经济数学基础知识
课件+经济数学基础+罗国湘+高等教育出版社-第3章 不定积分

(12) ∫
d
1− 2
= arcsin + ;
= arctan + .
注意 (1)与基本求导公式一样,这些基本积分公式必须熟记,它们是积分运算的基础;
(2) 上述积分公式中积分变量换成其他变量仍成立. 如 ∫ e d = e + , ∫ cos d = sin + .
න
1
1
令 =3 1
cos 3 d = න cos 3 d(3)
=
න cos d = sin +
3
3
3
回代 1=3 + . Nhomakorabea3
验证可知, 结论正确.
第二节 不定积分的积分方法
二、第一换元积分法(凑微分法)
一般地, 有
න ()d = න [()]′ ()d = න [()]d()
(8) ∫
(9) ∫
1
sin2
d = ∫ csc 2 d = −cot +
(11) ∫ csc cot d = −csc + ;
(13) ∫
d
1+ 2
1
cos2
d = ∫ sec 2 d = tan + ;
(10) ∫ sec tan d = sec + ;
注意, 求 ∫ ()d 时, 切记 “ + ”, 否则求出的只是一个原函数而不是不定积分.
第一节 不定积分的概念与性质
一、不定积分的概念——几何意义
在直角坐标系中,()的任意一个原函数()的图形
是一条曲线 = (),这条曲线上任意点(,())处
的切线的斜率F′(x)恰为函数值(),称这条曲线为()
经济数学基础(微积分)讲义全

经济数学微积分学习讲义合川电大兰冬生知识点一:5个基本函数1,常数函数,c y = (c 是常数)例如:3=y ,1-=y ,这些函数可以看成是x 隐含,例如3=y 可看成30+=x y 。
2,幂函数,αx y =(α是一个数) 形如2x y =,3x y =,5x y =是幂函数,注意:仅仅是这种形式是幂函数,其他的任何一点形式变化都不是,2x y =是幂函数,22x y =就不是幂函数,只能是下面x ,上面(指数)是一个数!以下基本函数均如此3,指数函数,x a y =,(a 是一个数) 例如:x y 2=,x y 23⋅=不是指数函数。
4,对数函数x y a log =,这里要求x 必须大于零,我们的考试常常拿来考“求定义域”这里我们只认识两个特殊的对数函数,一个是x y ln =,他是x y e log =的简写,e 是一个数,718.2=e ,和我们知道的14.3=π一样,另一个是x y lg =,他是x y 10log =的简写。
5,三角函数x y sin =,x y cos =,特别注意的是x y sin 2=,x y 2sin =,都不是三角函数。
● 这5个基本函数是我们要学习的函数的主要构成细胞。
● 例如:12sin 232+++=x x e y x ,二次函数,由幂函数,常数函数构成632-+=x x y 。
知识点二:极限1,什么是数列?数列就是按照“一定规律排列的一组数”,我们常见的是无限数列。
数学符号记为:}{n a例如:数列:1,2,4,8,16,32,……,发展规律依n 2 变化,,4,3,2,1,0=n …… 1,21,41,81,……,发展规律依n 21变化,,4,3,2,1,0=n …… 2,极限学习极限,一个非常重要的认识就是“分母越大,分数越小” 数列的极限,就是指数列的一个趋近值,(即是指一串数的趋近值)例如:1,21,31,41,……,分母由1,2,3,4,……变化,当分母无限大时,1000001,1000000001,……,最后,这个无限数列趋近于0,这里,我们简单描述这个变化,∞→n01→n分母越大,分数越小 →是趋近,∞是无穷大的意思,无穷大是指非常非常大,无法计量。
经济数学基础-知识点归纳

第一章函数与极限1.理解函数概念。
(1)掌握求函数定义域的方法,会求初等函数的定义域和函数值。
函数的定义域就是使函数有意义的自变量的变化范围。
学生要掌握常见函数的自变量的变化范围,如分式的分母不为0,对数的真数大于0,偶次根式下表达式大于0,等等。
(2)理解函数的对应关系f 的含义:f 表示当自变量取值为x 时,因变量y 的取值为f (x )。
(3)会判断两函数是否相同。
(4)了解分段函数概念,掌握求分段函数定义域和函数值的方法。
2.掌握函数奇偶性的判别,知道它的几何特点。
判断函数是奇函数或是偶函数,可以用定义去判断,即(1)若)()(x f x f =-,则)(x f 为偶函数;(2)若)()(x f x f -=-,则)(x f 为奇函数。
也可以根据一些已知的函数的奇偶性,再利用“奇函数±奇函数、奇函数×偶函数仍为奇函数;偶函数±偶函数、偶函数×偶函数、奇函数×奇函数仍为偶函数”的性质来判断。
3.了解复合函数概念,会对复合函数进行分解。
4.知道初等函数的概念,牢记常数函数、幂函数、指数函数、对数函数和三角函数(正弦、余弦、正切和余切)的解析表达式、定义域、主要性质。
基本初等函数的解析表达式、定义域、主要性质在微积分中常要用到,一定要熟练掌握。
5.了解需求、供给、成本、平均成本、收入和利润函数的概念。
6.知道一些与极限有关的概念(1)知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等;(2)了解无穷小量的概念,知道无穷小量的性质;(3)了解函数在某点连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点。
第二章导数及其应用1.知道一些与导数有关的概念(1)会求曲线的切线方程(2)知道可导与连续的关系(可导的函数一定连续,连续的函数不一定可导)2.熟练掌握求导数或微分的方法。
(1)利用导数(或微分)的基本公式(2)利用导数(或微分)的四则运算(3)利用复合函数微分法3.会求函数的二阶导数。
经管数学下知识点总结

经管数学下知识点总结
我在学习经济数学的过程中,主要掌握了以下几个知识点:
一、微积分
微积分是经济数学中必不可少的基础知识,它是研究变化的数学工具。
微积分主要包括微
分学和积分学两个部分。
微分学主要研究函数的变化率和导数的概念,而积分学主要研究
曲线下面积和不定积分的概念。
在经济学中,微积分可以被用来分析边际效用、边际成本、边际收益等概念,从而为决策提供数学依据。
二、线性代数
线性代数是经济数学中重要的工具之一,它主要用来研究向量、矩阵和线性方程组等代数
结构。
在经济学中,线性代数可以被用来分析生产函数、消费函数、投入产出模型等问题,从而为经济问题的求解提供数学方法。
三、概率统计
概率统计是经济数学中非常重要的理论工具,它主要用来研究随机现象的规律性和不确定性。
在经济学中,概率统计可以被用来分析风险、不确定性和决策问题,从而为经济政策
的制定提供统计学方法。
四、微分方程
微分方程是经济数学中常用的数学模型,它主要用来描述经济现象的变化规律。
在经济学中,微分方程可以被用来分析经济增长、通货膨胀、失业等问题,从而为经济政策的制定
提供数学模型。
以上就是我在学习经济数学过程中所积累的知识点。
通过对这些知识点的学习和理解,我
发现经济数学是一门非常有启发性和实用性的学科,它可以为我们理解和解决经济问题提
供丰富的数学工具和方法。
希望今后我能够进一步深入学习和应用经济数学知识,为将来
从事经济分析和决策提供更加坚实的理论基础。
《经济数学基础12》课程导学

《经济数学基础12》课程导学《经济数学基础12》(专)课程导学《经济数学基础12》是高等教育经济与管理学类专科各专业学生的一门必修的重要基础课。
课程内容有三部分:一元函数微分学、一元函数积分学和线性代数。
第一部分(一元函数微分学)有函数、极限、连续、导数、微分等重要概念,还有许多重要的计算公式和应用,只有理解这些基本概念,熟悉这些基本运算,才能为今后学习各章打下基础,具体要求如下:1.理解常量、变量以及函数概念,了解初等函数和分段函数的概念。
熟练掌握求函数的定义域、函数值的方法,掌握将复合函数分解成较简单函数的方法。
2.知道幂函数、指数函数、对数函数和三角函数的基本特征和简单性质。
3.了解极限概念,了解无穷小量的定义与基本性质,掌握求极限的方法。
4.理解导数概念,会求曲线的切线,熟练掌握求导数的方法 ( 导数基本公式、导数的四则运算法则、复合函数求导法则),会求简单的隐函数的导数。
5.了解微分概念,掌握求微分的方法。
6.会求二阶导数。
7.掌握函数单调性的判别方法。
8.了解极值概念和极值存在的必要条件,掌握极值判别的方法。
9.掌握求函数最大值和最小值的方法。
10.了解边际及弹性概念,会求经济函数的边际值和边际函数,会求需求弹性。
11.会求二元函数的定义域。
12.掌握求全微分的方法和求一阶、二阶偏导数的方法。
会求简单的复合函数、隐函数的一阶偏导数。
13.了解二元函数极值的必要充分条件,会用拉格朗日乘数法求条件极值。
第二部分(一元函数积分学)主要有不定积分、定积分和微分方程等基本概念,以及计算积分和求解微分方程的具体方法和应用,具体要求如下:1.理解原函数、不定积分概念,了解定积分概念。
2.熟练掌握积分基本公式和直接积分法,掌握第一换元积分法和分部积分法。
3.会用不定积分和定积分求总成本、收入和利润或其增量的方法。
4.了解微分方程的几个概念,掌握变量可分离的微分方程和一阶线性微分方程的解法。
第三部分(线性代数)主要介绍了行列式、矩阵和线性方程组等概念,重点是如何利用矩阵的初等变换求逆矩阵或解矩阵方程以及求解线性方程组,具体要求如下:1.了解 n 阶行列式概念及其性质,掌握行列式的计算,掌握克拉默法则。
经济学研究必备的数学基础

经济学研究必备的数学基础首先,微积分是经济学研究的基础。
微积分是研究变化和运动的数学工具,经济学中的许多概念都与变化和运动有关。
例如,经济学家研究市场需求和供给曲线的交点,来确定最优价格和数量的组合。
微积分可以帮助经济学家求解这些曲线的斜率和极值,从而得出相关结论。
另外,微积分还可以用来解析地研究经济学中的边际效应和边际成本等概念。
其次,线性代数也是经济学研究的重要数学基础。
线性代数是研究向量、线性方程组和线性变换的数学分支,经济学中许多问题可以通过线性模型来描述。
例如,经济学家常常用线性回归模型来分析两个或多个变量之间的关系。
线性代数可以帮助经济学家理解回归模型的参数估计和相关性分析,从而得出经济学上的结论。
另外,概率论与统计学也是经济学研究的必备数学基础。
概率论是研究随机事件的概率和分布的数学学科,而统计学是根据样本数据来推断总体特征的学科。
在经济学研究中,经济学家经常需要依靠数据来进行实证分析和定量分析。
概率论与统计学可以帮助经济学家理解经济现象的抽样变异性、数据的可靠性以及推断总体特征的方法。
例如,经济学家可以使用经济数据进行假设检验,从而推断出其中一种经济政策对经济增长的效果。
此外,还有其他一些数学工具也对经济学研究有帮助。
比如优化理论、差分方程和博弈论等。
优化理论可以帮助经济学家寻找最优决策方案,差分方程可以用来描述动态经济模型,博弈论可以用来分析决策者之间的相互作用和策略选择。
总结起来,经济学研究必备的数学基础包括微积分、线性代数和概率论与统计学。
这些数学工具可以帮助经济学家进行经济现象的分析和解释,从而得出相关的经济学结论。
除此之外,优化理论、差分方程和博弈论等数学工具也有助于经济学研究的深入和拓展。
因此,对于想要从事经济学研究的人来说,掌握这些数学基础知识是必不可少的。
经济数学基础试题及答案

经济数学基础试题及答案I. 选择题1. 在经济学中,边际成本指的是:A. 总成本与产量之间的比率B. 达到某一产量水平所需的额外成本C. 固定成本的变化程度D. 不需支付的成本费用答案:B. 达到某一产量水平所需的额外成本2. 在市场需求曲线下,垄断行为会导致:A. 价格和数量增加B. 价格和数量减少C. 价格增加,数量减少D. 价格减少,数量增加答案:C. 价格增加,数量减少3. 边际收益递减指的是:A. 达到最大产量后,每单位产量的成本逐渐降低B. 达到最大产量后,每单位产量的成本逐渐增加C. 达到最大产量后,每单位产量的收益逐渐降低D. 达到最大产量后,每单位产量的收益逐渐增加答案:C. 达到最大产量后,每单位产量的收益逐渐降低II. 计算题1. 假设市场需求曲线为Qd = 100 - 2P,市场供给曲线为Qs = 2P - 20,则市场均衡价格和数量分别是多少?答案:将市场需求曲线和市场供给曲线相等,得到:100 - 2P = 2P - 204P = 120P = 30将P = 30代入市场供给曲线,得到:Qs = 2P - 20Qs = 2(30) - 20Qs = 40所以,市场均衡价格为30,数量为40。
2. 一个企业的总成本函数为TC = 1000 + 10Q + 0.2Q^2,其中Q代表产量。
每单位产品的售价为20。
求该企业的最优产量和利润。
答案:企业的利润为总收入减去总成本,即Profit = TR - TC。
总收入为售价乘以产量,即TR = 20Q。
代入总成本函数,得到Profit = 20Q - (1000 + 10Q + 0.2Q^2)。
为求最优产量,对利润函数求导数并令其等于0:d(Profit)/dQ = 20 - 10 - 0.4Q = 0-0.4Q = -10Q = 25最优产量为25,将其代入总成本函数,得到:TC = 1000 + 10(25) + 0.2(25^2)TC = 1000 + 250 + 125TC = 1375最优利润为20Q - TC = 20(25) - 1375 = 125 - 1375 = -1250。
经济数学基础试题及答案

1、若函数 f(x),g(x) 分别是 R 上的奇函数,偶函数,且知足f(x)-g(x)=ex,则有().[A]f(2)<f(3)<g(0)[B]g(0)<f(3)<f(2)[C] f(2)<g(0)<f(3) [D]g(0)<f(2)<f(3)[K] D[Q] 函数的弹性是函数对自变量的()[A]导数[B]变化率[C]相对变化率 [D] 微分 [K]C[Q] 以下论断正确的选项是()[A]可导极值点必为驻点[B]极值点必为驻点 [C] 驻点必为可导极值点 D、驻点必为极值点[K] A[Q] 设 A 为 4×5 矩阵,则齐次线性方程组AX=0 ()。
[A]无解[B] 只有零解[C] 有独一非零解[D] 有无量多组解[K] D[Q] 函数在x=0处连续,则k =( ) . [A]-2[B]-1[C]1 [D]2 [K] C[Q] 函数f(x)= 在点 x = 1 处的切线方程是() . [A]2y一x=1 [B]2y-x =2 [C]y-2x = 1 [D]y-2x =2 [K] A[Q]以下函数在区间 (- ∞, + ∞ ) 上单一减少的是 () . [A]cosx [B]2x[C]x2[D]3-x [K] D[Q]设矩阵 Am ×n, Bs×m,Cn× p,则以下运算能够进行的是().[A]BA[B]BC[C]AB[D]CB [K] A[Q] 设线性方程组AX =b 的增广矩阵经过初等行变换化为,则此线性方程组解的状况是().[A] 有独一解[B] 有无量多解[C] 无解 [D] 解的状况不定 [K] A[Q] 以下结论正确的选项是().[A]对角矩阵是数目矩阵[B] 数目矩阵是对称矩阵[C] 可逆矩阵是单位矩阵[D] 对称矩阵是可逆矩阵 [K] B[Q]在使用 IRR 时,应依照的准则是 ( ) 。
[A] 接受 IRR 大于公司要求的回报率的工程,拒绝 IRR 小于公司要求的回报率的工程[B] 接受 IRR 小于公司要求的回报率的工程,拒绝IRR 大于公司要求的回报率的工程[C] 接受IRR 等于公司要求的回报率的工程,拒绝 IRR 不等于公司要求的回报率的工程[D] 接受 IRR 不等于公司要求的回报率的工程,拒绝IRR 等于公司要求的回报率的工程 [K]A[Q] 一个可能的利润率值所占的概率越大,那么( )。