买了m 本单价为5元/本的笔记本,则买了(40-m)本单价为8元/本的笔记本.依题意,得5m +8(40-m)=300-68.解得m =883.因为m 是正整数,所以m =883不合题意,应舍去,故不可能找回68元.20. 【答案】解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒. (2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6; ②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18. 答:当A ,B 两点运动6秒或18秒时相距6个单位长度. (3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43.当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72.答:此时点B 表示的数为-72.21. 【答案】[解析] 首先要认真阅读题目弄清题意,运用方程求出甲、乙两校参加演出的学生数,然后根据数据进行单独购买、联合购买的计算,尤其是两校联合购买比实际人数多购买9套,但实际花费较小这一情形容易被忽视掉.解:(1)由题意,得5000-92×40=1320(元),所以两校联合起来购买服装比各自购买服装可以节省1320元.(2)设甲校有x名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.由题意知甲校的学生多于45人且少于90人,乙校的学生少于45人.依题意列方程,得50x+60(92-x)=5000,解得x=52,92-x=92-52=40.所以甲、乙两所学校分别有52名,40名学生准备参加演出.(3)由于甲校有10人不能参加演出,则甲校有42人参加演出.若两校各自购买服装,则需要(42+40)×60=4920(元).若两校联合购买服装,则需要50×(42+40)=4100(元).这样两校联合购买服装比各自购买可以节省4920-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买可节省4100-3640=460(元).因此,最省钱的购买服装的方案是两校联合购买91套服装.。
初一七年级数学上册列方程解应用题练习题(附答案)

10. 解:方案一:
方案二:
方案三:设这批蔬菜中有x吨进行精加工,则有(140-x)吨进行粗加工,由题意得
答:由此可以看出,方案三获利最多.
(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出每种型号手机的购买数量.
6.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.
9.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG”改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的 ,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的 .问:
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;
方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.
你认为哪种方案获利最多?为什么?
参考答案:
1.解:设甲车的速度为x千米/时,乙车的速度为y千米/时,由题意得
得
答:甲车的速度为60千米/时,乙车的速度为80千米/时.
请问先生明算者,算来寺内几多僧.
3.牛奶和鸡蛋所含各种主要成分的百分比如下表.又知每1g蛋白质、脂肪、碳水化合物产生和热量分别为16.8J、37.8J、16.8J.当牛奶和鸡蛋各取几克时,使它们质量之比为3:2,且产生1260J的热量?
最新人教版七年级数学上册全套同步练习题(课课练)及答案

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
初一数学练习册上册及答案

初一数学练习册上册及答案【练习一:有理数的加减法】1. 计算下列各题:- (1) 3 + (-2)- (2) (-5) + 4- (3) (-3) + (-2)2. 根据题目1的结果,判断以下说法是否正确:- (1) 正数加负数,和一定是负数。
- (2) 负数加正数,和一定是正数。
【练习二:有理数的乘除法】1. 计算下列各题:- (1) (-3) × 5- (2) (-4) ÷ (-2)- (3) 0 × 92. 解释有理数乘除法的规则。
【练习三:绝对值】1. 求下列数的绝对值:- (1) |-7|- (2) |5|- (3) |-12|2. 根据题目1的结果,判断以下说法是否正确: - (1) 一个数的绝对值总是正数或零。
- (2) 正数的绝对值是它本身。
【练习四:解一元一次方程】1. 解下列方程:- (1) 2x + 5 = 11- (2) 3x - 7 = 82. 说明解一元一次方程的一般步骤。
【练习五:几何图形的初步认识】1. 根据题目要求,画出以下图形:- (1) 一个正方形- (2) 一个等边三角形2. 解释正方形和等边三角形的性质。
【答案】【练习一】1. (1) 1(2) -1(3) -52. (1) 错误,例如:3 + (-2) = 1(2) 错误,例如:(-5) + 4 = -1【练习二】1. (1) -15(2) 2(3) 02. 有理数乘除法规则:同号得正,异号得负,绝对值相乘或相除。
【练习三】1. (1) 7(2) 5(3) 122. (1) 正确(2) 正确【练习四】1. (1) x = 3(2) x = 52. 解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1。
【练习五】1. 根据题目要求画出图形。
2. 正方形的性质:四边相等,四角都是直角。
等边三角形的性质:三边相等,三个内角都是60度。
结束语:通过本练习册的练习,同学们应该能够掌握初一数学的基础知识和基本技能,为进一步学习打下坚实的基础。
初一上册数学有理数的乘法试题及答案

初一上册数学有理数的乘法试题及答案一、选择题(共14小题)1.计算:2×(﹣3)的结果是()A.6B.﹣6C.﹣1D.5【考点】有理数的乘法.【专题】计算题.【分析】根据有理数乘法法则进行计算即可.【解答】解:2×(﹣3)=﹣6;故选B.【点评】此题考查了有理数的乘法,掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘是解题的关键.2.计算:(﹣2)×3的结果是()A.﹣6B.﹣1C.1D.6【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣2)×3=﹣2×3=﹣6.故选A.【点评】本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.3.计算:2×(﹣3)=()A.﹣6B.﹣5C.﹣1D.6【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:2×(﹣3)=﹣6.故选A.【点评】本题考查了有理数的乘法,熟记运算法则是解题的关键.4.(﹣2)×3的结果是()A.﹣5B.1C.﹣6D.6【考点】有理数的乘法.【专题】计算题.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值的运算.5.计算(﹣6)×(﹣1)的结果等于()A.6B.﹣6C.1D.﹣1【考点】有理数的乘法.【专题】计算题.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣6)×(﹣1),=6×1,=6.故选:A.【点评】本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.6.(﹣3)×3的结果是()A.﹣9B.0C.9D.﹣6【考点】有理数的乘法.【分析】根据两数相乘,异号得负,可得答案.【解答】解:原式=﹣3×3=﹣9,故选:A.【点评】本题考查了有理数的乘法,先确定积的符号,再进行绝对值得运算.7.计算﹣4×(﹣2)的结果是()A.8B.﹣8C.6D.﹣2【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:﹣4×(﹣2),=4×2,=8.故选:A.【点评】本题考查了有理数的乘法,是基础题,熟记运算法则是解题的关键.8.学校教学楼从每层楼到它上一层楼都要经过20级台阶,小明从一楼到五楼要经过的台阶数是()A.100B.80C.50D.120【考点】有理数的乘法.【分析】从一楼到五楼共经过四层楼,所以用20乘以4,再根据有理数的乘法运算法则进行计算即可得解,【解答】解:从一楼到五楼要经过的台阶数为:20×(5﹣1)=80.故选B.【点评】本题考查了有理数的乘法,要注意经过的楼层数为所在楼层减1.9.计算(﹣1)×3的结果是()A.﹣3B.﹣2C.2D.3【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣1)×3=﹣1×3=﹣3.故选A.【点评】本题考查了有理数的乘法,是基础题,计算时要注意符号的处理.10.算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.【考点】有理数的乘法.【分析】根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.故选:D.【点评】本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.11.下列运算结果正确的是()A.﹣87×(﹣83)=7221B.﹣2.68﹣7.42=﹣10C.3.77﹣7.11=﹣4.66D.【考点】有理数的乘法;有理数大小比较;有理数的减法.【专题】计算题.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=7221,正确;B、原式=﹣10.1,错误;C、原式=﹣3.34,错误;D、﹣>﹣,错误,故选A【点评】此题考查了有理数的乘法,有理数的大小比较,以及有理数的减法,熟练掌握运算法则是解本题的关键.12.若□×(﹣2)=1,则□内填一个实数应该是()A.B.2C.﹣2D.﹣【考点】有理数的乘法.【专题】计算题.【分析】根据乘积是1的两个数互为倒数解答.【解答】解:∵﹣×(﹣2)=1,∴□内填一个实数应该是﹣.故选:D.【点评】本题考查了有理数的乘法,是基础题,注意利用了倒数的定义.13.算式743×369﹣741×370之值为何?()A.﹣3B.﹣2C.2D.3【考点】有理数的乘法.【分析】根据乘法分配律,可简便运算,根据有理数的减法,可得答案.【解答】解:原式=743×(370﹣1)﹣741×370=370×(743﹣741)﹣743=370×2﹣743=﹣3,故选:A.【点评】本题考查了有理数的乘法,乘法分配律是解题关键.14.若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为何?()A.24B.48C.72D.240【考点】有理数的乘法.【分析】根据有理数的乘法,求出所有因子的最小公倍数,然后求出与720的最大公因数,即为最大公因子.【解答】解:1、2、3、4、6、8、12、16、24最小公倍数是48,48与720的最大公因数是48,所以,a与720的最大公因子是48.故选B.【点评】本题考查了有理数的乘法,确定出所有因子的最小公倍数是解题的关键.三年级数学上册《乘数末尾有0的乘法》教学设计三年级数学上册《乘数末尾有0的乘法》教学设计范文(通用3篇)教学目标:1.进一步掌握三位数乘两位数的笔算方法,提高计算的正确率和速度。
初一上册数学绝对值专项练习带答案

绝对值一.选择题共16小题1.相反数不大于它本身的数是A.正数 B.负数 C.非正数D.非负数2.下列各对数中,互为相反数的是A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为A.a2与b2B.a3与b5C.a2n与b2n n为正整数D.a2n+1与b2n+1n为正整数4.下列式子化简不正确的是A.+﹣5=﹣5 B.﹣﹣0.5=0.5C.﹣|+3|=﹣3 D.﹣+1=15.若a+b=0,则下列各组中不互为相反数的数是A.a3和b3B.a2和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是A.﹣2018 B.2018 C.±2018 D .﹣8.﹣2018的相反数是A.2018B.﹣2018 C .D .﹣9.下列各组数中,互为相反数的是A.﹣1与﹣12B.1与﹣12C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是A.﹣4 B.﹣5 C.﹣6 D.﹣2 11.化简|a﹣1|+a﹣1=A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是A.甲乙 B.丙丁 C.甲丙 D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是A.b<aB.|b|>|a| C.a+b>0 D.ab<016.﹣3的绝对值是A.3 B.﹣3 C .D .二.填空题共10小题17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|= .三.解答题共14小题27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2称﹣1,2分别为|m+1|与|m﹣2|的零点值.在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:1m<﹣1;2﹣1≤m<2;3m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:1当m<﹣1时,原式=﹣m+1﹣m﹣2=﹣2m+1;2当﹣1≤m<2时,原式=m+1﹣m﹣2=3;3当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:1分别求出|x﹣5|和|x﹣4|的零点值;2化简代数式|x﹣5|+|x﹣4|;3求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣﹣2|表示5与﹣2之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:1求|5﹣﹣2|= .2找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.3由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷x﹣y 的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:1探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;2归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.3应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a= ;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a 取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.1如果点P到点A,点B的距离相等,那么x= ;2当x= 时,点P到点A,点B的距离之和是6;3若点P到点A,点B 的距离之和最小,则x的取值范围是;4在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:1数轴上表示3与﹣2的两点之间的距离是.2数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为.3代数式|x+8|可以表示数轴上有理数x 与有理数所对应的两点之间的距离;若|x+8|=5,则x= .4求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:a﹣b﹢|a﹣b|.40.当a≠0时,请解答下列问题:1求的值;2若b ≠0,且,求的值.参考答案与试题解析一.选择题共16小题1. D.2. B.3. D.4. D.5. B.6.B.7. B .8. A.9. A.10. A.11. C.12.A.13. D.14.C.15.C.16. A.二.填空题共10小题17..18.6或﹣6 .19. 2 , 2 .20.4,﹣4 .21.2018 .22. 1 .23.﹣1 .24. 2 .25.±3 .26. = 3 .三.解答题共14小题27.解答1令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;2当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.3当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:1原式=|5+2|=7故答案为:7;2令x+5=0或x ﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣x+5﹣x﹣2=7,﹣x﹣5﹣x+2=7,x=5范围内不成立当﹣5<x<2时,∴x+5﹣x﹣2=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴x+5+x﹣2=7,x+5+x﹣2=7,2x=4,x=2,x=2范围内不成立∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;3由2的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷x﹣y=6÷﹣+=﹣36.30.解答解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;3应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣x+1﹣x﹣2﹣x﹣3=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=x+1﹣x﹣2﹣x﹣3=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2﹣x﹣3=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=x+1+x ﹣2+x﹣3=3x﹣4.33.解:1由题意得,|x﹣﹣3|=|x﹣1|,解得x=﹣1;2∵AB=|1﹣﹣3|=4,点P到点A,点B的距离之和是6, ∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣﹣3=6,解得x=2,综上所述,x=﹣4或2;3由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;4设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣﹣3﹣t|=|﹣3t﹣1﹣4t|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:1﹣1;2﹣4或2;3﹣3≤x≤1;4或2.34.解:1|3﹣﹣2|=5,2数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|, 3代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13, 4如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣﹣1008|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴a﹣b﹢|a﹣b|=a﹣b+a﹣b=2a﹣2b.40.解:1当a>0时,=1;当a<0时,=﹣1;2∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上学期数学练习题及答案1.1 正数和负数基础检测621.?1,0,2.5,?,?1.732,?3.14,106,?,?1中,正数有,负数375有。
2.如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作m,水位不升不降时水位变化记作 m。
3.在同一个问题中,分别用正数与负数表示的量具有的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走32m,记为这时甲乙两人相距m.8.某种药品的说明书上标明保存温度是℃,由此可知在℃至℃范围内保存才合适。
9.如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是A、-3.1B、0C、7D、33、既是分数又是正数的是A、+B、-4C、0D、2.13拓展提高4、下列说法正确的是A、正数、0、负数统称为有理数B、分数和整数统称为有理数C、正有理数、负有理数统称为有理数D、以上都不对5、-a一定是A、正数B、负数C、正数或负数D、正数或零或负数6、下列说法中,错误的有①?24是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的7有理数;⑥-1是最小的负整数。
A、1个B、2个C、3个D、4个7、把下列各数分别填入相应的大括号内:7,3.5,3.1415,0,1314,0.03,3,10, 1722 自然数集合{ ?};整数集合{ ?};正分数集合{ ?};非正数集合{ ?};8、简答题:-1和0之间还有负数吗?如有,请列举。
-3和-1之间有负整数吗?-2和2之间有哪些整数?有比-1大的负整数吗?有比1小的正整数吗?写出三个大于-105小于-100的有理数。
X|k |b| 1 . c|o |m1.2.2数轴基础检测1、在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度。
2、比较大小,在横线上填入“>”、“<”或“=”。
10;0-1;-1-2;-5-3;-2.52.5.拓展提高4.数轴上与原点距离是5的点有个,表示的数是。
5.已知x是整数,并且-3<x<4,那么在数轴上表示x 的所有可能的数值有。
6.在数轴上,点A、B分别表示-5和2,则线段AB的长度是。
7.从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是,再向右移动两个单位长度到达点C,则点C表示的数是。
8.数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是个单位长度。
1.2.3相反数基础检测1、-表示的相反数,即-=;-表示的相反数,即-=。
2、-2的相反数是;3、化简下列各数:-= -=-=5-=+= +=4、下列说法中正确的是A、正数和负数互为相反数B、任何一个数的相反数都与它本身不相同C、任何一个数都有它的相反数D、数轴上原点两旁的两个点表示的数互为相反数拓展提高:5、-的相反数是。
6、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点A、B表示的数分别是。
7、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=。
8、一个数a的相反数是非负数,那么这个数a与0的大小关系是 a0.9、数轴上A点表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是。
10、下列结论正确的有①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。
A 、2个B、3个 C、4个 D、5个11、如果a=-a,那么表示a的点在数轴上的什么位置?1.2.绝对值基础检测:1.-8的绝对值是。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果 x < y < 0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱ = ,则 x =。
8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b, ︱a︱︱b︱。
10.︱x ︱<л,则整数。
11.已知︱x︱-︱y︱=2,且y =-4,则 x = 。
12.已知︱x︱=,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱。
14. 式子︱x +1 ︱的最小值是,这时,x值为。
15. 下列说法错误的是A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是绝对值是它本身的数有两个,是0和1任何有理数的绝对值都不是负数一个有理数的绝对值必为正数绝对值等于相反数的数一定是非负数A B C 1D 017.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则 a + b + c 等于A -1B 0C 1 D拓展提高:18.如果a , b互为相反数,c, d 互为倒数,m 的绝对值为2,求式子19.某司机在东西路上开车接送乘客,他早晨从A地出发,,到晚上送走最后一位客人为止,他一天行驶的的里程记录如下+10 ,—,—1,+0 ,—20 ,—1,+ 14若该车每百公里耗油 L ,则这车今天共耗油多少升?据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球a?b + m -cd 的值。
a?b?c1.3.1有理数的加法基础检测1、计算:15+++1.512、计算:23++6++3+1++2+七年级数学复习题一.填空题1.我市某天最高气温是9°,最低气温是零下2°C,那么当天的最大温差是C..若a、b互为相反数,且都不为零,则a的值为. b3.写出一个系数为负数,含字母x.y的五次单项式,这个单项式可以为..如果37?18?,则??的补角的度数为..若4x4yn?1与?5xmy2的和仍为单项式,则m?n?.如图,若∠AOC =0°,∠AOB=∠COD,则∠BOD的度数为_________.BDAa 1 0O7.已知有理数a在数轴上的位置如图:则a?a?8.小明的家在车站O的东偏北18°方向300米A处,学校B在车站O的南偏西10°方向200米处,小明上学经车站所走的角∠AOB=..9.已知点B在线段AC上,AB=6cm,BC=12cm , P、Q分别是AB、AC中点,则PQ 10.当x=_________时,代数式x -1与2x+10的值互为相反数.11.如图,AB?CD于点B,BE是?ABD的平分线,则?CBE? °.12.一列火车匀速行驶,经过一条长300m的隧道需要1s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是s.则火车的长度是 m.二.选择题13.-2012的倒数是A.11B.?C.201 D.?2012012201214.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,用科学计数法表示为A.950?10 km B.95?10 km C.9.5?10 kmD.0.95?10 km15.如下图是一块带有圆形空洞和正方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是10111213ABCD第15题16.下列关系一定成立的是A.若a?b,则a?bB.若a?b,则a?b C.若a??b,则a?bD.若a??b,则a?b17.某项工作,甲单独做4天完成,乙单独做6天完成.若甲先做1天,然后甲、乙合作完成此项工作.若设甲一共做了x天,则所列方程为x?1xxx?11 B.??1646xx?1x1x?11 D.1 C. ?46446A.18.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=所以M是AB 中点,其中正确的是A.②③④ B.④ 三.解答题19.计算482?5?320.解下列方程:25x??221.随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km为标准,多于50km 的记为“?”,不足50km的记为“?”,刚好1AB;④因为A、M、B在同一条直线上,且AM=BM,2 D.③④C.①③④233x+13x?2210请求出这七天中平均每天行驶多少千米?若每行驶100km需用汽油6升,汽油价7.22元/升,请估计小明家一个月的汽油费用是多少元?22.已知:A?5a?3,B?3a?2ab,C?a?6ab?2,求a??1,b?2时,A?2B?C的值.2222223.请观察下面的点阵图和相应的等式,探究其中的规律:①2②2③2④⑤①1?1;②1?3?2;③1?3?5?3;… ⑴分别写出④.⑤相应的等式;⑵通过猜想写出与第n个点阵图相对应的等式.24.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.已知∠AOC=30°,∠BOD=60°,求∠MON 的度数;如果只已知“∠COD=90°”,你能求出∠MON的度数吗?如果能,请求出;如果不能,请说明理由.25.某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.若A型台灯按标价的9折出售,B型台灯按标价的8折出售,那么这批台灯全部售出后,商场共获利多少元?DCAOB N参考答案及评分标准142?42? .一.1.11 .-1 .?3x2y4.6.90°.0.118° .6cm10.-311.135° 12.270二.13.B 14.C 15.B 16.D 17.C 18.A三.19.解:原式=?6=-38解:原式=??4?5?=2?20?8=120.解: x?1x=1321.解:方法一:总路程为:+++50+12++=350km平均每天路程为:350÷7=50 km 方法二:平均每天路程为:50+81114016418=50 千米750?3067.22649.8元 100估计小明家一个月的汽油费用是222222222222A?B?C??2??5a?3?6a?4ab?a?6ab?210a2b?1?10?2?2?1?2110a2b1当a??1,b?2时,23.解:⑴④:1?3?5?7?4;⑤1?3?5?7?9?5⑵1?3?5?7n4.解:因为∠AOB是平角,∠AOC=30°,∠BOD=60° 所以∠COD=∠A0B-∠AOC-∠BOD=180°-30°-60°=90° 因为OM、ON分别是∠AOC、∠BOD的平分线.所以∠MOC=22211∠AOC=15°,∠NOD=∠BOD=30°2所以∠MON=∠MOC+∠COD+∠NOD= 15°+90°+30°=135°能.因为OM、ON分别是∠A OC、∠BOD的平分线.所以∠MOC+∠NOD =1111∠AOC+∠BOD===45°2222所以∠MON=∠MOC +∠NOD+∠COD =90°+45°=135°25.解:设购进A型节能台灯x盏,则购进B型节能台灯盏,根据题意列方程得:40x?65?2500 解之得:x?3050?30?20答:购进A.B两种新型节能台灯分别为30盏.20盏. ?2500?720 答:这批台灯全部售出后,商场共获利720元.七年级数学试题1、-12的相反数是B.2C.-12A.-D.122、据统计,2009年在国际金融危机的强烈冲击下,我国国内生产总值约为30 06000 000 000元,仍比上年增长9.0%。