遥感实验报告-监督分类

合集下载

实验四遥感图像的监督分类和非监督分类

实验四遥感图像的监督分类和非监督分类

实验四遥感图像的监督分类和⾮监督分类实验四遥感图像的⾮监督分类与监督分类⼀、实验⽬的1.⾮监督分类是对数据集中的像元依据统计数字,光谱类似度和光谱距离进⾏分类,在没有⽤户定义的条件下练习使⽤,在ENVI环境下的⾮监督分类技术有两种:迭代⾃组织数据分析技术(ISodata)和K均值算法(K-Means);2.分类过程中应注意:1)怎样确定⼀个最优的波段组合,从⽽达到最佳的分类精度,基于OIF和相关系数,协⽅差矩阵以及经验的使⽤来完成对最适合的组合的选取,分类效果的关键即在于此;2)K-Means的基本原理;3)Isodata的基本原理;4)分类结束后,被分类后的图像是⼀个新的图像,被分类类码秘填充,从⽽可以获得数据提取信息,统计不同类码数量,转化为实际⾯积,在得到后的图像上,可对不同⽬标的形态指标进⾏分析。

3.对训练区中的像元进⾏分类;4.⽤训练数据集估计查看监督分类后的统计参数;5.⽤不同⽅法进⾏监督分类,如最⼩距离法、马⽒距离法和最⼤似然法。

⼆、实验设备与材料1、软件ENVI 4.7软件2、所需材料TM数据三、实验步骤1.选择最优的波段组合ENVI主⼯具栏中File →Open image file →选择hbtmref.img打开→在Basic Tools中选择Statistics →Compute statistics选定原图,在Spectral subset中可选项全部选定→OK →OK →全选→保存→OK,则各类统计数字均可查;OIF计算,选择分类波段:1,2;2,3;1,3波段标准差分别为2.665727;3.473308;4.574609,和为10.713644。

Correlation Matrix 中1和2波段的相关系数0.964308,加上2和3波段的相关系数0.980166,再加上1和3波段的相关系数0.945880,最终等于2.890354。

⽤标准差相加的结果10.713644⽐上相关系数之和2.890354等于3.70668922。

遥感实验:监督分类

遥感实验:监督分类

监督分类(一)数字图像处理实习内容 监督分类 训练样区 图像分类 监督分类9不同于无监督分类,监督分类由分类者严密控制。

分类前需要知道分类的数据以及所需要分的类。

在这个过程中,您选择像素能够代表某种类别的模式或土地覆盖类别,这些类别和模式你可以借助其他数据来源,如航空照片,地面真实数据或者地图。

9通过你定的模式,计算机系统可以自动查找具有类似特点的像素。

如果分类是准确的,此分类结果代表初分类。

监督分类的基本步骤监督分类是一个反复的过程,主要有以下步骤:1.训练样区并创建特征2. 评价和编辑特征3. 图像分类4. 评价分类结果实习内容 监督分类 训练样区 图像分类怎样定义训练样本?训练样本就是选择一组像素代表一定潜在类别。

在ERDAS image 中,用户可以选择以下方法完成:¾通过矢量层¾通过的AOI¾通过特定区域具有相似光谱特征的一组连续像素¾通过专题栅格层的某个类别,例如:无监督分类的输出结果打开germtm.img启动AOI 工具. 单击the AOI style 按纽设置AOI前景色和背景色为可识别的颜色尝试其他光谱颜色分配R: 4; G:5; B:3启动Classifier /Signature Editor应该创建多边形AOI 工具在图像上暗蓝色区域创建一AOI (可根据需要放大图像).在Signature Editor窗口采用Add AOI to signature按纽,添加水域样区1水域样区1找到另外一处水域样本,采用AOI growth tool添加单击AOI growth 按钮, 然后单击样本的中间可以自动产生复杂的多边形!单击Region Growing Properties 按钮在Region Growing Properties Dialog 调整AOI包含更多更纯的样本区,变换the Area and Spectral Distance, 然后单击Redo直到满意为止.在signature editor窗口添加第2个水域样本区融合相似的训练样本区融合相似的训练样本区如果此特征被应用,输出的分类结果如何?选择signature “water”View…/ Image Alarm…,在signature alarm dialog单击“OK”.对植被重复同样的步骤找出一块红色区域作sample 1 of forest创建一个仅包含植被的AOI ,并添加为特征区域找出一块亮红色区域作为the sample 2 of forest创建一个仅包含亮红色区域的AOI (采用polygon tool or AOI growth tool)将AOI sample 2 添加为植被的另外一个特征区找出一块暗红色区域作为the sample 3of forest创建一个仅包含暗红色区域的AOI (采用polygon tool or AOI growth将这三个植被样区融合为一个新特征命名为forest, 并将其颜色改为暗绿色删除以上最初的三个植被样本区选择“water”及“forest”signatures采用Image alarm 查看哪些象素被各自分类到water (light blue) 和forest(dark green)勾选the indicate overlap 并设置重叠颜色为黑色对农田(farmland)重复同样的步骤找出一块亮绿色区域作sample 1 of farmland创建一个仅包含farmland的AOI ,并添加为特征区域找出并添加farmland的另外一块样本区域将这两个农田(farmland)样区融合为一个新特征命名为farmland,并将其颜色改为黄色删除以上最初的二个农田样本区选择所有特征区,再次采用Image alarm查看潜在的分类区及分类重叠区对城镇居民点(urban)重复同样的步骤找出一块亮蓝色区域作sample 1 of urban创建一个仅包含urban的AOI ,并添加为特征区域融合相类似区域,并重新设置名称和颜色对农村居民点(suburban)重复同样的步骤找出一块红色和蓝色混合区域作为suburban的样本区创建一个仅包含suburban的AOI ,并添加为特征区域融合相类似区域,并重新设置名称和颜色选择所有signatures再次采用Image alarm 查看潜在的分类区和重叠区域仔细查找没有被分类的像素将白色和亮绿色混合区域设为裸土(bare soil)的样本区创建一个仅包含bare soil的AOI ,并添加为特征区域融合相类似区域,并重新设置名称和颜色再次, 选择signatures再次采用Image alarm 查看潜在的分类区和重叠区域仔细查找没有被分类的像素,并添加其他signatures重置class value“class value”为相应地物类分类图像的像元数.采用“class value”升序(ascending order)重置signature顺序保存signature file采用supclass.sig保存signature file保存AOI file以supclass.aoi为文件名保存AOI file实习内容监督分类训练样区图像分类执行监督分类(supervised classification)选择所有signaturesClassify…/ Supervised…设置:-Output file: supclass.img-Non-parametric Rule: Parallelepiped-Overlap Rule: Parametric Rule-Unclassified Rule: Parametric RuleParametric Rule: MaximumLikelihood单击Ok 开始classification!制作监督分类专题图(supclass.img)Save your AOI file as supclass_<UBITname>.aoi in assignment folder作业在你的作业文件夹中包括以下三个文件:Output Cluster File: supclass.imgSignature File: supclass.sigMap Composition File: supclass.map结束!。

遥感监督分类实习报告

遥感监督分类实习报告

实习报告:遥感监督分类实习一、实习目的本次遥感监督分类实习的主要目的是通过实际操作,掌握遥感监督分类的基本原理和方法,提高对遥感影像进行分类和解析的能力。

通过实习,我们希望能够学会使用遥感相关软件对遥感影像进行处理和分析,掌握遥感野外调查的方法和注意事项,以及根据土地利用现状分类标准对遥感影像进行目视解译和划分,最终制作出土地利用现状分类专题图。

二、实习内容(一)遥感影像处理1. 遥感影像预处理:我们在envis软件中进行遥感影像的预处理,包括辐射校正和几何校正。

辐射校正主要进行传感器校正、大气校正、太阳高度及地形校正。

几何校正是指纠正由系统或非系统因素引起的图像几何变形。

我们将实习所用到的遥感图像坐标系确定为UTMWGS84坐标系。

2. 遥感影像裁剪:我们使用envis软件中的感兴趣区域选取功能,对预处理过的遥感影像进行裁剪,选取出本次实习的区域范围。

(二)外业建标调查1. 建立目视解译标志:我们根据《土地利用现状分类-GB2007》标准,对所调查区域的遥感影像地物进行初步目视解译、划分,从而建立外业目视解译标志表。

2. 野外调查:我们根据建立的目视解译标志,进行野外调查,验证和解译遥感影像中的地物类别。

(三)遥感影像的监督分类1. 训练样本选择:我们根据野外调查的结果,选择代表性的训练样本,用于遥感影像的监督分类。

2. 监督分类:我们使用ENVI软件中的监督分类功能,对遥感影像进行分类。

在分类过程中,我们根据训练样本的特点,选择合适的分类算法和参数。

3. 分类结果评估:我们使用混淆矩阵和Kappa系数等指标,对监督分类的结果进行评估,以判断分类的精度。

三、实习总结通过本次遥感监督分类实习,我们掌握了遥感影像处理的基本方法,学会了使用envis和ENVI等软件进行遥感影像的预处理、裁剪和监督分类。

同时,我们也学会了如何进行野外调查和目视解译,以及如何选择训练样本和评估分类结果。

通过实习,我们对遥感监督分类的原理和方法有了更深入的了解,提高了实际操作能力。

实习五 遥感图像的监督分类

实习五 遥感图像的监督分类

实验五遥感图像的监督分类[实验目的]1.理解遥感图像的监督分的含义;2.会使用ENVI软件对遥感图像进行监督分类。

[实验原理]在遥感图像分类中,按照是否有已知训练样本的分类依据,分类方法又分为两大类:监督分类与非监督分类。

遥感图像的监督分类是在已知类别的训练场地上提取各类别训练样本,通过选择特征变量、确定判别函数或判别式(判别规则),进而把图像中的各个像元点划归到各个给定类的分类。

遥感图像的非监督分类是在没有先验知识(训练场地)的情况下,根据图像本身的统计特征及自然点群的分布情况来划分地物类别的分类处理,事后再对已分出的各类的地物属性进行确认,也称作“边学习边分类法”。

两者的最大区别在于,监督分类首先给定类别,而非监督分类则由图像数据本身的统计特征来决定。

[实验步骤]一监督分类(数据采用njtmcorrected)监督分类技术需要在执行以前事先定义训练分类器(training classes), 训练分类器也可以用ENVI 感兴趣区(ROI)函数限定。

ENVI的监督分类技术包括平行六面体(平行管道)、最小距离、马氏距离、最大似然、波谱角度制图仪以及二进制编码方法1. “开始”->“程序”->RSI ENVI4.0->ENVI,打开ENVI4.0界面;2. 选择File > Open Image File.3. 当出现Enter Data Filename 对话框,选择要打开的文件名,再点击“OK”,在Available Bands List框里点击Load Band ,图像显示在图像显示窗口。

4. 选择“基本工具”->感兴趣区->ROI工具,弹出ROI Tool对话框。

5. 在ROI_Type菜单里选择建立感兴趣区的类型,可以选择Polygon、Polyline、point、Rectangle、Ellipse等类型。

6. 在Window栏里选择要建立感兴趣区的窗口,可以选择Image、Scroll、Zoom窗口。

遥感实验报告书——监督分类

遥感实验报告书——监督分类

实验报告书(验证性实验)题目遥感图像的监督分类成绩姓名专业班级学号指导教师日期2010 年12 月17 日1.实验目的通过本实验加强对遥感图像监督分类处理理论部分的理解,熟练掌握图像监督分类的处理方法,并将处理前后数据进行比较。

2.实验准备工作1,准备遥感数据(本实验使用的是校正后的图像);2,熟悉遥感图像监督分类的理论部分。

3.实验步骤(1)打开ERDAS imagine,打开需要处理的图像,下图所示:点击Classifier Signature Editor,出现下图所示对话框:首先目视解译区分部分明显地物,点击viewer对话框中,选择一种截取方式,在原图中选择一种地物(如:水系)截取,如下图所示:打开Signature Editor对话框,点击,出现下图所示对话框:以上所述步骤,将原图中水系均找出,按住shift键,将Class#中每一栏选定,如下图所示:点击上图中将其合并,如下图所示:然后将合并后的结果重命名,删除合并前的,以上述方法将图中大部分地物合并,如下图所示:将上图模板保存。

打开ERDAS面板中Classifier Supervised Classification,将Supervised Classification对话框中Input Raster File一栏输入原图像,在Input Signature file一栏输入刚才保存的模板,在Classified File一栏输入要输出的数据,点击OK即可。

如下图所示:打开处理后图像,并与原图像进行比较:原图:处理后:4.实验数据分析与结论(可另附文字材料)监督分类比非监督分类更多地要求用户来控制,常用于对研究区域比较了解的情况。

在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。

对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。

遥感监督分类

遥感监督分类

实验遥感图像监督分类实验目的:通过实习操作,掌握遥感图像监督分类的基本方法和步骤,深刻理解遥感图像监督分类的意义。

实验内容:监督分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。

在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的象元建立模板,然后基于该模板使计算机自动识别具有相同特性的像元。

对分类结果进行评价后再对模板进行修改,多次反复建立一个比较准确的模板,并在此基础上最终进行分类。

实验步骤:第一步:定义分类模板ERDAS IMAGINE 的监督分类是基于分类模板来进行的,而分类模板的生成、管理、评价和编辑等功能是由分类模板编辑器来负责的。

在分类模板编辑器中生成分类模板的基础是原图像和(或)其特征空间图像。

因此,显示这两种图像的窗口也是进行监督分类的重要组件1、显示需要分类的图像在窗口中显示图像germtm.img。

具体步骤是单击ERDAS面板中的Viewer图标,打开一个窗口View#1,然后执行File/Open/Raster Layer,打开Select Layer to Add对话框,在对话框中找到germtm.img,在Select Layer to Add对话框点击Raster Options选项卡,设置Red 值为4,Green值为5,Blue值为3,选中Fit to Frame(图5-1)。

图5-1 设置图像显示参数点击OK,打开图像(图5-2)。

图5-2 打开图像2、打开分类模板编辑器两种方式可以打开分类面板编辑器:(1)在ERDAS图标面板中单击Main/Image Classfication/Classfication/Signature Editor命令,打开Signature Editor 窗口(图5-3);(2)在ERDAS图标面板工具条,单击Classifier图标/Classfication/Signature Editor命令,打开Signature Editor窗口(图5-3)。

遥感图像分类 ---监督分类

遥感图像分类 ---监督分类

遥感图像分类——监督分类地质系09资源勘查0910105025殷祥2012-5-19遥感图像分类——监督分类一、实验目的掌握在ERDAS中进行监督分类的操作方法;掌握对分类进行精度评估的方法。

二、实验内容1.定义分类模板(1)显示需要进行分类的图像。

在ERDAS中打开一个文件名为or_196560080.tif,在选择时,需要将进行操作,即将其勾上。

(2)打开模板编辑器并调整显示字段。

在ERDAS中,点击C1assifier/Signature Editor菜单项,出现Signature Editor对话框。

在其对话框下单击view中的column,在弹出的对话框中先将其全部选中,然后按住shift,拉住3,4,5行,如图所示,选好后点击apple,之后关闭,于是signature editor中的属性栏就少了之前的三个选项。

(3)获取分类模板信息利用AOI工具选择训练样区,将AOI区域加载到Signature分类模板中。

并定义该训练样区所代表的分类类别的名称(Signature Name)和该类别在分类后图像中的颜色(Color)。

重复上述操作过程以多选择几个区域AOI,并将其作为新的模板加入到Signature Editor当中,同时确定各类的名字及颜色。

如果对同一个专题类型(如水体)采集了多个AOI并分别生成了模板,可以将这些模板合并,以便该分类模板具多区域的综合特性。

具体是将AOI中的tools打开,用进行选择区,选中后,点击Signature Editor中的,多选择几处相同的物象,都进行相同的操作,接着将添加的相同物象进行合并,将前添加的选择,使用,接着,将之前的添加删除,即将他们选中,右击,在弹出的快捷菜单中选择delete selection,然后对合并项进行必要的编辑。

编辑完成之后的表如下图(4)保存分类模版信息。

点击File –save,保存文件到自己的文件夹下,名为jdfl.sig2.评价分类模板在对遥感影像做全面分类之前,对所选的训练区样本是否典型以及由训练区样本所建立起来的判别函数是否有效等问题并无足够的把握。

实验九 遥感图像处理监督分类

实验九 遥感图像处理监督分类

实验九遥感图像处理监督分类————————————————————————————————作者:————————————————————————————————日期:实验九监督分类监督分类是基于分类模板来进行的,1.定义分类模板(1)显示需要分类的图像打开germtm。

img,注意打开之前要把这副图的raster options → layers to colors 设置为:red (4), green (5), blue (3)。

(2)打开分类模板编辑器Classifier → signature editor →打开signature editor对话框,就是分类模板编辑器。

(3)调整分类属性字段signature editor对话框中的分类属性表中有很多字段,为了突出作用比较大的字段,需要进行必要的调整。

因此,在signature editor对话框的菜单条:view → columns →打开view signature columns对话框选中所有字段(左键点住第一个字段往下拖,所有字段呈黄色),然后按住键盘上shift 键的同时,分别点击red, green, blue ,呈白色,点击apply,这时属性表中就没有这三个字段的列了.Close。

(4)获取分类模板信息就是应用AOI绘图工具在原始图像上获取.在显示原图像的视窗中点击工具栏图标,打开工具面板。

下面的操作将要在工具面板,图像视窗和signature editor对话框中交替进行。

a。

工具面板中点击第二行第一个图标,进入多边形AOI绘制状态。

b。

在图像视窗中选择黑色区域,绘制一个多边形AOIc.在signature editor对话框中,点击第三个图标(加号带箭头),即创建新的分类模板,这时就把选择的这个AOI多边形加载到了signature editor对话框的属性表中。

d。

在图像视窗中选择另一个黑色区域,再绘制一个多边形AOIe. 同样在signature editor对话框中,点击第三个图标(加号带箭头),这时又把选择的这个AOI多边形加载到了signature editor对话框的属性表中.f.重复上面c和d步,把你认为颜色相近的多个黑色区域绘制若干个多边形AOI,加载到属性表中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告书
(验证性实验)
题目图像分类——监督分类
成绩
姓名
专业班级
学号
指导教师
日期年月日
1.实验目的
从研究区域选取有代表性的训练场地作为样本,根据已知训练区提供的样本,通过选择特征参数(如像素亮度均值、方差等),建立判别函数,据此对样本像元进行分类,依据样本类别的特征来识别非样本像元的归属类别。

2.实验准备工作
准备一张卫星高清图像以及ERDAS软件,统筹观测目测一下图像,大体了解地物的种类及种类数目,做到心中有数,为训练区的选取做准备。

3.实验步骤
第一步:打开卫星拍摄的高清图像,同时打开工具栏classifier中的signature editor,会蹦出分类标签框。

然后打开viewer上的工具栏,在卫星图像上进行训练区第一种地物(如小麦)样本的选取,找到该类地物面积较大的区域,放大后用多边形截图工具截取,然后在标签框上选择添加,之后继续选样本,重复以上步骤,直到选择到十几个有代表性的样本为止。

之后在标签栏里选中所有样本,点击图标合并,删除原样本,只保留合并之后的,再在name栏里填上此种地物的名称。

这样第一个地物的样本选取完毕,进行第二个地物样本的选取,以此类推,直到把图像中包含的所有地物样本选出得到完整的分类标签为止,将分类标签保存在目标文件夹中。

地物样本的选择:
第二步:打开classifier中的supervised classification,在导入原始文件栏里选择卫星图像,在导入signature栏里选择刚才做好的分类标签,之后选择导出的目标文件夹,在parametric中可以选择不同的选项(这里以maximum likelihood为例),确定后导出了开始。

第三步:打开导出的图像,这就是监督分类后的图像,然后进行检验。

在已打开的分类后的图像中再打开未分类的原始图像,这里要注意把raster option中的clear display前的对号去掉。

在view中的arrange layers上安排一下图层的顺序,使分类后的图像在上面,打开utility中的swipe,通过移动滚条并放大进行前后两张图像的对照,达到检验效果。

两张图像的对照:
4.实验数据分析与结论(可另附文字材料)
通过选择代表各类别的已知样本(训练区),获取像元的光谱特征,就可以取得各类别的参数,然后确定判别函数就可以对图像进行分类,在一定程度上达到了对数据的科学处理与优化。

5.实验收获及需要解决的问题
收获:。

相关文档
最新文档