遥感图像实验报告

合集下载

遥感影像镶嵌实验报告(3篇)

遥感影像镶嵌实验报告(3篇)

第1篇一、实验目的1. 理解遥感影像镶嵌的概念和意义。

2. 掌握遥感影像镶嵌的基本原理和方法。

3. 学会使用遥感图像处理软件进行影像镶嵌操作。

4. 分析影像镶嵌的效果,并探讨优化影像镶嵌的方法。

二、实验原理遥感影像镶嵌是将多幅遥感影像按照一定规则拼接成一幅大范围、连续的遥感影像,以展示更大范围的地理信息。

影像镶嵌的原理主要包括:1. 影像匹配:通过比较多幅影像之间的相似性,确定影像之间的对应关系。

2. 影像配准:根据影像匹配结果,对多幅影像进行几何校正,使其在空间上对齐。

3. 影像拼接:将配准后的影像按照一定规则拼接成一幅连续的遥感影像。

三、实验数据本实验使用的数据为我国某地区Landsat 8影像,包含全色波段和多个多光谱波段。

四、实验步骤1. 数据预处理(1)辐射定标:将原始影像的数字量转换为地物反射率或辐射亮度。

(2)大气校正:去除大气对影像的影响,提高影像质量。

(3)几何校正:纠正影像的几何畸变,使其符合实际地理坐标。

2. 影像匹配(1)选择匹配算法:本实验采用互信息匹配算法。

(2)设置匹配参数:根据影像特点,设置匹配窗口大小、匹配阈值等参数。

(3)进行匹配运算:将多幅影像进行匹配,得到匹配结果。

3. 影像配准(1)根据匹配结果,确定影像之间的对应关系。

(2)选择配准方法:本实验采用二次多项式配准方法。

(3)进行配准运算:将多幅影像进行配准,使其在空间上对齐。

4. 影像拼接(1)选择拼接方法:本实验采用线段拼接方法。

(2)设置拼接参数:根据影像特点,设置拼接线宽、重叠区域等参数。

(3)进行拼接运算:将配准后的影像进行拼接,得到一幅连续的遥感影像。

5. 结果分析(1)分析拼接效果:观察拼接后的影像,检查是否存在明显的拼接线、几何畸变等问题。

(2)优化拼接方法:根据分析结果,调整拼接参数,优化拼接效果。

五、实验结果与分析1. 拼接效果通过实验,成功将多幅Landsat 8影像拼接成一幅连续的遥感影像。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告《遥感图像处理实验报告》摘要:本实验利用遥感技术获取了一幅卫星图像,通过图像处理技术对图像进行了处理和分析。

实验结果表明,遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

引言:遥感图像处理是利用遥感技术获取的图像进行数字化处理和分析,以获取有用的地理信息和环境数据的过程。

本实验旨在通过对遥感图像的处理和分析,探讨遥感图像处理技术在实际应用中的作用和意义。

实验方法:1. 获取卫星图像:选择一幅特定区域的卫星图像作为实验对象,确保图像质量和分辨率满足处理要求。

2. 图像预处理:对原始图像进行预处理,包括去噪、增强、几何校正等操作,以提高图像质量和准确性。

3. 图像分析:利用遥感图像处理软件对图像进行分类、特征提取、变化检测等分析,获取地理信息和环境数据。

4. 结果展示:将处理后的图像结果进行展示和分析,对图像处理技术的应用效果进行评估。

实验结果:经过处理和分析,得到了一幅清晰的遥感图像,并从中提取了有用的地理信息和环境数据。

通过图像分类和特征提取,可以准确地识别出不同地物类型,如建筑物、植被、水体等;通过变化检测,可以发现地表的变化情况,如城市扩张、土地利用变化等。

这些信息对于地理信息系统、环境监测、城市规划等领域具有重要的应用价值。

结论:遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值,通过对遥感图像的处理和分析,可以获取丰富的地理信息和环境数据,为相关领域的决策和规划提供重要的支持。

在未来的研究中,可以进一步探讨遥感图像处理技术的改进和应用,以满足不同领域的需求。

遥感实验报告裁剪拼接(3篇)

遥感实验报告裁剪拼接(3篇)

第1篇一、实验目的本次实验旨在学习遥感影像处理中的裁剪与拼接技术,通过对遥感影像进行裁剪和拼接,提高遥感数据的可用性和分析效率。

二、实验背景遥感技术是获取地球表面信息的重要手段,广泛应用于资源调查、环境监测、灾害评估等领域。

遥感影像经过处理和提取后,才能为实际应用提供有价值的信息。

裁剪与拼接是遥感影像处理中的基本操作,通过对影像进行裁剪和拼接,可以去除无关信息,提高影像的可用性。

三、实验材料1. 遥感影像数据:包括多景遥感影像,如Landsat、Sentinel-2等;2. 裁剪与拼接软件:如ENVI、ArcGIS等;3. 实验环境:计算机、遥感数据处理软件等。

四、实验步骤1. 数据准备(1)选择遥感影像数据,确保影像质量良好、覆盖范围完整;(2)对遥感影像进行预处理,包括辐射校正、大气校正等,提高影像质量。

2. 裁剪操作(1)确定裁剪范围:根据实验需求,选择合适的裁剪范围,如行政区域、研究区域等;(2)使用裁剪工具对遥感影像进行裁剪,生成新的影像。

3. 拼接操作(1)选择拼接方式:根据实际情况,选择合适的拼接方式,如同名像元拼接、重叠区域拼接等;(2)使用拼接工具对遥感影像进行拼接,生成新的影像。

4. 质量评估(1)检查拼接后的影像是否完整,是否存在缝隙、错位等问题;(2)分析拼接区域的地物特征,确保拼接效果良好。

五、实验结果与分析1. 裁剪结果经过裁剪操作,生成了新的遥感影像,去除了无关信息,提高了影像的可用性。

2. 拼接结果经过拼接操作,生成了新的遥感影像,拼接区域地物特征良好,拼接效果满意。

3. 质量评估(1)拼接后的影像完整,无缝隙、错位等问题;(2)拼接区域地物特征良好,拼接效果满意。

六、实验结论通过本次实验,掌握了遥感影像的裁剪与拼接技术,提高了遥感数据的可用性和分析效率。

在实际应用中,可根据具体需求选择合适的裁剪与拼接方法,为遥感数据处理提供有力支持。

七、实验心得1. 裁剪与拼接是遥感影像处理中的基本操作,对于提高遥感数据的可用性具有重要意义;2. 在实际操作中,应根据具体需求选择合适的裁剪与拼接方法,确保拼接效果良好;3. 学习遥感影像处理技术,有助于提高遥感数据的分析和应用水平。

遥感图像处理实验报告

遥感图像处理实验报告

遥感图像处理实验报告遥感图像处理实验报告引言:遥感图像处理是一门应用广泛的技术,它通过获取、分析和解释地球表面的图像数据,为地质勘探、环境监测、农业发展等领域提供了重要的支持。

本实验旨在探索遥感图像处理的基本方法和技术,以及其在实际应用中的价值和意义。

一、图像预处理图像预处理是遥感图像处理的第一步,它主要包括图像的去噪、增强和几何校正等操作。

在本实验中,我们使用了一张卫星图像作为样本,首先对图像进行了去噪处理,采用了中值滤波算法,有效地去除了图像中的椒盐噪声。

接着,我们对图像进行了增强处理,采用了直方图均衡化算法,使得图像的对比度得到了显著提高。

最后,我们进行了几何校正,通过对图像进行旋转和缩放,使得图像的几何形状与实际地理位置相符合。

二、图像分类图像分类是遥感图像处理的关键步骤之一,它通过对图像中的像素进行分类,将其划分为不同的地物类型。

在本实验中,我们使用了监督分类方法,首先选择了一些具有代表性的样本像素,然后通过训练分类器,将这些样本像素与不同的地物类型进行关联。

接着,我们对整个图像进行分类,将图像中的每个像素都划分为相应的地物类型。

最后,我们对分类结果进行了验证,通过与实地调查结果进行对比,验证了分类的准确性和可靠性。

三、图像融合图像融合是遥感图像处理的一项重要技术,它可以将多个不同波段或分辨率的图像融合成一幅高质量的图像。

在本实验中,我们选择了两幅具有不同波段的卫星图像,通过波段归一化和加权平均的方法,将这两幅图像融合在一起。

融合后的图像不仅保留了原始图像的颜色信息,还具有更高的空间分辨率和光谱分辨率,可以提供更全面和准确的地物信息。

四、图像变化检测图像变化检测是遥感图像处理的一项关键任务,它可以通过对多幅图像进行比较,检测出地表发生的变化情况。

在本实验中,我们选择了两幅具有不同时间的卫星图像,通过差异图像法和指数变化检测法,对这两幅图像进行了变化检测。

通过对比差异图像和变化指数图,我们可以清晰地看到地表发生的变化,如城市扩张、植被变化等,为城市规划和环境监测提供了重要的参考依据。

遥感图像融合实验报告

遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感图像融合是指将多个不同传感器获得的遥感图像融合为一幅综合图像的过程。

通过融合不同传感器获取的图像,可以获得更全面、更准确的地物信息。

本实验旨在探究遥感图像融合的原理和方法,并通过实验验证其效果。

二、实验目的1. 了解遥感图像融合的原理和意义;2. 掌握常用的遥感图像融合方法;3. 进行实验验证,比较不同融合方法的效果。

三、实验步骤1. 数据准备:选择两个不同传感器获取的遥感图像,如光学图像和雷达图像;2. 图像预处理:对两幅图像进行预处理,包括辐射校正、几何校正等;3. 图像配准:通过图像配准算法将两幅图像对齐,使其具有相同的空间参考系;4. 图像融合:选择合适的融合方法,如基于像素级的融合方法或基于特征级的融合方法,对两幅图像进行融合;5. 结果评价:通过定量和定性的评价指标,对融合结果进行评估。

四、实验结果与分析经过实验,我们得到了融合后的遥感图像。

通过对比融合前后的图像,可以发现融合后的图像在空间分辨率和光谱信息上都有所提高。

融合后的图像能够更清晰地显示地物的边缘和细节,且具有更丰富的颜色信息。

在融合方法的选择上,我们尝试了基于像素级的融合方法和基于特征级的融合方法。

基于像素级的融合方法将两幅图像的像素直接进行融合,得到的结果更加保真,但可能会导致信息的混淆。

而基于特征级的融合方法则通过提取图像的特征信息,再进行融合,可以更好地保留地物的特征,但可能会引入一定的误差。

通过对比不同融合方法的结果,我们可以发现不同方法在不同场景下的效果差异。

在某些场景下,基于像素级的融合方法可能会产生较好的效果,而在其他场景下,基于特征级的融合方法可能更适用。

因此,在实际应用中,需要根据具体场景和需求选择合适的融合方法。

五、实验总结通过本次实验,我们深入了解了遥感图像融合的原理和方法,并进行了实验验证。

遥感图像融合可以提高图像的空间分辨率和光谱信息,使得地物信息更全面、更准确。

遥感图像融合实验报告

遥感图像融合实验报告

遥感图像融合实验报告遥感图像融合实验报告一、引言遥感技术在现代科学研究和应用中发挥着重要的作用。

遥感图像融合是将多个遥感图像的信息融合为一个综合图像的过程,可以提供更全面、更准确的地理信息。

本实验旨在通过遥感图像融合技术,对不同分辨率的遥感图像进行融合,以获得更高质量的图像。

二、实验方法1. 数据收集我们使用了两个不同分辨率的遥感图像,一个是高分辨率的卫星图像,另一个是低分辨率的无人机图像。

这两个图像分别代表了不同的空间分辨率。

为了保证数据的准确性,我们选择了同一地区的图像进行比较。

2. 图像预处理在进行图像融合之前,需要对图像进行预处理,以提高融合效果。

我们首先对两个图像进行边缘增强处理,以增强图像的边缘信息。

然后,对图像进行直方图均衡化,使图像的灰度分布更均匀。

最后,对图像进行尺度匹配,以确保两个图像的尺度一致。

3. 图像融合算法本实验使用了一种基于小波变换的图像融合算法。

该算法通过将两个图像的低频部分和高频部分进行融合,得到一个综合图像。

具体步骤如下:a. 对两个图像进行小波变换,得到它们的低频部分和高频部分。

b. 对两个图像的低频部分进行加权平均,得到融合后的低频部分。

c. 对两个图像的高频部分进行加权平均,得到融合后的高频部分。

d. 将融合后的低频部分和高频部分进行逆小波变换,得到最终的融合图像。

4. 实验结果分析通过对融合后的图像进行视觉和定量分析,我们可以评估融合效果。

视觉分析可以通过观察图像的细节和边缘来判断融合效果的好坏。

定量分析可以通过计算图像的信息熵、互信息和均方误差等指标来评估融合效果。

三、实验结果与讨论经过实验,我们得到了融合后的图像。

通过对比原始图像和融合图像,我们可以看到融合后的图像在细节和边缘方面有明显的提升。

融合后的图像更清晰、更丰富,能够提供更多有用的地理信息。

在定量分析方面,我们计算了融合图像的信息熵、互信息和均方误差。

结果显示,融合图像的信息熵和互信息较高,均方误差较低,说明融合效果较好。

遥感图像目视实验报告

遥感图像目视实验报告

遥感图像目视实验报告实验背景遥感图像是利用航空或卫星等远距离方式获取地面信息的一种方法。

遥感图像可以提供大范围的地表覆盖信息,对于地理环境、自然资源调查和灾害评估等领域具有重要的应用价值。

目视解译是遥感图像处理的基础工作,通过观察和分析图像中的各种特征进行信息提取。

实验目的本实验旨在通过目视解译遥感图像,熟悉遥感图像的特征和解译方法,培养实际应用遥感技术的能力。

实验步骤步骤一:选择合适的遥感图像从实验室提供的遥感图像库中选择一张图像进行目视解译。

根据实验要求和研究领域,可以选择不同时间和地点的图像。

步骤二:观察和分析图像特征使用图像处理软件加载选择的遥感图像,并对其进行放大、缩小、平移等操作。

观察和分析图像中的地物特征,如土地覆盖类型、建筑物、道路等,并记录下观察结果。

步骤三:目视解译图像中的地物根据图像特征的观察和分析结果,将图像中的地物进行解译。

根据实际情况,可以使用不同的解译方法,如目视比例测量、边缘识别、光谱分析等。

步骤四:结果展示和分析将解译的结果和观察的图像特征进行对比和分析,评估解译的准确度和可靠性。

如果需要,可以绘制解译结果的统计数据、表格和图表,进一步展示和说明解译结果。

实验结果经过对选定遥感图像的观察和解译,得到了以下结果:1. 土地覆盖类型:图像中出现了大片的绿色区域,分布比较均匀,判断为农田;同时还有一些波状的蓝色区域,可能是河流。

2. 建筑物:在图像的中心位置,可以看到一些明显的矩形区域,判断为城市建筑物。

3. 道路:图像中还有一些线状的特征,长度较长且呈直线分布,判断为公路。

结果分析根据目视解译的结果和实验观察,可以得出以下分析结论:1. 图像中的土地覆盖类型主要是农田和河流,这符合该地区的地理特点和土地利用情况。

2. 图像中的建筑物主要集中在城市地区,说明该地区存在城市化现象,并且城市建设较为发达。

3. 公路的存在表明该地区的交通基础设施相对完善。

实验总结通过本次遥感图像目视实验,我接触了真实的遥感数据,学习了目视解译的方法和技巧。

遥感图像配准实验报告

遥感图像配准实验报告
[实验数据处理及成果]
用SPOT校正TM数据,附操作过程截图和校正后TM影像图片
[体会及建议]
通过本次试验熟悉在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的配准和影像到地图的校正。在实验过程中移动光标,查看坐标值,要小心谨慎注意地图坐标和经纬度之间的关系。以免出现错误。
(2)通过计算机操作与地理知识的结合增强对地理学科的兴趣,为以后继续从事相关工作奠定基础。
(3)树立地理学思想,理解并掌握地理学科的学习、实践的方法。
二、实验内容
遥感图像的几何校正,IHS融合方法。
三、实验准备
(1)IHS融合: IHS融合法是比较常用的一种融合方法。其基本原理是首先将空间分辨率
较低的三个多光谱影像变换到IHS彩色空间,得到明度(I),色别(H)和饱和度(S)三个分量;然后将高空间分辨率影像进行对比度拉伸,达到与I分量具有相同的均值和方差;再将处理后的高空间分辨率影像替换I分量,作IHS逆变换后就得到融合后的影像。
篇三:遥感实验报告
实验报告(实验一)
[实验名称]ENVI窗口的基本作
[实验目的与内容]
实验目的
熟悉ENVI软件的窗口操作方法,掌握影像信息、像元信息浏览方法,影像上距离和面积量算方法。实验内容
1、熟悉遥感图像处理软件ENVI的窗口基本操作。2、查看影像信息和像元信息。3、距离测量与面积测量。
[实验数据处理及成果]
遥感图像配准实验报告
篇一:遥感图像处理实验报告
《遥感数字图像处理》
实习报告
学院:环境与资源学院
班级:地理1002
学号:周颖智
姓名:20101171
西南科技大学环境与资源学院遥感实习…………………......2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感图像实验报告
一.实验目的
1、初步了解目前主流的遥感图象处理软件ERDAS的主要功能模块。

2、掌握Landsat ETM遥感影像数据,数据获取手段.掌握遥感分类的方法,
土地利用变化的分析,植被变化分析,以及利用遥感软件建模的方法。

3、加深对遥感理论知识理解,掌握遥感处理技术平台和方法。

二.实验内容
1、遥感图像的分类
2、土地利用变化分析,植被变化分析
3、遥感空间建模技术
三.实验部分
1.遥感图像的分类
(1)类别定义:根据分类目的、影像数据自身的特征和分类区收集的信息确定分类系统;
(2)特征判别:对影像进行特征判断,评价图像质量,决定是否需要进行影像增强等预处理;
(3)样本选择:为了建立分类函数,需要对每一类别选取一定数目的样本;(4)分类器选择:根据分类的复杂度、精度需求等确定哪一种分类器;
(5)影像分类:利用选择的分类器对影像数据进行分类,有的时候还需要进行分类后处理;分类图如下:
图1.1 1992年土地利用图
图1.2 2001年土地利用图
(6)结果验证:对分类结果进行评价,确定分类的精度和可靠性。

图1.3 1992年精度图
图1.4 2002年精度图
2.土地利用变化
2.1 两年土地利用相重合区域
(1)在两年的遥感影像中选择相同的区域。

Subset(x:568121~684371,y:3427359~3288369),过程如下:
图2.1 截图过程图
图2.2.2 截图过程图
(2)土地利用专题地图如下:
图2.2.3 1992年专题地图
图2.2.4 2001年土地利用图
2.2 土地利用变化
表2.2.1 土地利用变化表
表2.2.2 土地利用变化柱形图
(1)用矩阵方法对年份不同的土地利用图做变化分析,得出一幅可以体现变化的
成果图。

图2.2.1 土地变化分析过程图
图2.2.2 土地变化分析过程图
(2)土地利用结果图:
图2.2.3 土地利用变化图
(3)根据图像进行土地利用变化分析
利用ARCGIS分析模块,对土地利用类型动态监测结果为基础,对1992年和2002年土地利用情况进行分析,结果表明:
(1)根据上图所示,该区域耕地面积在不断减少,可能的原因是此地区经济状况不断发展,人口增多,建筑用地,商业用地增多,造成了耕地面积的减少;(2)湖泊面积减少,而湖泊变成了田地,可分析得,此地区围湖造田的现象依然存在;
(3)城镇面积不断增加;原因是城镇化发展迅速,人口涌入城市,使得地区城镇增加,从一定程度上反映出此地区经济不断发展;
(4)土地利用变化的区域性差异不明显。

3.植被变化分析
(1)路径:Interpreter\Spectral enhancement\indices
(2)建模:
NDVI=(NIR-R)/(NIR+R)
NIR——近红外波段
R ——可见光波段
-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而
增大;
图3.1 1992年植被归一化指数图3.2 2001年植被归一化指数(3)应用模型ndvi-cover.gmd计算植被覆盖度。

图3.3 1992年植被覆盖图图3.4 1992年植被覆盖图(4)两年相减,得出植被覆盖度变化趋势图
图3.5 植被变化图
(5)植被变化分析
由图可以得到,江汉平原近几年里,植被的覆盖度降低。

可能原因是,随着经济的发展,江汉平原的人口增多,使得自然环境受到人类干扰,生态遭到破坏。

植被数量减少.
4. 遥感温度反演
(1)数据获取
TM/ETM影像
(2)归一化植被指数计算
利用之前得出的植被指数NDVI,如下图所示:
图4.1 1992年NDVI 图4.2 2001年NDVI (3)比辐射率(Emissivity)计算
地表比辐射率对地表温度反演精度影响很大,研究发现地表比辐射率与植被指数高度相关,建立关系模型:
E=1.0094+0.047ln(NDVI) ndvi∈[0.157,0.727]
a.比辐射率计算模型
图4.3 地表比辐射率模型
b.地表比辐射率模型图
图4.4 1992年比辐射率图图4.5 2001年比辐射率图(4)温度反演
a.温度反演一
运用Planck方程计算亮度温度。

对于TM数据,参考模型
图4.6 温度反演(1)图4.7 温度反演(1)
图4.8 1992年温度反演图(1)图4.9 2001年温度反演图(1)b.温度反演二
TM6中心波长11.457μm,反解Planck函数获取地表真实温度模型
图4.10 温度反演(2)图4.11 温度反演(2)
图4.12 1992温度反演(2) 图4.13 2001温度反演(2)。

相关文档
最新文档