遥感图像预处理实验报告
遥感ENVI实验报告

遥感ENVI实验报告一、实验目的本实验的目的是学习和掌握ENVI(Environment for Visualizing Images)软件在遥感图像处理方面的应用。
通过本次实验,我们将了解遥感图像的基本概念和原理,并学习使用ENVI软件进行图像预处理、分类和地物提取。
二、实验要求1.学习ENVI软件的基本操作和功能;2.能够对遥感图像进行预处理,如辐射校正和大气校正;3.能够对遥感图像进行分类,如最大似然分类和支持向量机分类;4.能够进行地物提取,如植被指数计算和特征提取。
三、实验步骤和结果1.图像预处理首先,我们导入了一幅Landsat 8卫星遥感图像,并进行了辐射校正和大气校正。
辐射校正是将图像中的DN(数字化值)转换为辐射度值,以便进行后续的大气校正和分类。
大气校正是根据大气传输模型对图像进行校正,以消除大气影响。
经过预处理后,我们得到了一幅处理后的图像。
2.图像分类接下来,我们使用ENVI软件进行了图像分类。
我们采用了最大似然分类和支持向量机分类两种方法进行分类。
最大似然分类是一种统计分类方法,通过最大化每类像素的似然度来划分不同类别,得到分类结果。
支持向量机分类是一种基于机器学习的分类方法,通过训练样本来构建分类模型,并用于对图像中的未分类像素进行分类。
3.地物提取最后,我们对图像进行了地物提取。
我们计算了该图像的植被指数,并使用阈值法将植被像素提取出来。
植被指数是通过计算不同波段之间的光谱差异来反映植被覆盖程度的指标。
我们还对植被像素进行了形状和纹理特征的提取,以获取更具有区分度的特征。
实验结果显示,经过图像预处理和分类,我们得到了一幅分类结果图。
通过该图像,我们可以清楚地看到不同地物类别的分布情况。
同时,通过地物提取,我们成功提取出了图像中的植被像素,并获得了植被的形状和纹理特征。
四、实验总结通过本次实验,我们学习和掌握了ENVI软件在遥感图像处理方面的应用。
我们了解了遥感图像的基本概念和原理,并学会了使用ENVI软件进行图像预处理、分类和地物提取。
遥感图像处理实验报告

遥感图像处理实验报告《遥感图像处理实验报告》摘要:本实验利用遥感技术获取了一幅卫星图像,通过图像处理技术对图像进行了处理和分析。
实验结果表明,遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值。
引言:遥感图像处理是利用遥感技术获取的图像进行数字化处理和分析,以获取有用的地理信息和环境数据的过程。
本实验旨在通过对遥感图像的处理和分析,探讨遥感图像处理技术在实际应用中的作用和意义。
实验方法:1. 获取卫星图像:选择一幅特定区域的卫星图像作为实验对象,确保图像质量和分辨率满足处理要求。
2. 图像预处理:对原始图像进行预处理,包括去噪、增强、几何校正等操作,以提高图像质量和准确性。
3. 图像分析:利用遥感图像处理软件对图像进行分类、特征提取、变化检测等分析,获取地理信息和环境数据。
4. 结果展示:将处理后的图像结果进行展示和分析,对图像处理技术的应用效果进行评估。
实验结果:经过处理和分析,得到了一幅清晰的遥感图像,并从中提取了有用的地理信息和环境数据。
通过图像分类和特征提取,可以准确地识别出不同地物类型,如建筑物、植被、水体等;通过变化检测,可以发现地表的变化情况,如城市扩张、土地利用变化等。
这些信息对于地理信息系统、环境监测、城市规划等领域具有重要的应用价值。
结论:遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值,通过对遥感图像的处理和分析,可以获取丰富的地理信息和环境数据,为相关领域的决策和规划提供重要的支持。
在未来的研究中,可以进一步探讨遥感图像处理技术的改进和应用,以满足不同领域的需求。
遥感图像处理实验报告

遥感图像处理实验报告遥感图像处理实验报告引言:遥感图像处理是一门应用广泛的技术,它通过获取、分析和解释地球表面的图像数据,为地质勘探、环境监测、农业发展等领域提供了重要的支持。
本实验旨在探索遥感图像处理的基本方法和技术,以及其在实际应用中的价值和意义。
一、图像预处理图像预处理是遥感图像处理的第一步,它主要包括图像的去噪、增强和几何校正等操作。
在本实验中,我们使用了一张卫星图像作为样本,首先对图像进行了去噪处理,采用了中值滤波算法,有效地去除了图像中的椒盐噪声。
接着,我们对图像进行了增强处理,采用了直方图均衡化算法,使得图像的对比度得到了显著提高。
最后,我们进行了几何校正,通过对图像进行旋转和缩放,使得图像的几何形状与实际地理位置相符合。
二、图像分类图像分类是遥感图像处理的关键步骤之一,它通过对图像中的像素进行分类,将其划分为不同的地物类型。
在本实验中,我们使用了监督分类方法,首先选择了一些具有代表性的样本像素,然后通过训练分类器,将这些样本像素与不同的地物类型进行关联。
接着,我们对整个图像进行分类,将图像中的每个像素都划分为相应的地物类型。
最后,我们对分类结果进行了验证,通过与实地调查结果进行对比,验证了分类的准确性和可靠性。
三、图像融合图像融合是遥感图像处理的一项重要技术,它可以将多个不同波段或分辨率的图像融合成一幅高质量的图像。
在本实验中,我们选择了两幅具有不同波段的卫星图像,通过波段归一化和加权平均的方法,将这两幅图像融合在一起。
融合后的图像不仅保留了原始图像的颜色信息,还具有更高的空间分辨率和光谱分辨率,可以提供更全面和准确的地物信息。
四、图像变化检测图像变化检测是遥感图像处理的一项关键任务,它可以通过对多幅图像进行比较,检测出地表发生的变化情况。
在本实验中,我们选择了两幅具有不同时间的卫星图像,通过差异图像法和指数变化检测法,对这两幅图像进行了变化检测。
通过对比差异图像和变化指数图,我们可以清晰地看到地表发生的变化,如城市扩张、植被变化等,为城市规划和环境监测提供了重要的参考依据。
遥感实验报告

遥感实验报告实验名称:遥感图像的预处理和分类实验实验目的:1. 了解遥感图像数据的基本特点和处理方法;2. 学习遥感图像的预处理方法,如去除噪声、增强对比度等;3. 学习遥感图像的分类方法,如像元分类、目标识别等;4. 掌握常用的遥感图像处理和分类工具的使用。
实验设备:1. 个人电脑;2. 遥感图像处理和分类软件,如ENVI、ArcGIS等。
实验步骤:1. 数据采集:从遥感卫星或其他遥感数据源获取一幅遥感图像数据;2. 数据预处理:a) 图像去噪:使用滤波器或其他去噪方法去除图像中的噪声;b) 对比度增强:使用直方图均衡化或其他增强方法增强图像的对比度;3. 图像分类:a) 像元分类:根据像元的光谱特征将图像分为不同的类别;b) 目标识别:在像元分类的基础上,进一步识别图像中的目标;4. 结果分析:对处理和分类后的图像结果进行分析和评价。
实验结果:根据实验步骤进行数据预处理和分类后,得到了处理和分类后的遥感图像结果。
可以根据对比度增强后的图像来提取目标特征,进行目标识别和分析。
也可以根据像元分类的结果来进行土地利用和覆盖分析等应用。
实验结论:通过本次实验,我们了解了遥感图像的基本特点和处理方法,学习了遥感图像的预处理和分类方法,并掌握了常用的遥感图像处理和分类工具的使用。
通过图像预处理和分类,可以更好地提取图像中的目标信息,为后续的应用和分析提供了基础。
参考文献:[1] 张三. 遥感图像处理与应用[M]. 科学出版社, 2018.[2] 李四. 遥感图像分类方法与实践[M]. 电子工业出版社, 2019.。
遥感影像处理实习报告

实习报告:遥感影像处理实习一、实习目的本次遥感影像处理实习的主要目的是通过实际操作,掌握遥感影像处理的基本方法和技能,提高对遥感影像的处理和分析能力。
通过实习,我们希望能够学会使用遥感相关软件对遥感影像进行校正、裁剪等处理工作,掌握遥感野外调查的方法和注意事项,根据《土地利用现状分类-GB2007》标准,对所调查区域的遥感影像地物进行初步目视解译、划分,从而建立外业目视解译标志表,掌握对遥感影像的室内解译,同时进行小斑区划和数据库建立,根据遥感影像图,针对所调查区域制作土地利用现状分类专题图。
二、实习内容(一)遥感影像处理1、遥感影像预处理:首先我们将下载到的原始遥感图像在envis软件中进行预处理,包括辐射校正和几何校正。
辐射校正主要进行传感器校正、大气校正、太阳高度及地形校正。
几何校正是指纠正由系统或非系统因素引起的图像几何变形。
这里主要是对遥感影像坐标系进行选取,我们将实习所用到的遥感图像坐标系确定为UTMWGS84坐标系。
2、遥感影像裁剪:对预处理过的遥感影像进行裁剪,选取出本次实习的区域范围,我们选取了金洲新区大部分地区及望城区部分区域作为本次实习的区域范围。
使用envis软件中感兴趣区域选取的功能,裁剪出特定的区域范围。
(二)外业建标调查:1、建立目视解译标志:建立目视解译标志即对遥感影像上的地物进行识别和分类,根据《土地利用现状分类-GB2007》标准,对遥感影像上的地物进行初步目视解译、划分,从而建立外业目视解译标志表。
2、野外调查:根据所建立的目视解译标志,对实习区域进行野外调查,验证解译结果的准确性,并对解译过程中出现的问题进行修正。
(三)室内解译和数据库建立:1、室内解译:利用envis软件对裁剪后的遥感影像进行室内解译,根据野外调查结果和目视解译标志,对遥感影像上的地物进行详细分类和解译。
2、小斑区划和数据库建立:根据室内解译结果,对遥感影像上的地物进行小斑区划,并将小斑区数据导入数据库,建立遥感影像地物数据库。
遥感原理实验报告2遥感图像处理

《遥感原理》实验报告实验名称:遥感图像处理专业:地理信息科学学号:姓名:指导老师:1、实验目的(1)了解彩色的基本特性和相互关系;掌握三原色及其互补色,掌握加色法;(2)学习掌握图像直方图变化与图像亮度变化的关系;掌握图像线性拉伸的方法和过程;(3)理解遥感图像彩色合成的基本原理;掌握选用不同的合成方案产生不同的合成效果的方法,从而达到突出不同目标地物的目的;(4)了解空间滤波的操作过程和空间滤波对图像产生的效果;(5)了解并掌握K-L变换的过程和方法;进一步理解K-L变换产生的处理效果和处理意义;(6)了解和掌握缨帽变换的过程和处理效果;(7)了解和掌握彩色空间变换的过程和方法。
2、实验材料Photoshop CS6、ENVI5.1、CAI软件和光盘文件3、实验内容与过程3.1 遥感图像的光学合成原理彩色的基本特性:明度、色调和饱和度为彩色的基本特性。
明度是指色彩的明亮程度,是人眼对光源或物体明亮程度地感觉,彩色光亮度越高,人眼感觉就越明亮,即有较高的明度。
明度的高低取决于光源光强及物体表面对光的反射率。
色调是色彩彼此相互区分的特性,色调取决于光源的光谱组成和物体表面的光谱反射特性。
饱和度是色彩纯洁性,取决于物体表面反射光谱的选择性程度,反射性光谱越窄,即光谱的选择性越强,彩色的饱和度就越高。
明度、色调和饱和度三者的关系可以用颜色立体来表述。
非彩色,即黑白色只用明度描述,不使用色调、饱和度。
红橙黄绿青蓝紫各种颜色组成彩图。
在遥感上,彩色图比非彩色图较易识别地物。
白色、黑色和各种灰色组成黑白图象,当物体对可见光的各个波长的反射无选择性时,表现为黑色或灰色。
3.2 遥感图像的线性拉伸打开ENVI>点击菜单栏的“Custom Stretch”按钮>选择”Linear”等进行线性拉伸;或者直接在菜单栏上选择“Linear”“Linear2%”“Linear5%”原图:线性拉伸后:Linear:Linear 1%:当拉伸效果为1%时,显示效果得到了很大改善。
遥感图像处理实验报告_2

遥感图像处理实验报告班级 11资环姓名学号实验专题实验室 F楼机房成绩评定教师签字专题一: DEM图像进行彩色制图 (2)(叙述制图过程并把自己处理结果加载到本文档里)专题二: TM与SPOT数据融合 (3)(叙述该过程并处理结果加载到本文档里。
注意用两种方法融合的过程)专题三: 航片的配准与镶嵌 (4)(叙述该过程并处理结果加载到本文档)专题四: 切取某研究区域的操作 (5)(具体要求:卫星影象叠加, 选择其中三波段彩色合成, 采用ROI切取研究区)专题五: 地图制图的方法 (6)(主要是快速制图。
并任选一样例加载制图后结果)专题六: 使用ENVI进行三维曲面的浏览与飞行 (7)(叙述该过程并处理结果加载到本文档里)专题七: 监督分类试验(任选一种监督分类方法, 并叙述 (8)(其过程将其结果加载到本档里)。
实验专题: 专题一: DEM图像进行彩色制图1.加载一幅DEM的灰度图像, 使用系统默认的IDL颜色表来调整屏幕的颜色表。
2.给生成的彩色图像添加图名、格网、比例尺、灰度条、等高线及数值等信息。
3、调整位置, 保存图像。
结果如下图1、实验专题: 专题二: TM与SPOT数据融合2、主图象窗口选择Transform > Image Sharpening > HSV, 从一个打开的彩色图像中选择三个波段进行变换。
3、对原DEM图像进行拉伸处理。
3.将HSV图像重新转换为RGB图像。
分别对应H-R,S-G,拉伸图像-B。
4.加载最终图像, 并保存结果。
结果如图所示:1、实验专题: 专题三: 航片的配准与镶嵌2、加载两幅图像, 其中一幅作为base image, 一幅作为warp image。
3、在主菜单Registration里的Select GCP(Ground Control Points)来选择地面控制点, 并调整误差。
4、执行图像—地图配准。
5、图像镶嵌。
执行Map> Mosaicking > Pixel Based。
61-实验三遥感图像预处理(波段合成、裁剪与拼接)

实验三遥感图像预处理(波段合成、裁剪与拼接)一、 实验目的通过实验了解整个图像的预处理过程,从而加深对遥感图像计算机处理的内容及概念的理解。
二、 实验内容1.自定义坐标系2.波段合成(图像融合)3.图像镶嵌(图像拼接)4.图像裁剪三、 实验数据1. TM-30m.img2. bldr_sp.img3. Mosaic1.img4. Mosaic2.img5. bhtmsat.img6. can_tmr.img7. qb_boulder_msi.img8. qb_boulder_pan.img四、 实验操作原理及步骤遥感图像预处理主要包括图像几何校正、图像融合、图像镶嵌、图像裁剪等过程,其处理顺序一般如下图所示。
图 1一般图像预处理流程1.自定义坐标系一般国外商业软件坐标系都分为标准坐标系和自定义坐标系两种。
我国情况较为特殊,往往需要自定义坐标系。
所以,在ENVI第一次使用时,需要对系统自定义北京54坐标系西安80坐标系。
1.1添加参考椭球体找到ENVI系统自定义坐标文件夹—C:\Program Files\ITT\IDL708\products\envi46\map_proj。
根据每台电脑安装的路径以及版本不同而略有不同。
以记事本形式打开ellipse.txt,将“Krasovsky,6378245.0,6356863.0”和“IAG-75,6378140.0,6356755.3”加入文本末端。
(这里主要是为了修改克拉索夫斯基因音译而产生的错误,以便让其他软件识别;另外中间的逗号必须是英文半角。
)1.2添加基准面以记事本格式打开datum.txt,将“Beijing-54, Krasovsky, -12, -113, -41”和“Xi'an-80,IAG-75,0,0,0”加入文本末端。
1.3定义坐标定义完椭球参数和基准面后就可以在ENVI中以我们定义的投影参数新建一个投影信息(Customize Map Projections),在编辑栏里分别定义投影类型、投影基准面、中央子午线、缩放系数等,最后添加为新的投影信息并保存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验前准备:遥感图像处理软件认识
1、实验目的与任务:
①熟悉ENVI软件,主要是对主菜单包含内容的熟悉;
②练习影像的打开、显示、保存;数据的显示,矢量的叠加等。
2、实验设备与数据
设备:遥感图像处理系统ENVI4.4软件;
数据:软件自带数据和河南焦作市影响数据。
3、实验内容与步骤:
⑴ENVA软件的认识
如上图所示,该软件共有12个菜单,每个菜单都附有下拉功能,里面分别包含了一些操作功能。
⑵打开一幅遥感数据
选择File菜单下的第一个命令,通过该软件自带的数据打开遥感图像,可知,打开一幅遥感影像有两种显示方式。
一种是灰度显示,另一种是RGB显示。
Gray(灰度显示)RGB显示
⑶保存数据
①选择图像显示上的File菜单进行保存;
②通过主菜单上的Save file as进行保存
⑷光谱库数据显示
选择Spectral > Spectral Libraries > Spectral
Library Viewer。
将出现Spectral Library Input
File 对话框,允许选择一个波谱库进行浏览。
点
击“Open Spectral Library”,选择某一所需的
波谱库。
该波谱库将被导入到Spectral Library
Input File 对话框中。
点击一个波谱库的名称,
然后点击“OK”。
将出现Spectral Library Viewer
对话框,供选择并绘制波谱库中的波谱曲线。
⑸矢量化数据
点选显示菜单下的Tools工具栏,接着选择下面的第四个命令,之后选择第一个命令,对遥感图像进行矢量化。
点击鼠标左键进行区域选择,选好之后双击鼠标右键,选中矢量化区域。
⑹矢量数据与遥感影像的叠加与切割
选择显示菜单下的Tools工具,之后点选第一个
Link命令,再选择其下面的第一个命令,之后
OK,结束程序。
选择主菜单下的Basic Tools 菜单,之后选择
其中的第二个命令,在文件选择对话框中,选择
输入的文件(可以根据需要构建任意子集),将
出现Spatial Subset via ROI Parameters 对
话框通过点击矢量数据名,选择输入的矢量数
据。
使用箭头切换按钮来选择是否遮蔽不包含在
矢量数据中的像元。
遥感图像的辐射定标
1、实验目的与任务:
①了解辐射定标的原理;
②使用ENVI软件自带的定标工具定标;
③学习使用波段运算进行辐射定标。
2、实验内容与步骤:
⑴辐射定标的原理
辐射定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面温度等
物理量的处理过程。
其中反射率又分为大气外层表观反射率和地表实际反射率,后者又属于大气校正的范畴,有的时候也会将大气校正纳入辐射定标的一种途径。
⑵对图像进行辐射定标
①点选主菜单下的Basic Tools菜单,接着选择该菜单下的Preprocessing命令,之后选择该命令下的Calibration Utilities命令,最后选择Landsat TM命令,得到如下界面。
选择其中一个文件,点击OK。
②在出现的下图中,对相关数据项目进行设置,之后继续点击OK。
③当出现下图所示窗口时,继续选择OK。
④软件进行辐射定标,最后会出现如下图所示的结果。
定标前定标后
遥感图像的几何校正
1、实验的目的和意义:
①了解几何校正的原理,通过对几何校正原理的了解,掌握遥感图像的校正和配准,达到学习目的,使理论与实际相结合;
②学习使用ENVI软件进行几何校正。
2、实验内容与步骤
⑴几何校正的原理
校正前的图像看起来时由行列整齐的等间距像元点组成的,但实际上,由于某种几何畸变,图像中像元点间所对应的地面距离并不相等。
校正后的图像亦是有等间距的网格点组成的,且以地面为标准,符合某种投影的均匀分布,图像中格网的交点可以看作是像元的中心。
校正的最终目的是确定校正后图像的行列数值,然后找到新图像中每一像元的亮度值。
⑵具体步骤
①在主菜单下点击File菜单下的第一个命令,分别以RGB方式打开实验数据3-7和4-8。
在主菜单下点击Map菜单下的第一个命令,之后选择image to image命令
分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。
选择OK
②将两边的影像十字线焦点对准到认为是同一地物的地方,选择ADD POINT添加点。
按照此方法,依次选择9个点。
选点结束后,首先把点保存:ground control points->file->save gcp as ASCII..
③进行校正
在ground control points.对话框中选择:options->warp file(as image to map)在出现的imput warp image中选中要校正的影像,点ok进入registration parameters对话框:首先点change proj按钮,选择坐标系
然后更改象素的大小,最后选择重采样方法(resampling),一般选择双线性的(bilinear),最后的最后选择保存路径。
校正结束后的图像就如下图所示。
实验体会
此次实验由于涉及到一些专业英语知识,所以做起来并不顺利,在实验过程中遇到了许多问题。
但这次实验也让我熟悉了ENVI软件并掌握了一些遥感图像预处理的基本技术,提高了我的实际操作能力,也对遥感课程有了更加深入的了解,让我受益匪浅!
实验报告
实验名称:遥感图像预处理专业班级:
姓名:
学号:
实验地点:
实验时间:。