8年级数学测试卷

合集下载

八年级数学上册真题测试卷

八年级数学上册真题测试卷

一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. 0C. 3D. -52. 已知a、b、c是等差数列,且a=2,b=5,那么c的值是()A. 8B. 7C. 6D. 93. 若方程x² - 2x - 3 = 0的解是x₁和x₂,则x₁ + x₂的值是()A. 2B. 3C. 1D. 04. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)5. 下列函数中,图象是双曲线的是()A. y = x²B. y = 1/xC. y = x³D. y = √x6. 若一个正方形的对角线长为5cm,那么这个正方形的面积是()A. 25cm²B. 10cm²C. 20cm²D. 15cm²7. 已知等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 28cmC. 30cmD. 32cm8. 若a、b、c是等比数列,且a=2,b=4,那么c的值是()A. 8B. 6C. 4D. 29. 在△ABC中,∠A=60°,∠B=45°,那么∠C的度数是()A. 75°B. 90°C. 105°D. 120°10. 下列不等式中,正确的是()A. 2x + 3 > 5B. 3x - 2 < 4C. 5x + 1 ≥ 3D. 4x - 5 ≤ 2二、填空题(每题5分,共25分)11. 若x² - 4x + 3 = 0,则x的值为______。

12. 在直角坐标系中,点P(2,-3)到原点的距离是______。

13. 若一个等差数列的公差为2,首项为3,那么第10项的值是______。

14. 已知函数y = -2x + 5,当x=3时,y的值为______。

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案

八年级下册数学期末试卷测试卷附答案 一、选择题1.2a +在实数范围内有意义,实数a 的取值范围是( )A .a >0B .a >1C .a ≥﹣2D .a >﹣1 2.下列满足条件的三角形中,不是直角三角形的是( )A .三内角之比为1∶2∶3B .三边长的平方之比为1∶2∶3C .三边长之比为3∶4∶5D .三内角之比为3∶4∶53.如图,下列条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC = B .AB CD =,AD BC =C .A B ∠=∠,CD ∠=∠D .AB AD =,B D ∠=∠ 4.红河州博物馆拟招聘一名优秀讲解员,其中小华笔试、试讲、面试三轮测试得分分别为90分、94分、92分.综合成绩中笔试占30%、试讲占50%、面试占20%,那么小华的最后得分为( )A .92分B .92.4分C .90分D .94分5.下列三角形中,是直角三角形的是( ).A .三角形的三边满足关系a +b =cB .三角形的三边为9,40,41C .三角形的一边等于另一边的一半D .三角形的三边比为1∶2∶36.如图,在菱形ABCD 中,∠D =140°,则∠1的大小为( )A .15°B .20°C .25°D .30°7.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP ,给出下列结论:①2PD EC =;②四边形PECF 的周长为8;③APD △一定是等腰三角形;④AP EF =;⑤EF 的最小值为22序号为( )A .①②④B .①③⑤C .②③④D .①②④⑤ 8.在平面直角坐标系中,定义:已知图形W 和直线l ,如果图形W 上存在一点Q ,使得点Q 到直线l 的距离小于或等于k ,则称图形W 与直线l “k 关联”.已知线段AB ,其中点(1,1)A ,(3,1)B .若线段AB 与直线y x b =-+“2关联”,则b 的取值范围是( ) A .-1≤b≤2 B .0≤b≤4 C .0≤b≤6 D .2≤b≤6二、填空题 9.若代数式2x x+有意义,则实数x 的取值范围是_________. 10.如果菱形的两条对角线长为10cm 与12cm ,则此菱形的面积______2cm11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.如图,在Rt △ABC 中,∠ACB =90°,D 、E 、F 分别为AB 、AC 、BC 的中点,若CD =5,则EF =___.13.在平面直角坐标中,点A (﹣3,2)、B (﹣1,2),直线y =kx (k ≠0)与线段AB 有交点,则k 的取值范围为___.14.如图,在△ABC 中,AD ,CD 分别平分∠BAC 和∠ACB ,AE ∥CD ,CE ∥AD .若从三个条件:①AB=AC ;②AB=BC ;③AC=BC 中,选择一个作为已知条件,则能使四边形ADCE 为菱形的是__(填序号).15.星期六下午,小张和小王同时从学校沿相同的路线去书店买书,小王出发4分钟后发现忘记带钱包,立即调头按原速原路回学校拿钱包,小王拿到钱包后,以比原速提高20%的速度按原路赶去书店,结果还是比小张晚4分钟到书店(小王拿钱包的时间忽略不计).在整个过程中,小张保持匀速运动,小王提速前后也分别保持匀速运动,如图所示是小张与小王之间的距离y (米)与小王出发的时间x (分钟)之间的函数图象,则学校到书店的距离为________米.16.如图,把矩形ABCD 沿直线BD 向上折叠,使点C 落在点C '的位置上,BC '交AD 于点E ,若3AB =,6BC =,则DE 的长为______.三、解答题17.计算: ①33118(3)2⨯+-; ②2(32)24-+.18.位于沈阳周边的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A 拉回点B 的位置(如图).在离水面高度为8m 的岸上点C ,工作人员用绳子拉船移动,开始时绳子AC 的长为17m ,工作人员以0.7米/秒的速度拉绳子,经过10秒后游船移动到点D 的位置,问此时游船移动的距离AD 的长是多少?19.如图,每个小正方形的边长都为1.(1)求ABC的周长;(2)判断ABC的形状.20.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC 上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.21.先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性22232232121(2)212(12)+=+⨯⨯++⨯⨯+|12|=12解决问题:①146514235+=+⨯⨯_________________=________________=_________________②根据上述思路,试将下列各式化简:28103-3 12 +22.由于持续高温和连日无雨,某水库的蓄水量y(万立方米)与干旱时间t(天)之间的关系满足一次函数y kt b=+,(k,b为常数,且k≠0),其图象如图所示.(1)由图象知k= ,其实际意义是;(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天,水库将干涸?23.已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转(),得到线段CE,联结BE、CE、DE. 过点B作BF⊥DE交线段DE的延长线于F.(1)如图,当BE=CE时,求旋转角的度数;(2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数;(3)联结AF,求证:.24.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A 作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=43x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x 轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x 轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.25.如图,在矩形 ABCD中, AB=16 , BC=18 ,点 E在边 AB 上,点 F 是边 BC 上不与点B、C 重合的一个动点,把△EBF沿 EF 折叠,点B落在点 B' 处.(I)若 AE=0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE=3 时,且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE=8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.【参考答案】一、选择题1.C解析:C【分析】根据二次根式有意义的条件即可求出a的取值范围.【详解】解:由题意可知:a+2≥0,∴a≥-2.故选:C.【点睛】本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2.D解析:D【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【详解】A、设三个内角的度数为n,2n,3n根据三角形内角和公式23180++=,求得n n n30n =,所以各角分别为30°,60°,90°,故此三角形是直角三角形;B 、三边符合勾股定理的逆定理,所以是直角三角形;C 、设三条边为3n ,4n ,5n ,则有()()()222345n n n +=,符合勾股定理的逆定理,所以是直角三角形;D 、设三个内角的度数为3n ,4n ,5n ,根据三角形内角和公式345180n n n ++=,求得15n =,所以各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选D .【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B解析:B【解析】【分析】根据平行四边形的判定定理进行分析即可.【详解】解:根据两组对边分别相等的四边形为平行四边形,则B 选项正确,故选:B .【点睛】本题考查平行四边形的判定,熟记基本的判定方法是解题关键.4.B解析:B【解析】【分析】根据加权平均数的定义列式计算即可.【详解】解:小华的最后得分为90×30%+94×50%+92×20%=92.4(分),故选:B .【点睛】本题主要考查了加权平均数,解题的关键是掌握加权平均数的定义.5.B解析:B【详解】A. 不能构成三角形,此选项错误;B.由于9²+40²=41²,是直角三角形,此选项正确;C. 不能判定是直角三角形,此选项错误;D.不能构成三角形,此选项错误.故选B.6.B解析:B【解析】【分析】由菱形的性质得到DA=DC,∠DAC=∠1,由等腰三角形的性质得到∠DAC=∠DCA=∠1,根据三角形的内角和定理求出∠DAC,即可得到∠1.【详解】解:∵四边形ABCD是菱形,∴DA=DC,∠DAC=∠1,∴∠DAC=∠DCA=∠1,在△ABD中,∵∠D=140°,∠D+∠DAC+∠DCA=180°,∴∠DAC=∠DCA=12(180°﹣∠D)=12×(180°﹣140°)=20°,故选B.【点睛】本题主要考查了菱形的性质,角平分线的性质,等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.7.D解析:D【解析】【分析】①据正方形的对角线平分对角的性质,得△PDF是等腰直角三角形,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得DP=2EC.②先证明四边形PECF为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC,则四边形PECF的周长为8;③根据P 的任意性可以判断△APD不一定是等腰三角形;④由②可知,四边形PECF为矩形,则通过正方形的轴对称性,证明AP=EF;⑤当AP最小时,EF最小,EF的最小值等于22.【详解】解:①如图,延长FP交AB与G,连PC,延长AP交EF与H,∵GF∥BC,∴∠DPF=∠DBC,∵四边形ABCD 是正方形∴∠DBC =45°∴∠DPF =∠DBC =45°,∴∠PDF =∠DPF =45°,∴PF =EC =DF ,∴在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴DP.故①正确;②∵PE ⊥BC ,PF ⊥CD ,∠BCD =90°,∴四边形PECF 为矩形,∴四边形PECF 的周长=2CE +2PE =2CE +2BE =2BC =8,故②正确;③∵点P 是正方形ABCD 的对角线BD 上任意一点,∠ADP =45°,∴当∠P AD =45°或67.5°或90°时,△APD 是等腰三角形,除此之外,△APD 不是等腰三角形,故③错误.④∵四边形PECF 为矩形,∴PC =EF ,由正方形为轴对称图形,∴AP =PC ,∴AP =EF ,故④正确;⑤由EF =PC =AP ,∴当AP 最小时,EF 最小,则当AP ⊥BD 时,即AP =12BD =12=EF 的最小值等于, 故⑤正确;综上所述,①②④⑤正确,故选D .【点睛】本题考查了正方形的性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题. 8.C解析:C【分析】如图(见解析),先画出图形,再根据定义求出两个临界位置时b 的值,由此即可得.【详解】如图,过点B 作直线y x b =-+的垂线,垂足为点D ,连接OA ,延长AB 交直线y x b =-+于点C由题意,有以下两个临界位置:①点A 到直线y x b =-+的距离等于2 (1,1)A22112OA ∴=+=,145∠=︒当直线y x b =-+经过原点O 时,0b =,245∠=︒2190∴∠+∠=︒OA ∴即为点A 到直线y x =-的距离,此时0b =②点B 到直线y x b =-+的距离等于2,即2BD =//AB x 轴45BCD ∴∠=︒,且点C 的纵坐标与点A 的纵坐标相同,即为1Rt BCD ∴是等腰直角三角形22BC BD ∴==∴点C 的横坐标为325+=(5,1)C ∴将点(5,1)C 代入直线y x b =-+得:51b -+=解得6b =则b 的取值范围是06b ≤≤故选:C .【点睛】本题考查了等腰直角三角形的判定与性质、一次函数的几何应用等知识点,理解新定义,求出两个临界位置时b 的值是解题关键.二、填空题9.2x ≥-且0x ≠【解析】【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得,x+2≥0,x≠0,解得,x≥-2且x ≠0,故答案为:x≥-2且x≠0.【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.10.60【解析】【详解】分析:已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.详解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×10cm×12cm=60cm 2,故答案为60.点睛:本题考查了根据对角线计算菱形的面积的方法,根据菱形对角线求得菱形的面积是解题的关键,难度一般.11.36cm 2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键. 12.C解析:5【分析】已知CD 是Rt △ABC 斜边AB 的中线,那么AB =2CD ,EF 是△ABC 的中位线,则EF 应等于AB 的一半.【详解】△ABC 是直角三角形,CD 是斜边的中线,1,222510,CD AB AB CD ∴=∴==⨯= 又EF 是△ABC 的中位线,∴EF =12×10 =5,故答案为:5.【点睛】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半,熟练掌握这些定理是解题关键.13.B 解析:2-2-3k ≤≤【分析】分别把B 点和A 点坐标代入y =kx (k ≠0)可计算出对应的k 的值,从而得到k 的取值范围.【详解】解:∵直线y =kx (k ≠0)与线段AB 有交点,∴当直线y =kx (k ≠0)过B (-1,2)时,k 值最小,则有-k =2,解得k =-2,当直线y =kx (k ≠0)过A (-3,2)时,k 值最大,则-3k =2,解得k =2-3, ∴k 的取值范围为2-2-3k ≤≤ 故答案为:2-2-3k ≤≤ 【点睛】本题考查了一次函数的应用和性质,解题的关键是运用数形结合的思想进行转化解题. 14.A解析:②【解析】【分析】根据②作条件,先证明四边形ADCE 是平行四边形,再利用邻边相等,得到四边形ADCE 是菱形.【详解】解:当BA=BC 时,四边形ADCE 是菱形.理由:∵AE ∥CD ,CE ∥AD ,∴四边形ADCE 是平行四边形,∵BA=BC ,∴∠BAC=∠BCA ,∵AD ,CD 分别平分∠BAC 和∠ACB ,∴∠DAC=∠DCA ,∴DA=DC ,∴四边形ADCE 是菱形.【点睛】本题考查的知识点是菱形的证明,解题关键是熟记菱形的性质.15.840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【解析:840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【详解】解:由题意可知:最后一段图象是小张到达书店后等待小王前往书店的图象, 则小王后来的速度为:336÷4=84(米/分钟),∴小王原来的速度为:84÷(1+20%)=70(米/分钟),根据第一段图象可知:v 王-v 张=40÷4=10(米/分钟),∴小张的速度为:70-10=60(米/分钟),设学校到书店的距离为x 米, 由题意得:4448460x x ⎛⎫++-= ⎪⎝⎭, 解得:x =840,答:学校到书店的距离为840米,故答案为:840.【点睛】本题考查了函数图象的实际应用,行程问题的基本关系,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键. 16.【分析】根据折叠和矩形的性质,可以得出三角形BDE 是等腰三角形,在直角三角形DEC′中,利用勾股定理可求出答案.【详解】解:由折叠得,DC =DC′=3,∠CBD =∠C′BD ,∵ABCD 是矩 解析:154【分析】根据折叠和矩形的性质,可以得出三角形BDE 是等腰三角形,在直角三角形DEC ′中,利用勾股定理可求出答案.【详解】解:由折叠得,DC =DC ′=3,∠CBD =∠C ′BD ,∵ABCD 是矩形,∴AD=BC=6,AD∥BC,∴∠CBD=∠ADB=∠C′BD,∴ED=EB,设BE=ED=x,则EC′=6﹣x,在Rt△DEC′中,由勾股定理得,32+(6﹣x)2=x2,解得,x=154,即BE=154,故答案为:154.【点睛】本题考查了矩形的性质、直角三角形的勾股定理等知识,根据折叠轴对称,得出DE=BE 是解决问题的关键.三、解答题17.①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:①原式=0;②原式=5.【解析:①0;②5【分析】(1)先运用二次根式或立方根的性质化简各个根式,再计算即可;(2)先运用完全平方公式计算,再合并同类二次根式计算即可.【详解】解:原式3=-33=-=0;②2原式32=+-【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则和运算顺序是解题的关键.18.游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在中,在中,,即可求出最终结果.【详解】解:工作人员以0.7米/秒的速度拉绳子,经过10秒解析:游船移动的距离AD的长是9米【分析】根据条件先计算经过10秒拉回绳子的长,然后计算出绳子CD的长,在Rt BCD中BD Rt ABC中,AB=【详解】解:工作人员以0.7米/秒的速度拉绳子,∴经过10秒拉回绳子100.7=7⨯米,开始时绳子AC的长为17m,∴拉了10秒后,绳子CD的长为17-7=10米,∴在Rt BCD中,BD===米,6在Rt ABC中,AB=米,15∴AD=15-6=9米,答:游船移动的距离AD的长是9米.【点睛】本题主要考查勾股定理的运用,属于综合题,难度一般,熟练掌握勾股定理解三角形是解决本题的关键.19.(1);(2)直角三角形【解析】【分析】(1)利用勾股定理分别运算出三角形的三边边长,即可运算周长;(2)根据勾股的逆定理即可判定的形状.【详解】(1),,的周长;(2),解析:(1)5;(2)直角三角形【解析】【分析】(1)利用勾股定理分别运算出三角形的三边边长,即可运算周长;(2)根据勾股的逆定理即可判定ABC的形状.【详解】(1)5AB==,BC=AC=∴的周长55ABC==;(2)225AC==22AB==,5252220BC==,222∴+=AC BC AB∴是直角三角形.ABC【点睛】本题主要考查了勾股定理和勾股定理的逆定理,熟悉掌握勾股定理是解题的关键.20.(1)见解析;(2)当为的中点时,四边形是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出解析:(1)见解析;(2)当E为BC的中点时,四边形AECD是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出四边形AECD是平行四边形,再求出四边形AECD是矩形即可.【详解】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB ∥DE ,∴∠B =∠DEC ,∴∠ACB =∠DEC ,∴OE =OC ,即△OEC 为等腰三角形;(2)解:当E 为BC 的中点时,四边形AECD 是矩形,理由是:∵AB =AC ,E 为BC 的中点,∴AE ⊥BC ,BE =EC ,∵△ABC 平移得到△DEF ,∴BE ∥AD ,BE =AD ,∴AD ∥EC ,AD =EC ,∴四边形AECD 是平行四边形,∵AE ⊥BC ,∴四边形AECD 是矩形.【点睛】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.21.①,,3+;②(1)5-;(2) .【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】①===3+,故答案为,,3+;②(1)解析:()2232355+⨯⨯+35+5②(1)53(2) 132 【解析】【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【详解】3+3=5=12+=12. 【点睛】本题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.22.(1);水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可;(2)根据(1)中函数解析式,令万立方米时,解析:(1)30-;水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可; (2)根据(1)中函数解析式,令360y =万立方米时,求出对应的干旱天数t 即可; (3)根据(1)中函数解析式,令0y =万立方米时,求出对应的干旱天数t ,减去(2)中的干旱天数即为所求.【详解】解:(1)一次函数y kt b =+,(k ,b 为常数,且k ≠0),根据图像可得:900=2030040k b k b +⎧⎨=+⎩, 解得:301500k b =-⎧⎨=⎩, 所以一次函数解析式为:301500y t =-+,k 的值代表每干旱一天水库蓄水量将减少30万立方米,故答案为:-30;水库蓄水量每天减少30万立方米;(2)由(1)知一次函数解析式为:301500y t =-+,令360y =,即360301500t =-+,解得:38t =,故38天后将发生严重干旱警报;(3)由(1)知一次函数解析式为:301500y t =-+,令0y =,即0301500t =-+,解得:50t =,503812-=(天),故预计再持续12天,水库将干涸.【点睛】此题考查了函数的图像问题,一次函数的实际应用,根据图像求出一次函数的解析式是解题的关键.23.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得=∠DCE=30°.(2)因为△CED 是等腰三角形,再利用三角形的内角解析:(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得=∠DCE=30°. (2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF=.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH.从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC=CD.由旋转知,CE=CD,又∵BE=CE,∴BE=CE=BC,∴△BEC是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=,在△CEB中,CE=CB,∠BCE=,∴∠CEB=∠CBE=,∴∠BEF=.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD ,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH ,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)见解析;(2);(3)点P坐标为(4,0)或(﹣4,0)【解析】【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为解析:(1)见解析;(2)3944y x=--;(3)点P坐标为(4,0)或(﹣4,0)【解析】【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.【详解】(1)证明:∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°,∴∠BCE+∠CBE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠CBE,又CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y =43x +4与坐标轴交于点A 、B , ∴A (﹣3,0),B (0,4),∴OA =3,OB =4,由(1)得△BOA ≌△AED ,∴DE =OA =3,AE =OB =4,∴OE =7,∴D (﹣7,3)设l 2的解析式为y =kx +b ,得3703k b k b =-+⎧⎨=-+⎩解得3494k b ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线l 2的函数表达式为:3944y x =-- (3)若点P 在x 轴正半轴,如图3,过点B 作BE ⊥OC ,∵BE =2,∠BCO =30°,BE ⊥OC∴BC =4,∵将线段AP 绕点P 顺时针旋转30°得到BP ,∴AP =BP ,∠APB =30°,∵∠APC =∠AOC +∠OAP =∠APB +∠BPC ,∴∠OAP =∠BPC ,且∠OAC =∠PCB =30°,AP =BP ,∴△OAP ≌△CPB (AAS )∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,P A=PB∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)【点睛】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解此题的关键.25.(I) ;(II) 16或10;(III) .【解析】【分析】(I)根据已知条件直接写出答案即可.(II)分两种情况:或讨论即可.(III)根据已知条件直接写出答案即可.【详解】(I解析:(I) ;(II) 16或10;(III) .【解析】【分析】(I)根据已知条件直接写出答案即可.(II)分两种情况:或讨论即可.(III)根据已知条件直接写出答案即可.【详解】(I) ;(II)∵四边形是矩形,∴,.分两种情况讨论:(i)如图1,当时,即是以为腰的等腰三角形.(ii)如图2,当时,过点作∥,分别交与于点、.∵四边形是矩形,∴∥,.又∥,∴四边形是平行四边形,又,'⊥,∴□是矩形,∴,,即B H CD又,∴,,∵,∴,∴,在RtΔEGB'中,由勾股定理得:,∴,在中,由勾股定理得:,综上,的长为16或10.(III) . (或).【点睛】本题主要考查了四边形的动点问题.。

人教版八年级数学下各单元测试卷13套含答案

人教版八年级数学下各单元测试卷13套含答案

八年级数学下册单元检测(一)16.1 分式一、精心选一选(本题共10题,每题3分,共30分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2、要使分式1(1)(2)x x x ++-有意义,则x 应满足 ( )A 、x ≠-1B 、x ≠2C 、x ≠±1D 、x ≠-1且x ≠23、下列约分正确的是( )A 、326x xx =B 、0=++yx yx C 、x xy x y x 12=++ D 、214222=y x xy 4、如果把分式yx xy+中的x 和y 都扩大2倍,即分式的值( ) A 、扩大4倍 B 、扩大2倍 C 、不变 D 、缩小2倍5、一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合作一天的工作量是( )A 、a+bB 、ba ab+ C 、2ba + D 、ba 11+ 6、能使分式122--x xx 的值为零的所有x 的值是 ( )A 、0=xB 、1=xC.0=x 或1=xD.=x 或1±=x7、化简2222a b a 2bab --+的结果是( ) A 、2a bab- B 、a ba b+- C 、a ba b-+ D 、2a bab+ 8、对分式2yx ,23x y,14xy 通分时, 最简公分母是( )A 、24x 2y3B 、12x2y2C、24xy2D、12xy29、下列式子(1)y x y x y x -=--122;(2)ca ba a c ab --=--;(3)1-=--b a a b ; (4)yx yx y x y x +-=--+-中正确个数有 ( ) A 、1个 B 、2 个 C 、 3 个 D 、 4 个10、若13+a 表示一个整数,则整数a 可以值有( ) A 、1个B 、2个 C、3个 D、4个二、细心填一填(本题共8题,每题4分,共32分)11、当1-=x 时,___________________112-+x x意义。

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。

八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案)

八年级数学下册期中测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.估计6+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间4.式子:①2>0;②4x +y ≤1;③x +3=0;④y -7;⑤m -2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .20 6.已知1112a b -=,则ab a b-的值是( ) A .12 B .-12 C .2 D .-27.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为_______.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:22169211x x xx x⎛⎫-++-÷⎪+-⎝⎭,其中2x=.3.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、C5、D6、D7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、60°或120°4、145、36、1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、13xx-+;15.3、(1)11x-;(2)14、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。

人教版八年级下册数学期末测试卷(必刷题)

人教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°2、如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有( )A. B. C. D.3、若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.4、计算的结果是()A.±3B.3C.﹣3D.5、在矩形ABCD中,E,P,G,H分别是边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中正确的是()①存在无数个四边形EFGH是平行四边形.②存在无数个四边形EFGH是矩形.③存在且仅有一个四边形EFGH是菱形.④除非矩形ABCD为正方形,否则不存在四边形EFGH是正方形.A.①②B.①②③C.①②④D.①③④6、如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE的长度为( )A.8B.9C.11D.127、以下列各组数为边长,不能构成直角三角形的是()A. B. C. D.8、如图,菱形ABCD的对角线BD、AC分别为2、2 ,以B为圆心的弧与AD、DC相切,则阴影部分的面积是()A.2 ﹣πB.4 ﹣πC.4 ﹣πD.29、某射击运动员在训练中射击了10次,成绩分别是:5,8,6,8,9,7,10,9,8,10。

下列结论不正确的是( )A.中位数是8B.众数是8C.平均数是8D.方差是210、已知:∠MON,如图,小静进行了以下作图:①在∠MON的两边上分别截取OA,OB,使OA=OB;②分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;③连接AC,BC,AB,OC.=4,则AB的长为()若OC=2,S四边形OACBA.5B.4C.3D.211、两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为()A. B. C.sinα D.112、若式子有意义,则实数x的取值范围是()A. B. 且 C. D. 且13、下列变形正确的是( )A. B. C.D.14、函数y= 中自变量x的取值范围是()A.x≥3B.x≥﹣3C.x≠3D.x>0且x≠315、下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知圆柱底面的周长为6cm,圆柱高为3cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.17、已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于________ .18、A,B两地之间有一条6000米长的直线跑道,小月和小华分别从A,B两地同时出发匀速跑步,相向而行,第一次相遇后,小月将自己的速度提高25%,并匀速跑步到达B点,到达后原地休息;小华匀速跑步到达A点后,立即调头按原速返回B点(调头时间忽略不计),两人距各自出发点的距离之和记为y (米),跑步时间记为x(分钟),已知y(米)与x(分钟)之间的关系如图所示,则小月到达B点后,再经过________分钟小华回到B点.19、最简二次根式与是同类最简二次根式,则b=________.20、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为________.21、如图,矩形OABC在第一象限,OA,OC分别于x轴,y轴重合,面积为6.矩形与双曲线y=(x>0)交BC于M,交BA于N,连接OB,MN,若2OB=3MN,则k=________22、化简=________23、如图,已知线段,P是AB上一动点,分别以AP,BP为斜边在AB 同侧作等腰和等腰,以CD为边作正方形DCFE,连结AE,BF,当时,为________.24、如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG 的周长是________.25、如图,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG于点O, 若AB=12,EF=13,H为AB的中点,则DG=________.三、解答题(共5题,共计25分)26、计算(结果用根号表示)(+1)(﹣2)+227、已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF 交于点M.求证:AE=BF28、如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌的高CD (结果精确到0.1米,参考数据:≈1.41,≈1.73).29、如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.30、已知m=﹣,n=+ ,求代数式m2+mn+n2的值.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、C6、D7、A8、D9、D10、B11、A12、C13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

人教版数学八年级上册第十一章《三角形》测试卷(含答案)

人教版数学八年级上册第十一章《三角形》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.如图所示,∠BAC为钝角,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,△ABC中AC边上的高为()A.ADB.BEC.CFD.AF2.(2019贵州毕节中考)在下列长度的三条线段中,不能组成三角形的是()A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm3.(2020辽宁沈阳中考)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD 的度数为()A.65°B.55°C.45°D.35°4.(2021湖北仙桃、潜江、天门、江汉油田中考)如图,在△ABC中,∠C=90°,点D在AC 上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,若∠A=70°,∠B=40°,∠C=32°,则∠BDC=()A.102°B.110°C.142°D.148°6.(2022独家原创)如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=40°,∠ACE=72°,则∠E的度数为()A.68°B.56°C.34°D.32°7.(2021台湾省中考改编)如图,四边形ABCD中,∠1、∠2、∠3分别为四边形ABCD 的外角.判断下列大小关系何者正确.()A.∠1+∠3=∠ABC+∠DB.∠1+∠3<∠ABC+∠DC.∠1+∠2+∠3=360°D.∠1+∠2+∠3>360°8.如图,在△ABC中,AE平分∠BAC交BC于点E,过点A作AD⊥BC,垂足为D,过点E 作EF⊥AC,垂足为F.若∠DAE=15°,∠AEF=50°,则∠B的度数为()A.55°B.65°C.75°D.80°9.(2020黑龙江牡丹江期中)如图,△ABC的面积是1,AD是△ABC的中线,AF=12FD,CE= 12EF,则△DEF的面积为()A.12B.34C.827D.2910.(2020山东青岛市北期末)如图,已知△ABC中,∠B=α,∠C=β(α>β),AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数为()A.α-βB.2(α-β)C.α-2βD.12(α-β)二、填空题(每小题3分,共24分)11.(2022江西南昌十中期末)如图,邱叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.(2021湖南郴州中考)一个多边形的每一个外角都等于60°,则这个多边形的内角和为度.13.(2021江苏淮安中考)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.14.(2021天津南开田家炳中学期中)将一副分别含有30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是.15.(2021河南郑州五校联考)如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=.16.(2021福建厦门三中期末)如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.17.(教材P12变式题)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,则∠ADB 的度数为.18.(2022福建泉州七中期中)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.若∠A=60°,则∠DCE+∠F=.三、解答题(共46分)19.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.20.(6分)如图,已知△ABC的周长为33 cm,AD是BC边上的中线,AB=3AC.2(1)当AC=10 cm时,求BD的长;(2)若AC=12 cm,能否求出DC的长?为什么?21.(6分)如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.22.(8分)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于点F,求证:∠C=2∠FEC.23.(2022吉林临江期末)(10分)我们探究过三角形内角和等于180°,四边形内角和等于360°,请解决下面的问题:(1)如图1,∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果);(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图2,如果∠AOB=110°,求∠COD的度数;②如图3,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.24.(2022山东济南外国语学校期末)(10分)已知∠MON=90°,点A、B分别在OM、ON 上运动(不与点O重合).(1)如图1,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=;(2)如图2,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=70°,则∠D=°;②随着点A、B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)在图2的基础上,如果∠MON=α,其余条件不变,随着点A、B的运动(如图3),求∠D 的度数.(用含α的式子表示)答案全解全析1.B 三角形的高是过一个顶点作垂直于它对边所在的直线的线段,所以△ABC 中,AC 边上的高是线段BE.故选B.2.C 选项A,2+3>4,能组成三角形;选项B,3+6>6,能组成三角形;选项C,2+2<6,不能组成三角形;选项D,5+6>7,能组成三角形.故选C.3.B ∵AC ⊥CB,∴∠ACB=90°, ∴∠ABC=90°-∠BAC=90°-35°=55°, ∵AB ∥CD,∴∠BCD=∠ABC=55°, 故选B.4.D ∵∠CDE=160°, ∴∠ADE=180°-160°=20°, ∵DE ∥AB,∴∠A=∠ADE=20°,∴∠B=180°-∠A-∠C=180°-20°-90°=70°.故选D.5.C 如图,连接AD 并延长,则∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C, ∴∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°, 故选C.6.C 由题图知∠ACE=∠B+∠BAC,∠B=40°,∠ACE=72°, ∴∠BAC=∠ACE-∠B=72°-40°=32°. ∵AD 平分∠BAC,∴∠BAD=12∠BAC=12×32°=16°, ∴∠ADE=∠BAD+∠B=16°+40°=56°. ∵EF ⊥AD,∴∠E=90°-∠ADE=90°-56°=34°.7.A 如图,连接BD,∵∠1=∠ABD+∠ADB,∠3=∠DBC+∠BDC,∴∠1+∠3=∠ABD+∠ADB+∠DBC+∠BDC=∠ABC+∠ADC, ∵四边形的外角和是360°, ∴∠1+∠2+∠3<360°.故选A. 8.B ∵AD ⊥BC,∠DAE=15°, ∴∠AED=90°-15°=75°, ∵∠AEF=50°,∴∠FEC=180°-∠AEF-∠AED=55°, ∵EF ⊥AC,∴∠EAF=90°-∠AEF=40°,∠C=90°-∠FEC=35°, ∵AE 平分∠BAC,∴∠BAC=2∠EAC=80°, ∵∠B+∠C+∠BAC=180°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°. 9.D ∵△ABC 的面积是1,AD 是△ABC 的中线, ∴S △ACD =12S △ABC =12, ∵AF=12FD,∴DF=23AD, ∴S △CDF =23S △ACD =23×12=13,∵CE=12EF,∴EF=23CF,∴S △DEF =23S △CDF =23×13=29,故选D.10.D 在△ABC 中,∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=180°-α-β,∵AE 是∠BAC 的平分线,∴∠EAC=12∠BAC=90°-12(α+β).在Rt △ADC 中,∠DAC=90°-∠C=90°-β,∴∠DAE=∠DAC-∠EAC=90°-β-90°+12(α+β)=12(α-β),故选D. 11.三角形的稳定性解析 给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是三角形的稳定性. 12.720解析 ∵多边形的每一个外角都等于60°, ∴它的边数为360°÷60°=6, ∴它的内角和为180°×(6-2)=720°, 故答案为720. 13.4解析 设第三边长为a,根据三角形的三边关系知, 4-1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a 为4. 故答案为4. 14.15°解析 ∵Rt △CDE 中,∠C=90°,∠E=30°, ∴∠BDF=∠C+∠E=90°+30°=120°, ∵△BDF 中,∠B=45°,∠BDF=120°, ∴∠BFD=180°-45°-120°=15°.故答案为15°. 15.34°解析 如图,延长AE 、BF 交于点C',连接CC'.在△ABC'中,∠AC'B=180°-72°-75°=33°,∵∠ECF=∠AC'B,∠1=∠ECC'+∠EC'C,∠2=∠FCC'+∠FC'C,∴∠1+∠2=∠ECC'+∠EC 'C+∠FCC'+∠FC'C=2∠AC'B=66°,∵∠1=32°,∴∠2=66°-32°=34°,故答案为34°.16.40°解析∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°-40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°-50°=40°,故答案为40°.17.108°解析∵在△ABC中,∠ABC=∠C=2∠A,∴令∠A=x,则∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠ABC=72°.∵BD是∠ABC的平分线,∠ABC=36°,∴∠ABD=12∴∠ADB=180°-∠A-∠ABD=180°-36°-36°=108°.18.45°解析∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CE平分∠ACB,∠ACB=90°,∠ACB=45°,∴∠ACE=∠ECB=12∴∠DCE=∠ACE-∠ACD=45°-30°=15°,∵∠ABG=∠A+∠ACB=150°,BF平分∠ABG,∴∠FBG=1∠ABG=75°,2∵∠FBG=∠F+∠FCB,∴∠F=75°-45°=30°.∴∠DCE+∠F=15°+30°=45°.19.解析(1)如图所示,虚线即为所求.×10=5.(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,∴△ADC的面积=12(3)∵AD是△ABC的边BC上的中线,∴BD=CD,∵△ABD的面积为6,∴△ABC的面积为12,∵BD边上的高为3,∴BC=12×2÷3=8.20.解析(1)∵AB=3AC,AC=10 cm,∴AB=15 cm.2又∵△ABC的周长是33 cm,∴BC=33-10-15=8(cm).∵AD是BC边上的中线,∴BD=1BC=4 cm.2(2)不能.理由如下:AC,AC=12 cm,∴AB=18 cm.∵AB=32又∵△ABC的周长是33 cm,∴BC=33-12-18=3(cm).∵AC+BC=15<18,∴不能构成三角形,则不能求出DC的长.21.解析(1)∵BD是AC边上的高,∴∠ADB=∠BDC=90°,∵∠A=70°,∴∠ABD=90°-70°=20°.(2)∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=118°-90°=28°,∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°, ∴∠DBC=90°-56°=34°,∴∠ABC=∠ABD+∠DBC=20°+34°=54°. 22.解析 (1)∵∠C=40°,∠B=2∠C, ∴∠B=80°,∴∠BAC=180°-80°-40°=60°,∵AE 平分∠BAC,∴∠EAC=12∠BAC=30°,∵AD ⊥BC,∴∠ADC=90°, ∴∠DAC=90°-40°=50°,∴∠DAE=∠DAC-∠EAC=50°-30°=20°. (2)证明:如图,∵EF ⊥AE,∴∠AEF=90°, ∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC, ∵AE 平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)=12(180°-3∠C)=90°-32∠C, ∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-32∠C)=90°-∠C-90°+32∠C=12∠C, ∴∠FEC=12∠C,∴∠C=2∠FEC.23.解析(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°, ∴∠AOB+∠COD=360°-180°=180°. 故答案为180°.(2)①∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°, 在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∵∠AOB=110°,∴∠COD=180°-110°=70°. ②AB ∥CD.理由如下:∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°,在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∴∠AOD+∠BOC=360°-(∠AOB+∠COD)=360°-180°=180°, ∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在△AOD 中,∠DAO+∠ADO=180°-∠AOD=180°-90°=90°,∵∠DAO=12∠DAB,∠ADO=12∠ADC,∴12∠DAB+12∠ADC=90°,∴∠DAB+∠ADC=180°,∴AB ∥CD.24.解析 (1)∵∠MON=90°,∴∠OAB+∠OBA=90°, ∵AE 、BE 分别是∠BAO 和∠ABO 的平分线,∴∠BAE=12∠BAO,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠BAO+∠ABO)=45°, ∴∠AEB=180°-45°=135°,故答案为135°.(2)①∵∠AOB=90°,∠BAO=70°, ∴∠ABO=20°,∠ABN=160°, ∵BC 是∠ABN 的平分线,∴∠OBD=∠CBN=12×160°=80°,∵AD 平分∠BAO,∴∠DAB=35°,∴∠D=180°-∠ABD-∠BAD=180°-∠OBD-∠ABO-∠BAD=180°-80°-20°-35°=45°, 故答案为45.②∠D 的度数不随A 、B 的移动而发生变化. 设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=90°,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=90°+2x, ∵BC 平分∠ABN,∴∠ABC=12∠ABN=45°+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=45°+x-x=45°. (3)设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=α,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=α+2x, ∵BC 平分∠ABN,∴∠ABC=12α+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=12α+x -x=12α.。

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。

人教版初中数学八年级数学下册第二单元《勾股定理》测试卷(有答案解析)

一、选择题1.如图,在△ABC 中,AB =6,AC =9,AD ⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .452.如图,在等腰ABC ∆中,,AB AC =点E 为AC 的中点,且CD CE =.若60,4A EF cm ∠=︒=,则DF 的长为( )A .12cmB .10cmC .8cmD .6cm 3.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 4.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 5.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为123S S S 、、;如图2,分别以直角三角形三边长为半径向外作半圆,面积分别为456S S S 、、.其中125616,45,11,14S S S S ====,则34S S +=( )A .86B .64C .54D .486.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm 7.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,下列结论:①AD 是BAC ∠的平分线;②∠ADB=120°;③DB=2CD ;④若CD=4,83AB =△DAB 的面积为20.其中正确的结论共有( )A .1个B .2个C .3个D .4个 8.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A .3B .5C .31+或31-D .51+或51- 9.如图,是一种饮料的包装盒,长、宽、高分别为4cm 、3cm 、12cm ,现有一长为16cm 的吸管插入到盒的底部,则吸管漏在盒外面的部分()h cm 的取值范围为( )A .34h <<B .34h ≤≤C .24h ≤≤D .4h = 10.如图,在△ABC 中,∠C =90°,点D 在边BC 上,AD =BD ,DE 平分∠ADB 交AB 于点E .若AC =12,BC =16,则AE 的长为( )A .6B .8C .10D .12 11.若实数m 、n 满足340m n --=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B 7C .57D .以上都不对 12.下列条件能使ABC (a ,b ,c 为ABC 的三边长)为直角三角形的是( )A .a b c +=B .::4:5:3a b c =C .2A B C ∠+∠=∠D .::5:12:13A B C ∠∠∠= 二、填空题13.如图,ABC 中,AB 5=,BC 6=,BC 边上的中线AD 4=,则ADC ∠=________.14.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成ABC .设AB=x ,若ABC 为直角三角形,则x=__.15.如图所示,在ABC 中,90C DE ∠=︒,垂直平分AB ,交BC 于点E ,垂足为点D ,8,15BE B =∠=︒,则EC 的长为________________________.16.已知一个直角三角形的两边长分别是a ,b ,且a ,b 满足340a b -+-=.则斜边长是____________17.如图,在四边形ABCD 中,22AD =,27AB =,10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.18.如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,这棵树有的高是______________ .19.如图,∠AOD =90°,OA =OB =BC =CD ,若AC =3,则AD =_______.20.如图AD=4,CD=3,∠ADC=90°,AB=13,BC=12,则图形ABCD的面积=______________.三、解答题21.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.22.《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中夹,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其底面是边长是10尺的正方形,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).水深和芦苇长各多少尺?23.已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°(1)若D为△ACB内部一点,如图,AE=BD吗?说明理由(2)若D为AB边上一点,AD=5,BD=12,求DE的长24.定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,请按要求画图:(1)在图1中画出一个面积为1的格点等腰直角三角形ABC;(2)在图2中画出一个面积为13的格点正方形DEFG;H;(3)在图3中画出一条长为5,且不与正方形方格纸的边平行的格点线段1的格点直角三角形JKL.(4)在图4中画出一个周长为321025.如图,△ABC中,AB=42,∠ABC=45°,D是BC边上一点,且AD=AC,若BD﹣DC=1.求DC的长.26.如图,在锐角△ABC中,AD⊥BC于点D,点E在AD上,DE=DC,BE=AC,点F为BC 的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)求证:△BDE≌△ADC;(2)求证:AC⊥MC;(3)若AC=m,则点A、点M之间的距离为(用含m的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2)=AC2−AB2=45.故选:D.【点睛】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.2.A解析:A【分析】由已知可得DF⊥AB,∠D=∠AEF=30°,所以根据含30°角的直角三角形性质可以算得DF的值.【详解】解:∵AB=AC,∠A=60°,∴ΔABC 为等边三角形,∴∠ACB=60°,∵CD=CE ,∴∠CED=∠D=12∠ACB=30°, ∴∠AEF=30°, ∴∠AFE=180°-∠A-∠AEF=90°,∵EF=4cm ,∴设AF=x ,则AE=2x ,∴由勾股定理得:22244x x +=,∴∴AF AE == ∴2BF AB AF AE AF =-=-=∵∠D=30°, ∴2BD BF ==, ∴22223DF BD BF BF =-=,∴DF=16412BF ==-=, 故选A .【点睛】本题考查等边三角形与直角三角形的综合运用,熟练掌握等边三角形与直角三角形的判定与性质、勾股定理的应用是解题关键. 3.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 4.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.5.C解析:C【分析】分别用AB 、BC 和AC 表示出 S 1、S 2、S 3,然后根据AB 2=AC 2+BC 2即可得出S 1、S 2、S 3的关系.同理,得出S 4、S 5、S 6的关系,即可得到结果.【详解】解:如图1,过点E 作AB 的垂线,垂足为D ,∵△ABE 是等边三角形,∴∠AED=∠BED=30°,设AB=x ,∴AD=BD=12AB=12x ,∴,∴S 2=122x x ⨯⨯=24AB ,同理:S 12AC ,S 32BC , ∵BC 2=AB 2-AC 2,∴S 3=S 2-S 1,如图2,S 4=21122AB π⎛⎫⨯ ⎪⎝⎭=28AB π, 同理S 5=28AC π,S 6=28BC π,则S 4=S 5+S 6, ∴S 3+S 4=45-16+11+14=54.【点睛】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.6.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形,矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即222251213AC BC +=+=cm 故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 7.C解析:C【分析】连接PN 、PM .根据题意易证明APM APN ≅,即可证明①正确;根据三角形外角的性质即可求出=120ADB ∠︒,故②正确;由30BAD B ∠=∠=︒,可说明AD=BD ,再由AD=2CD ,即可证明BD=2CD ,故③正确;由④所给条件可求出AC 和DB 的长,即可求出=163DAB S ,故④错误. 【详解】如图,连接PN 、PM .由题意可知AM=AN ,PM=PN ,AP=AP ,903060BAC ∠=︒-︒=︒.∴APM APN ≅,∴1302CAD BAD BAC ∠=∠=∠=︒,即AD 是BAC ∠的平分线,故①正确; ∵=ADB C CAD ∠∠+∠,∴=9030=120ADB ∠︒+︒︒,故②正确;在Rt ACD △中,30CAD ∠=︒,∴AD=2CD ,又∵30BAD B ∠=∠=︒,∴AD=BD ,∴BD=2CD .故③正确;在Rt ABC 中,30B ∠=︒, ∴3122BC AB ==, ∴=1248BD BC CD -=-=,又在Rt ACD △中,30CAD ∠=︒,∴343AC CD ==,∴11==843=16322DAB S BD AC ⨯⨯,故④错误.故选:C .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质,等腰三角形的判定和性质,角平分线的判定以及勾股定理.熟练掌握各个知识点是解答本题的关键.8.C解析:C【分析】分Q 在CB 延长线上和Q 在BC 延长线上两种情况分类讨论,求出CQ 长,根据线段的和差关系即可求解.解:如图1,当Q 在CB 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=, ∴BQ=CQ-BC=31-;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 3131.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.9.B解析:B【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的最长长度;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答,进而求出露在杯口外的最短长度.【详解】①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16−12=4(cm ); ②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线长2234+,高为12cm ,由勾股定理可得:杯里面管长22512+=13cm ,则露在杯口外的长度最短为16−13=3(cm ),∴34h ≤≤【点睛】本题考查了矩形中勾股定理的运用,解答此题的关键是要找出露在杯外面吸管最长和最短时,吸管在杯中所处的位置.10.C解析:C【分析】首先根据勾股定理求得斜边AB 的长度,然后结合等腰三角形的性质来求AE 的长度.【详解】解:如图,在△ABC 中,∠C=90°,AC=12,BC=16,由勾股定理知:20AB ===,∵AD=BD ,DE 平分∠ADB 交AB 于点E . ∴1102AE BE AB ===, 故选:C .【点睛】本题主要考查了勾股定理和等腰三角形三线合一.在直角三角形中,两条直角边长的平方之和一定等于斜边长的平方. 11.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.12.B解析:B【分析】根据三角形三边关系可分析出A的正误;根据勾股定理逆定理可分析出B的正误;根据三角形内角和定理可分析出C、D的正误;【详解】解:A、a b c+=,不能组成三角形,不是直角三角形;B、222a c b+=,符合勾股定理的逆定理,是直角三角形;C、由∠A+∠B=2∠C,可得∠C=60°,∠A+∠B=120°,不一定是直角三角形;D、由∠A:∠B:∠C=5:12:13,可得最大角131807830C∠=︒⨯=︒,不是直角三角形.故选:B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.也考查了三角形内角和定理.二、填空题13.【分析】根据中线的性质及勾股定理的逆定理即可求出的度数【详解】∵边上的中线∴∵∴【点睛】本题考查中线的性质勾股定理的逆定理的应用掌握相应的性质定理是解答此题的关键解析:90【分析】根据中线的性质及勾股定理的逆定理即可求出ADC∠的度数.【详解】∵AB5=,BC6=,BC边上的中线4AD=,∴BD3=,∵222345+=,∴ADC ADB90∠∠==.【点睛】本题考查中线的性质勾股定理的逆定理的应用,掌握相应的性质定理是解答此题的关键.14.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC中AC=1AB=xBC=3-x解得1<x<2;①∵1<x解析:43或53【分析】根据三角形的三边关系:两边之和大于第三边,即可得到关于x的不等式组,求出x的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC中,AC=1,AB=x,BC=3-x.1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 15.【分析】根据三角形内角和定理求出∠BAC 根据线段垂直平分线性质求出求出然后求出∠EAC 根据含30°角的直角三角形的性质求解即可【详解】解:∵在△ABC 中∴∵垂直平分∴∴∴∵∴∴∴在Rt △ECA 中故答解析:【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分线性质求出8BE AE ==,求出15EAB B ∠=∠=︒,然后求出∠EAC ,根据含30°角的直角三角形的性质求解即可.【详解】解:∵在△ABC 中,90ACB ∠=︒,15B ∠=︒,∴901575BAC ∠=︒-︒=︒,∵DE 垂直平分AB ,8BE =,∴8BE AE ==,∴15EAB B ∠=∠=︒,∴751560EAC ∠=︒-︒=︒,∵90C ∠=︒,∴30AEC ∠=︒, ∴184221AC AE =⋅=⨯=, ∴在Rt △ECA 中,EC ==故答案为:【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.16.5或4【分析】根据绝对值和算术平方根具有非负性可得ab 的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a =3b =4当ab 为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a 、b 的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a ,b 40b -=,∴a−3=0,b−4=0,解得:a =3,b =4,当a ,b 为直角边,5=;4也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.17.+24【分析】连结BD 可求出BD=6再根据勾股定理逆定理得出△BDC 是直角三角形两个三角形面积相加即可【详解】解:连结BD ∵∴∵∴BD=6∵BD2=36CD2=64BC2=100BD2+CD2=BC解析:+24【分析】连结BD ,可求出BD=6,再根据勾股定理逆定理,得出△BDC 是直角三角形,两个三角形面积相加即可.【详解】解:连结BD ,∵90BAD ∠=︒, ∴BD =∵AD =,AB =∴BD=6,∵BD 2=36,CD 2=64,BC 2=100,BD 2+CD 2=BC 2,∴∠BDC=90°,S △ABD =122272142⨯⨯=, S △BDC =168242⨯⨯=, 四边形ABCD 的面积是= S △ABD + S △BDC =214+24故答案为:214+24.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.15米【分析】根据题意确定已知线段的长再根据勾股定理列方程进行计算【详解】设BD=米则AD=()米CD=()米∵∴解得即树的高度是10+5=15米故答案为:15米【点睛】本题主要考查了勾股定理的应用解析:15米【分析】根据题意确定已知线段的长,再根据勾股定理列方程进行计算.【详解】设BD=x 米,则AD=(10x +)米,CD=(30x -)米,∵222CD AD AC -=,∴()()222301020x x --+=, 解得5x =.即树的高度是10+5=15米.故答案为:15米.【点睛】本题主要考查了勾股定理的应用,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.19.【分析】设OA=OB=BC=CD=a 可知AB=AC=AD=由题意知AC=3即可求出AD 的长;【详解】∵OA=OB=BC=CD ∴设OA=OB=BC=CD=a ∵∠AOD=90°∴AC===∴∵AC==3解析:32【分析】设OA=OB=BC=CD=a ,可知2a ,5a ,10a ,由题意知AC=3,即可求出AD 的长;【详解】∵ OA=OB=BC=CD ,∴ 设OA=OB=BC=CD=a ,∵∠AOD=90°,∴ AC=22AO OC + =()222a a + =5a , ∴2222(3)10AD OD OA a a a =+=+=,∵AC=5a =3,∴ a=35 ∴ AD=3510⨯=32 故答案为:32.【点睛】本意考查了等腰直角三角形的性质,勾股定理,正确掌握等腰直角三角形的性质和勾股定理是解题的关键;20.24【分析】连接AC 在中根据勾股定理求得AC 的长度利用勾股定理逆定理可得为直角三角形根据即可求解【详解】解:连接AC 在中∴∵∴∴为直角三角形∴故答案为:24【点睛】本题考查勾股定理及其逆定理掌握勾股 解析:24【分析】连接AC ,在Rt ACD △中根据勾股定理求得AC 的长度,利用勾股定理逆定理可得ABC 为直角三角形,根据ABCD ABC ACD S SS =-即可求解.【详解】解:连接AC , ,在Rt ACD △中,90ADC ∠=︒,4=AD ,3CD =,∴225AC AD CD =+=,∵13AB =,12BC =,∴222AC BC AB +=,∴ABC 为直角三角形,90ACB ∠=︒,∴112422ABCD ABC ACD S S S AC BC AD CD =-=⋅-⋅=, 故答案为:24.【点睛】本题考查勾股定理及其逆定理,掌握勾股定理的内容是解题的关键.三、解答题21.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c 2,直角三角形面积为12ab ,小正方形面积为(b ﹣a )2, ∴c 2=4×12ab +(a ﹣b )2=2ab +a 2﹣2ab +b 2即c 2=a 2+b 2; (2)由图可知:(b ﹣a )2=3,4×12ab =13﹣3=10, ∴2ab =10,∴(a +b )2=(b ﹣a )2+4ab =3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.22.水深12尺,芦苇长13尺【分析】依题意画出图形,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,利用勾股定理求出x 的值即可得到答案.【详解】解:依题意画出图形,如下图,设芦苇长AB =AB '=x 尺,则水深AC =(x -1)尺,因为B 'E =10尺,所以B 'C =5尺,在Rt△ACB'中,52+(x-1)2=x2,解得:x=13,即水深12尺,芦苇长13尺.【点睛】此题考查勾股定理的实际应用,正确理解题意,构建直角三角形利用勾股定理解决问题是解题的关键.23.(1)AE=BD,见解析;(2)13【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD;(2)由全等三角形的性质可得BD=AE=12,∠CAE=∠CBD=45°,由勾股定理可求DE的长.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形,∴CD=CE,AC=BC,∠ECD=∠ACB=90°,∴∠ACE=∠BCD在△ACE和△BCD中∵EC=CD,∠ACE=∠BCD,AC=BC,∴△ACE≌△BCD(SAS)∴AE=BD;(2)如图,由(1)可知:△ACE≌△BCD,∴BD=AE=12,∠CAE=∠CBD=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,即52+122=ED2∴DE=13;【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,证明△ACE≌△BCD是本题的关键.24.(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据等腰直角三角形的定义以及面积公式,即可求解;(213(3)根据勾股定理画出长为5的线段,即可;(4)根据勾股定理画出长为2,22,10的三角形,即可.【详解】(1)∵2121ABC S=⨯÷=,∴ABC 即为所求;(2)∵EF=FG=GD=DE=222313+=,∴正方形DEFG 的面积为13;(3)HI=22345+=;(4)∵KL=22112+=,JL=222222+=,JK=221310+=,且222(2)(22)(10)+=∴JKL 是直角三角形,且周长为3210+.【点睛】本题主要考查网格中的勾股定理,熟练掌握勾股定理是解题的关键.25.DC =2.【分析】过点A 作AE ⊥BC 于点E ,则∠AEB=90°,DE=CE ,结合∠ABC=45°可得出∠BAE=45°,进而可得出AE=BE ,在Rt △ABE 中,利用勾股定理可求出BE 的长,即BD+12DC=4,结合BD-DC=1可求出DC 的长.【详解】解:过点A 作AE ⊥BC 于点E ,如图所示.∵AD =AC ,AE ⊥BC ,∴∠AEB =90°,DE =CE .∵∠ABC =45°,∴∠BAE =45°,∴AE =BE .在Rt △ABE 中,AB =∴AE 2+BE 2=AB 2,即BE 2+BE 2=()2,∴BE =4,∴BD +12DC =4. 又∵BD ﹣DC =1, ∴DC +1+12DC =4, ∴DC =2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在Rt △ABE 中,利用勾股定理求出BE 的长是解题的关键.26.(1)证明见解析;(2)证明见解析;(3.【分析】(1)先根据垂直的定义可得BDE 和ADC 都是直角三角形,再利用HL 定理证明三角形全等即可;(2)先根据(1)中的全等三角形可得DBE DAC ∠=∠,再根据三角形全等的判定定理与性质可得DBE FCM ∠=∠,从而可得DAC FCM ∠=∠,然后根据角的和差、等量代换即可得证;(3)先根据(2)中的全等三角形可得BE CM =,从而可得CM AC m ==,再在Rt ACM △中,利用勾股定理即可得.【详解】(1)AD BC ⊥,90BDE ADC ∠∴∠==︒,∴BDE 和ADC 都是直角三角形,在BDE 和ADC 中,DE DC BE AC =⎧⎨=⎩, ()BDE ADC HL ∴≅;(2)BDE ADC ≅,DBE DAC ∠=∠∴,点F 为BC 的中点,BF CF ∴=,由对顶角相等得:BFE CFM ∠=∠, 在BEF 和CMF 中,BF CF BFE CFM EF MF =⎧⎪∠=∠⎨⎪=⎩,()BEF CMF SAS ∴≅,FBE FCM ∴∠=∠,即DBE FCM ∠=∠,DAC FCM ∠=∠∴, 又在Rt ACD △中,90DAC ACD ∠+∠=︒,90FCM ACD ∴∠+∠=︒,即90ACM ∠=︒,AC MC ∴⊥;(3)如图,连接AM ,BEF CMF ≅,BE CM ∴=,,BE AC AC m ==,CM AC m ∴==,AC MC ⊥,ACM ∴是直角三角形,222AM AC CM m ∴+,即点A 、点M 2m .【点睛】本题考查了直角三角形全等的判定定理与性质、直角三角形的性质、勾股定理等知识点,熟练掌握三角形全等的判定方法是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xxx第xx中学 新授课 第22个讲学稿 班级 学生姓名
15.5等腰三角形(第2课时)

年级:八年级 学科:数学 执笔:xxx 审核:数学组 时间:20xx年10月
学习目标:1.探索并掌握一个三角形是等腰三角形的条件 ,并能利用等腰三角形的条件,正确判
断某个三角形是否是等腰三角形.
2.掌握等边三角形的识别方法.
学习重点: 等腰三角形的识别.
学习难点:利用等腰三角形的条件,正确判断某个三角形是否是等腰三角形.
一.温故知新:
1. 如果等腰三角形的周长为12,一边长为5,那么另两边长分别为 .
2. 如果等腰三角形有两边长为2和5,那么周长为______________.
3. 等腰三角形的一个底角为75°,则它的另外两个角的度数分别为 .
4. 等腰三角形的一个角为120°,则它的另外两个角的度数分别为 .
5.等腰三角形的一个角为70°,则它的另外两个角的度数分别为 .
6.等腰三角形的性质:
如右图在△ABC中,AB=AC,则∠B=∠____.
(1)若AD⊥BC,则可知,BD=_______,∠BAD=___________.
(2)若∠BAD=∠CAD,则可知_________⊥________;_____=CD.
(3)若BD=CD,则可知_____⊥_____;∠________=∠________.
7.等边三角形的性质:等边三角形的三条边都________,三个内角都________,且都等于_____度.
二. 探究新知:
探究一:
问题:我们知道,等腰三角形的两底角相等.反过来,如果在一个三角形中有两个角相等,那么这
个三角形是等腰三角形吗?
试验操作: 如图,在△ABC中,∠B=∠C.
(1)在半透明纸上画出△ABC,
(2)找出边BC的中点D,连结AD.
(3)沿AD对折,观察边AB与AC是否重合.
问题:你发现了什么结论?____________________________
问题:若同时改变∠B和∠C的大小(∠B和∠C保持相等),重复上面的操作,你又发现什么结论
呢?_______________________________________________
根据上面的探究和推理,你能得到什么结论?

如果一个三角形有两个角_________,那么这两个角所对的边________.简写为,________对
______.

符号语言表示: ∵ΔABC中,∠B =∠C.
∴_____ = ______.(_________________________)
巩固新知:
1.在△ABC中, 已知∠A=40°,∠B=70°,判断△ABC是什么三角形,为什么?
2.如图,已知∠A=∠DBC=36°, ∠C=72°,则∠BDC=_____,∠ABD=_____,

图中所有的等腰三角形有 .
应用新知(生活中的数学):
北京时间2012年9月18日上午5点50分,中国渔政船“渔政35001”在钓鱼岛附近由南向
北航行,点C是灯塔,轮船在A处测得灯塔在其北偏西38°的方向上.轮船又由A向北航行30海
里到B处,测得灯塔在其北偏西76°的方向上.
(1) 求∠ACB的度数.
(2) 轮船在B处时,到灯塔C的距离是多少?

探究二:
问题探讨:
1.如果一个三角形的三个内角都相等,那么这个三角形各内角的度数是多少度?为什么?
2.三个内角都相等的三角形是等边三角形吗?说出你的理由.
3.小芳说:有一个角等于600的等腰三角形一定是等边三角形.你同意她的说法吗?
说出你的理由.
方法总结:
等边三角形的识别方法:①____________________________________________________
②_____________________________________________________
③_____________________________________________________
巩固新知:
3.下列命题:①有一个外角是120°的等腰三角形是等边三角形.
②有两个外角相等的等腰三角形是等边三角形.
③有一边上的高也是这边上中线的等腰三角形是等边三角形.
④三个外角都相等的三角形是等边三角形.
正确的个数有( )A.4个 B.3个 C.2个 D.1个

C A B D

B
N
A
C
76°

38°
C A B D
xxx第xx中学 新授课 第22个讲学稿 班级 学生姓名
三.大展身手: 如图所示,把一张矩形纸片沿对角线折叠,重合部分是什么图形,试说明理由. 四.拓展延伸: 已知:在△ABC中,∠ABC和∠ACB的平分线相交于点D. (1)如图①,过点D作EF∥BC,交AB于点E,交AC于点F.若BE+CF=9cm,求线段EF的长. (2) 如图②,过点D作DE∥AB,交BC于点E,过点D作DF∥AC,交BC于点F.若BC=12cm,求 △DEF的周长. 五. 课堂小结: 这节课你有哪些收获? 六.课下自我验收: 1.如图(1),在△ABC中,AB=AC, ∠A=36°,BD、CE分别是∠ABC、∠ACB的平分线, 则图中等腰三角形的个数为( ) A.9 B.8 C.7 D.6 2.下列图形中,不是轴对称图形的是( ) A.有两条边相等的三角形 B.有一个角为60°的直角三角形 C.有一个角为60°的等腰三角形 D.一个内角为40°,一个内角为100°的三角形

3.等腰三角形腰上的高线与底边的夹角等于( )
A.顶角 B.顶角的两倍 C.顶角的一半 D.底角的一半
4.如图(2)所示:∠BAC=100°,∠B=40°,∠D=20°,AB=3,则CD=_____________.
5.
如果有个三角形的两个内角为80°和50°,则这是一个 三角形。
6.如图(3),在等腰三角形ABC中,已知AB=AC,∠A=80°.两个底角的角平分线交于点0.则
∠BOC=______
7.如图,已知AD∥BC,BD平分∠ABC.△ABD是等腰三角形吗?请你说明理由.

8.如图,在△ABC中,已知AB=AC,BD、CE是两条角平分线,BD、CE相交于点O,△OBC是什么三
角形?为什么?

七.课下作业:
课本68页习题:1、3

(1) (2) 3
A
B
C

D

A
B C
D E
O

()

②①
FE
F
EBCAACBD
D
A D
B C

相关文档
最新文档