排列组合问题的基本类型及解题方法

合集下载

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略江西省永丰中学陈保进排列组合问题是高中数学的一个难点,它和实际问题联系紧密,题型多样,解题思路灵活多变,学生不容易掌握。

下面介绍一些常见的排列组合问题的解题方法和策略。

1.相邻问题捆绑法:将相邻的几个元素捆绑成一组,当作一个大元素参与排列例1:A ,B ,C ,D ,E 五人站成一排,如果A ,B 必须相邻,则不同的排法种数为_____解析:把A ,B 捆绑,视为一个整体,整体内部排序,有22A 种情况,再将整体和另外三人排序,有44A 种情况,所以答案为22A ×44A =48注意:小集团问题也可以用捆绑法变式1:7人排成一排,甲、乙两人中间恰好有3人,则不同的排法有_____种解析:把甲、乙及中间3人看作一个整体,答案为720333522=⨯⨯A A A 2.不相邻问题插空法:不相邻问题,可先把其他元素全排列,再把需要不相邻的元素插入到其他元素的空位或两端例2:七人并排站成一行,如果甲乙丙两两不相邻,那么不同的排法种数是_____解析:先将其它4人全排列,共44A 种情况,再将甲乙丙插入到其他4人的空位或两端,共35A 种情况,所以答案为44A ×35A =14403.定序问题用除法:若要求某几个元素必须保持一定的顺序,可用除法例3:A ,B ,C ,D ,E 五人站成一列,如果A 必须在B 前面,则不同的排法种数有_____解析:先将5人全排列,共55A 种情况,考虑A ,B 的顺序有22A 种,符合题意的只有一种,所以答案为602255=A A 4.特殊元素优先考虑例4:8名男生排成一排,其中甲不站最左边,乙不站最右边,有种排法解析:①甲在最右边时,其他的可全排,有77A 种不同排法②甲不在最右边时,可从余下6个位置中任选一个,有16A 种,再排乙,有16A 种排法,其余人全排列,共有77A +16A ×16A ×66A =30960种不同排法5.特殊位置优先考虑例5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有种解析:翻译工作是特殊位置,先选择一人参加翻译工作,14C 种情况,再从其他5人中选择5人参加导游、导购、保洁工作,有35A 种情况,答案为14C ×35A =2406.分组、分配问题:先分组后分配,如果是整体平均分组或部分平均分组,最后计算组数时要除以n n A (n 为均分的组数),避免重复计数例6:将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法解析:第一步把书按数量1,2,3分成三组,不是平均分组,有332516C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故共有3606033=⨯A 种情况A BC DE变式1:将6本不同的书分给甲、乙、丙3名学生,其中有两人各得1本,一人得4本,则有________种不同的分法解析:第一步把书按数量1,1,4分成三组,为部分平均分组,有1522441516=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式2:将6本不同的书分给甲、乙、丙3名学生,每人得2本,则有_______种不同的分法解析:第一步把书按数量2,2,2分成三组,为整体平均分组,有1533222426=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式3:某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有_____种解析:①按照人数2,2,1分成3组;②按照人数3,1,1分成3组答案为15033221112353322112325=⨯+⨯A A C C C A A C C C 7.正难则反,考虑反面:例7:从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为解析:493739=-C C 此法适用于至多、至少、有、没有这类问题8.分类法(含多个限制条件的排列组合问题、多元问题)例8:甲、乙、丙、丁四位同学高考之后计划去A ,B ,C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为解析:分2种情况,①乙去A 社区,再将丙丁二人安排到B ,C 社区,有22A 种情况,②乙不去A 社区,则乙必须去C 社区,若丙丁都去B 社区,有1种情况,若丙丁中有1人去B 社区,则先在丙丁中选出1人,安排到B 社区,剩下1人安排到A 或C 社区,有2×2=4种情况,所以答案为2+1+4=7变式1:由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个解析:元素多,取出的情况多种,个位数字可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个数,合计为300个变式2:在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种解析:只需考虑三张奖券的归属情况,①有三人各得一张奖券,情况数为34A ;②一人获两张奖券一人获一张奖券,情况数为362423=A C ,故答案为609.可重复的排列求幂法例9:把6名实习生分配到7个车间实习,每个车间人数不限,共有种不同方法解析:每名实习生有7种分配方法,答案为7×7×7×7×7×7×7=76种不同的分法10.多排问题单排法例10:6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是解析:先排前排,36A 种情况,再排后排,33A 种情况,答案为720663336==⨯A A A如果没有条件限制,把元素排成几排和排成一排情况一样多变式1:8个人排成前后两排,每排4人,其中甲乙要排在前排,丙要排在后排,有种排法解析:先排甲乙和丙,还剩5个位置,让5个人做全排列,答案为5760551424=⨯⨯A A A 11.相同元素的分配问题隔板法(名额分配问题也可用隔板法)例11:将7个相同的小球放入四个不同的盒子,每个盒子都不空,放法有种解析:可以在7个小球的6个空位中插入3块木板,每一种插法对应一种放法,故放法有3620C =种变式1:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有种放法解析:先向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有216120C =种放法12.选排问题先取后排例12:10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为解析:首先从后排的7人中抽2人,有27C 方法;再将这2人安排在前排,第一人有4种放法,第二人有5种放法,答案为2745420C ⨯⨯=变式1:摄像师要对已坐定一排照像的6位小朋友的座位顺序进行调整,要求其中恰有3人座位不调整,则不同的调整方案的种数为______解析:从6人中任选3人有36C 种情况,将这3人位置全部进行调整,有1112112C C C ⨯⨯=种情况,答案为36240C ⨯=13.部分合条件问题排除法例13:以正方体的顶点为顶点的四面体共有个解析:正方体8个顶点从中每次取四点,理论上可构成48C 个四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以答案为481258C -=变式1:四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有种A、150种B、147种C、144种D、141种解析:从10个点中任取4个的组合数为410210C =,其中4点共面的分三类:①4点在同一侧面或底面的共4组,即46460C ⨯=种②每条棱上的三点和它的对棱的中点共面,这样的共6种③所有棱的6个中点中,4点构成平行四边形共面的有3种答案为210-(60+6+3)=14114.构造模型,等价转化例14:马路上有编号为1,2,3…9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:此问题相当于一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法。

例析排列组合问题类型及解题常用方法

例析排列组合问题类型及解题常用方法

例析排列组合问题类型及解题常用方法排列组合问题是数学中的一个重要分支,广泛应用于概率论、统计学、组合数学等多个领域。

在解决排列组合问题时,我们需要明确问题类型,并选用适当的方法进行求解。

下面将介绍几种常见的排列组合问题类型及解题常用方法。

1.组合问题组合问题是在给定的元素集合中,选择出若干个元素的子集,并以不同的顺序来表示这些子集。

组合问题的典型例子有"从n个不同的元素中,选取m个元素的组合个数是多少"。

解题方法:1)使用组合数公式进行计算,公式为C(n,m)=n!/(m!(n-m)!),其中C表示组合数,n表示元素个数,m表示要选择的元素个数。

2)利用递归方法求解,即对问题进行拆解,递归地求解子问题,然后将子问题的解合并得到原问题的解。

2.排列问题排列问题是将一组元素进行有序的排列,即考虑元素的顺序。

典型例子有"从n个不同的元素中,选择m个元素进行排列,有多少种不同的排列方式"。

解题方法:1)使用排列数公式进行计算,公式为P(n,m)=n!/(n-m)!,其中P表示排列数,n表示元素个数,m表示要选择的元素个数。

2)利用递归方法求解,将问题分解成子问题,进行子问题的排列,然后按照不同的顺序进行合并,得到原问题的解。

3.重复元素的排列组合问题重复元素的排列组合问题是在给定元素集合中,包含有重复元素的情况下,选择出若干个元素的子集,并以不同的顺序来表示这些子集。

解题方法:1)使用重复组合数公式进行计算,公式为C'(n,m)=(n+m-1)!/(m!(n-1)!),其中C'表示重复组合数,n表示元素个数,m表示要选择的元素个数。

2)使用重复排列数公式进行计算,公式为P'(n,m)=n^m,其中P'表示重复排列数,n表示元素个数,m表示要选择的元素个数。

4.包含条件的排列组合问题包含条件的排列组合问题是在给定一组元素和一组条件的情况下,选择满足条件的子集,并以不同的顺序进行排列。

排列组合问题经典题型(含解析)

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。

13种排列组合题型详解,助你拿下高考数学卷上17分,一分都不能丢

13种排列组合题型详解,助你拿下高考数学卷上17分,一分都不能丢

13种排列组合题型详解,助你拿下高考数学卷上17分,一分都不能丢高考数学中有一部分知识叫做排列组合概率及统计学,大概占17分左右,但是这部分知识又不是很难,所以这17分一分都不能丢!类型一、特殊元素和特殊位置优先策略位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素;若以位置分析为主,需先满足特殊位置的要求,再处理其它位置;若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

这种首先确定排列还是组合的问题,对于首位和末位无须考虑顺序,但是首位末位有优先需求,所以先要排首位和末位,末位必须是奇数,也就是从1,3,5这个里边去挑选一个即可,那首位还不能排0,在排除一个奇数,只剩下4个数可以选择,所以剩下的三位我们直接全排列就可以。

类型二、相邻/相间元素捆绑策略要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题,即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列。

审题时一定要注意关键字眼。

类型三、不相邻问题插空策略先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端。

所以这两个方法的关键字都是相邻,以元素相邻为附加条件的应把相邻元素视为一个整体,即采用“捆绑法”;以某些元素不能相邻为附加条件的,可采用“插空法”。

“插空”有同时“插空”和有逐一“插空”,并要注意条件的限定。

类型四、定序问题倍缩空位插入策略顺序固定问题用“除法”,对于某几个元素顺序一定的排列问题,可先将这几个元素与其它元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。

当然还可以用倍缩法,还可转化为占位插空模型处理。

类型五、重排问题求幂策略分房问题又名:住店法,重排问题求幂策略,解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解。

排列组合问题的基本类型及解题方法

排列组合问题的基本类型及解题方法

排列组合问题的基本类型及解题方法解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。

其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。

加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。

分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。

以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。

(一)特殊元素的“优先安排法”对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。

在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。

例1: 0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?解法一:(元素优先)分两类:第一类,含0,0在个位有24A 种,0在十位有1123A A 种;第二类,不含0,有1223A A 种。

故共有2111242323(A A A )+A A 30+=种。

注:在考虑每一类时,又要优先考虑个位。

解法二:(位置优先)分两类:第一类,0在个位有24A 种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有111233A A A 种。

故共有21114233A +A A A =30(二)总体淘汰法对于含有否定词语的问题,还可以从总体中把不符合要求的除去,此时应注意既不能多减也不能少减,例如在例1中也可以用此法解答:5个数字组成三位数的全排列为35A ,排好后发现0不能在首位,而且3和5不能排在末尾,这两种不合题意的排法要除去,故有30个偶数.(三)合理分类与准确分步解含有约束条件的排列组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分布层次清楚,不重不漏.例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有 解:由题意,可先安排甲,并按其进行分类讨论:(1)若甲在第二个位置上,则剩下的四人可自由安排,有44A 种方法;(2)若甲在第三个或第四个位置上,则根据分布计数原理不同的站法有113333A A A 种站法;再根据分类计数原理,不同的站法共有:21134333A A A A 78+=种.(四)相邻问题:捆绑法对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合题型总结

排列组合题型总结

排列组合题型总结排列组合是数学中的一种常见的问题类型,它涉及到对一组元素进行不同排列或组合的情况计算。

在解决排列组合问题时,可以采用不同的方法和公式,以下是一些常见的排列组合题型及其解决方法的总结。

1. 排列问题:排列是从一组元素中抽取若干个元素按照一定的顺序组成不同的序列。

解决排列问题时,可以使用如下的排列公式。

公式:P(n, k) = n! / (n-k)!其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行排列,可以得到的排列数为:P(4, 2) = 4! / (4-2)! = 4*3 = 12。

2. 组合问题:组合是从一组元素中抽取若干个元素按照任意顺序组成的不同子集。

解决组合问题时,可以使用如下的组合公式。

公式:C(n, k) = n! / (k! * (n-k)!)其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行组合,可以得到的组合数为:C(4, 2) = 4! / (2! * (4-2)!) = 4*3 / 2 = 6。

3. 重复排列问题:重复排列是从一组元素中进行有放回地抽取若干个元素,按照一定的顺序组成的不同序列。

解决重复排列问题时,可以使用如下的重复排列公式。

公式:P'(n, k) = n^k其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行重复排列,可以得到的不同序列数为:P'(4, 2) = 4^2 = 16。

4. 重复组合问题:重复组合是从一组元素中进行有放回地抽取若干个元素,按照任意顺序组成的不同子集。

解决重复组合问题时,可以使用如下的重复组合公式。

公式:C'(n, k) = C(n+k-1, k)其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行重复组合,可以得到的不同子集数为:C'(4, 2) = C(4+2-1, 2) = C(5, 2) = 5! / (2! * (5-2)!) = 5*4 / 2 = 10。

排列组合问题的类型及解答策略

排列组合问题的类型及解答策略

排列组合问题的类型及解答策略
排列组合问题是组合数学的基本问题,主要涉及对象的排列和组合,一般分为以下几种类型:
1. 排列问题:求n个不同元素按照一定规律排列的方案数,其中每个元素只能出现一次。

例如,从8个人中选取3个人组成一支队伍,求按照一定顺序排列的方案数。

解策略:使用排列公式an = n!/ (n-r)!,其中n表示元素个数,r表示选取个数。

2. 组合问题:求n个不同元素中选取r个元素的方案数,其中
元素的顺序不重要。

例如,从8个人中选取3个人组成一支队伍,不考虑人的排列顺序,求方案数。

解策略:使用组合公式Cn,r = n!/ (r!(n-r)! ),其中n表示元素
个数,r表示选取个数。

3. 含有限制条件的问题:在组合问题的基础上,加入限制条件,例如某些元素必须或者不能一起选取。

例如,从6个男人和4
个女人中选择3人组成一个委员会,其中必须有至少一名女性。

解策略:分别考虑满足和不满足限制条件的情况,分别计算方案数并相加。

4. 区分问题与不区分问题:确定是否考虑对象间的区分性。

例如,从8个相同的球中选取3个球,不考虑球的区分性,求方
案数。

解策略:对于不区分问题,使用组合公式;对于区分问题,使用排列公式。

5. 带替换问题:从n个元素中选取r个元素,其中每个元素可以重复选取s次。

例如,从5个牌子中选取3个牌子,其中每个牌子可以选取多次。

解策略:使用带替换的组合公式,即C(n+r-1,r)。

通过以上不同类型排列组合问题的解答策略,能够有效解决各种实际问题。

排列组合常见15种解题方法

排列组合常见15种解题方法

排列组合常用的十五种方法一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:1.7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法的情形的不同种数为 ___三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 _____ 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法练习题:4.10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分法依此类推,由分步计数原理共有67种不同的排法练习题:5.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 ____6. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法_______ 六.多排问题直排策略例6.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种 前 排后 排允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为nm 种一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研练习题:7.有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 _______七.排列组合混合问题先选后排策略例7.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A练习题:8.一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有_______种八.小集团问题先整体后局部策略例8.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.练习题:9.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为_____10. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有____种九.元素相同问题隔板策略 例9.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合问题的基本类型及解题方法解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。

其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。

加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。

分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类。

以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。

(一)特殊元素的“优先安排法”对于特殊元素的排列组合问题,一般先考虑特殊元素,再考虑其他元素的安排。

在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。

例1: 0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?解法一:(元素优先)分两类:第一类,含0,0在个位有24A 种,0在十位有1123A A 种;第二类,不含0,有1223A A 种。

故共有2111242323(A A A )+A A 30+=种。

注:在考虑每一类时,又要优先考虑个位。

解法二:(位置优先)分两类:第一类,0在个位有24A 种;第二类,0不在个位,先从两个偶数中选一个放个位,再选一个放百位,最后考虑十位,有111233A A A 种。

故共有21114233A +A A A =30(二)总体淘汰法对于含有否定词语的问题,还可以从总体中把不符合要求的除去,此时应注意既不能多减也不能少减,例如在例1中也可以用此法解答:5个数字组成三位数的全排列为35A ,排好后发现0不能在首位,而且3和5不能排在末尾,这两种不合题意的排法要除去,故有30个偶数.(三)合理分类与准确分步解含有约束条件的排列组合问题,应按元素的性质进行分类,事情的发生的连续过程分步,做到分类标准明确,分布层次清楚,不重不漏.例2:5个人从左到右站成一排,甲不站排头,乙不站第二个位置,不同的站法有 解:由题意,可先安排甲,并按其进行分类讨论:(1)若甲在第二个位置上,则剩下的四人可自由安排,有44A 种方法;(2)若甲在第三个或第四个位置上,则根据分布计数原理不同的站法有113333A A A 种站法;再根据分类计数原理,不同的站法共有:21134333A A A A 78+=种.(四)相邻问题:捆绑法对于某些元素要求相邻排列的问题,可先将相邻元素捆绑成整体并看作一个元素再与其它元素进行排列,同时对相邻元素内部进行自排。

例3: 5个男生3个女生排成一列,要求女生排一起,共有几种排法?解:先把3个女生捆绑为一个整体再与其他5个男生全排列。

同时,3个女生自身也应 全排列。

由乘法原理共有6363A A 种。

(五)不相邻问题用“插空法”对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻的元素在已排好的元素之间及两端的空隙之间插入即可(注意有时候两端的空隙的插法是不符合题意的). 例4: 5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?解:先排无限制条件的男生,女生插在5个男生间的4个空隙,由乘法原理共有5354A A 种。

注意:①分清“谁插入谁”的问题。

要先排无限制条件的元素,再插入必须间隔的元素; ②数清可插的位置数;③插入时是以组合形式插入还是以排列形式插入要把握准。

例5: 马路上有编号为1,2,3,9的9盏路灯,现要关掉其中的三盏,但不能同时关掉相邻的两盏或三盏,也不能关两端的路灯,则满足要求的关灯方法有几种?解:由于问题中有6盏亮3盏暗,又两端不可暗,故可在6盏亮的5个间隙中插入3个暗的即可,有35C 种。

(六)顺序固定问题用“除法”或选位不排或先定后插对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数。

或先在总位置中选出顺序一定元素的位置而不参加排列,然后对其它元素进行排列。

也可先放好顺序一定元素,再一一插入其它元素。

例6: 5人参加百米跑,若无同时到达终点的情况,则甲比乙先到有几种情况?解法一:先5人全排有55A 种,由于全排中有甲、乙的全排种数22A ,而这里只有1种是 符合要求的,故要除以定序元素的全排列22A 种,所以有5522A =60A 种。

解法二:先在5个位置中选2个位置放定序元素(甲、乙)有25C 种,再排列其它3人有33A , 由乘法原理得共有2353C A =60种。

解法三:先固定甲、乙,再插入另三个中的第一人有3种方法,接着插入第二人有4种 方法,最后插入第三人有5种方法。

由乘法原理得共有345=60⨯⨯种。

(七)“小团体”排列,先“团体”后整体对于某些排列问题中的某些元素要求组成“小团体”时,可先按制约条件“组团”并视为一个元素再与其它元素排列。

例7:四名男歌手与两名女歌手联合举行一场演唱会,演出的出场顺序要求两名女歌手之间有两名男歌手,则出场方案有几种?解:先从四名男歌手中选2人排入两女歌手之间进行“组团”有2242A A 种,把这个“女男男女”小团体视为1人再与其余2男进行排列有33A 种,由乘法原理,共有2242A A 33A 种.(八)分排问题用“直排法”把n 个元素排成若干排的问题,若没其他的特殊要求,可用统一排成一排的方法来处理.例8:7个人坐两排座位,第一排坐3人,第二排坐4人,则有 种排法.解:7个人,可以在前后两排随意就座,没有其他的限制条件,故两排可以看成一排来处理,所以不同的坐法有77A .(九)逐步试验法如果题中附加条件增多,直接解决困难,用试验法寻找规律有时也是行之有效的方法.例9:将数字1,2,3,4填入标号为1,2,3,4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有 种。

解:此题考查排列的定义,由于附加条件较多,解法较为复杂,可用试验法逐步解决.第一方格内可填2或3或4.如填2,则第二方格内可填1或3或4.若第二方格内填1,则第三方格内只能填4,第四方格内填3.若第二方格填3,则第三方格应填4, 第四方格应填1.同理,若第二方格填4,则第三、四方格应分别填3,1。

因而第一方格填2共有3种方法。

同理,第一格填3或4也各有3种,所以一共有9种方法。

(十)探索规律法对于情况复杂,不易发现其规律的问题需要仔细分析,探索出其中规律,再予以解决。

例10:从1到100的自然数中,每次取出不同的两个数,使他们的和大于100,则不同的取法种数有 种。

解:此题的数字较多,情况也不一样,需要分析摸索其规律。

为方便,两个加数中较小的为被加数,1100101100+=>,1为被加数的有1种;同理,2为被加数的有2种;3为被加数的有3种;……;49为被加数的有49种;50为被加数的有50种;但51为被加数的只有49种;52为被加数的只有48种;……;99为被加数的只有1种,故不同的区法有: (12350)(49481)2500+++++++=种。

(十一)“住店”问题解决“允许重复排列”的问题要注意区分两类元素:一类元素可重复,另一类元素不能重复。

把不能重复的元素看着“客”,能重复的元素看着“店”,再利用分步计数原理直接求解的方法称为“住店法”。

例11:7名学生争夺五项冠军,获得冠军的可能种数是 种。

解:应同一学生可同时夺得n 项冠军,故学生可重复排列,将7名学生看着7家“店”,五项冠军看着5名“客”,每个客有7种住宿方法,由分步计数原理得5N=7种。

(十二)特征分析法有约束条件的排数问题,必须紧扣题中所提供的数字和结构特征,进行推理,分析求解。

例12:由1,2,3,4,5,6六个数可组成多少个无重复且是6的倍数的五位数?解:分析数字的特征:6的倍数的数既是2的倍数,又是3的倍数。

其中3的倍数又满足“各个数位上的数字之和是3的倍数”的特征。

而且12621+++=是3的倍数,从6个数字中取5个,使之和还是3的倍数,则所去掉的数字只能是3或6。

因而可以分两类讨论:第一类,所排的五位数不含3,即由1,2,3,4,5,6作数码;首先从2,4,6三个中任选一个作个位数字有13A 种,然后其余4个数字在其他数位上的全排列有44A ,所以11134N A A =;第二类,所排的五位数不含6,即由1,2,3,4,5作数码,依上法有14224N A A =,故12N=N N 120+=种。

(十三)相同元素进盒,用档板分隔例13:10张参观公园的门票分给5个班,每班至少1张,有几种选法?解:这里只是票数而已,与顺序无关,故可把10张票看成10个相同的小球放入5个不同的盒内,每盒至少1球,可先把10球排成一列,再在其中9个间隔中选4个位置插入4块“档板”分成5格(构成5个盒子)有49C 种方法。

注:档板分隔模型专门用来解答同种元素的分配问题。

(十四)个数不少于盒子编号数,先填满再分隔例14: 15个相同的球放入编号为1,2,3的盒子内,盒内球数不少于编号数,有几种不同的放法?解:先用6个球按编号数“填满”各盒(符合起码要求),再把9个球放入3个盒内即可,可用2块档板与9个球一起排列(即为两类元素的排列问题),有211C 种。

(十五)不同元素进盒,先分堆再排列对于不同的元素放入几个不同的盒内,当有的盒内有不小于2个元素时,不可分批进入,必须先分堆再排入。

例15: 5个老师分配到3个班搞活动,每班至少一个,有几种不同的分法?解:先把5位老师分3堆,有两类:3,1,1分布有35C 种和1,2,2分布有12254222C C C A 种,再排列到3个班里有33A 种,故共有122335425322()C C C C A A 种。

注意:不同的老师不可分批进入同一个班,须一次到位(否则有重复计数)。

即“同一盒内的元素必须一次进入”。

(十六)两类元素的排列,用组合选位法例16: 10级楼梯,要求7步走完,每步可跨一级,也可跨两级,问有几种不同的跨法?解:由题意知,有4步跨单级,3步跨两级,所以只要在7步中任意选3步跨两级即可。

故有37C 种跨法。

注意:两类元素的排列问题涉及面很广,应予重视。

例17: 沿图中的网格线从顶点A 到顶点B ,最短的路线有几条?解:每一种最短走法,都要走三段“|”线和四段“—”线,这是两类元素不分顺序的排列问题。

故有37C 或47C 种走法。

例18: 从5个班中选10人组成校篮球队(无任何要求),有几种选法?解:这个问题与例12有区别,虽仍可看成4块“档板”将10个球分成5格(构成5个盒子),是球与档板两类元素不分顺序的排列问题。

相关文档
最新文档