PCI遥感实验报告
2019年遥感制图实习报告-word范文 (15页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==遥感制图实习报告篇一:遥感制图实习报告遥感图像处理实验报告班级姓名学号实验室成绩评定教师签字专题一:DEM图像进行彩色制图(叙述制图过程并把自己处理结果加载到本文档里)实验目的:实验步骤:1. 选择File > Open Image File>bhdemsub.img,出现由主图像窗口、滚动窗口和缩放窗口组成的ENVI 图像。
2. 选择主图像窗口内的功能菜单Tools>Color Maping>Density Slice,出现Density Slice对话框。
3. 选择Clear Ranges,清除Defined Density Slice Ranges下的内容。
4. 选择Options>Add New Ranges, 其中RangeStart:1219 ;Range End;1701;#ofRanges:10。
在Density Slice对话框中Defined Density Slice Ranges下出现十组内容。
5. 逐个组将Red条依次改为25,50,75,100,125,150,175,200,225,250。
Greeen与Blue不变。
选择Apply按钮,主图像窗口、滚动窗口和缩放窗口组成的ENVI图像的颜色改变。
6. 选择主图像窗口内的功能菜单File>Save Image As> Image File 出现Output Dispiayto Image File对话框,Output File Type选择JPEG,Enter OutputFilename选择保存位置,Compression Facter(0-1)选择0.750.实验结果:专题二:TM与SPOT数据融合(叙述该过程并处理结果加载到本文档里。
遥感影像镶嵌实验报告(3篇)

第1篇一、实验目的1. 理解遥感影像镶嵌的概念和意义。
2. 掌握遥感影像镶嵌的基本原理和方法。
3. 学会使用遥感图像处理软件进行影像镶嵌操作。
4. 分析影像镶嵌的效果,并探讨优化影像镶嵌的方法。
二、实验原理遥感影像镶嵌是将多幅遥感影像按照一定规则拼接成一幅大范围、连续的遥感影像,以展示更大范围的地理信息。
影像镶嵌的原理主要包括:1. 影像匹配:通过比较多幅影像之间的相似性,确定影像之间的对应关系。
2. 影像配准:根据影像匹配结果,对多幅影像进行几何校正,使其在空间上对齐。
3. 影像拼接:将配准后的影像按照一定规则拼接成一幅连续的遥感影像。
三、实验数据本实验使用的数据为我国某地区Landsat 8影像,包含全色波段和多个多光谱波段。
四、实验步骤1. 数据预处理(1)辐射定标:将原始影像的数字量转换为地物反射率或辐射亮度。
(2)大气校正:去除大气对影像的影响,提高影像质量。
(3)几何校正:纠正影像的几何畸变,使其符合实际地理坐标。
2. 影像匹配(1)选择匹配算法:本实验采用互信息匹配算法。
(2)设置匹配参数:根据影像特点,设置匹配窗口大小、匹配阈值等参数。
(3)进行匹配运算:将多幅影像进行匹配,得到匹配结果。
3. 影像配准(1)根据匹配结果,确定影像之间的对应关系。
(2)选择配准方法:本实验采用二次多项式配准方法。
(3)进行配准运算:将多幅影像进行配准,使其在空间上对齐。
4. 影像拼接(1)选择拼接方法:本实验采用线段拼接方法。
(2)设置拼接参数:根据影像特点,设置拼接线宽、重叠区域等参数。
(3)进行拼接运算:将配准后的影像进行拼接,得到一幅连续的遥感影像。
5. 结果分析(1)分析拼接效果:观察拼接后的影像,检查是否存在明显的拼接线、几何畸变等问题。
(2)优化拼接方法:根据分析结果,调整拼接参数,优化拼接效果。
五、实验结果与分析1. 拼接效果通过实验,成功将多幅Landsat 8影像拼接成一幅连续的遥感影像。
遥感应用实验报告

遥感应用实验报告
引言
遥感技术是一种利用遥感卫星或其他设备获取地球表面信息的技术。
在科研、农业、城市规划等领域都有着广泛的应用。
本次实验旨在通
过遥感技术获取地表信息,分析实验结果,探索其在不同领域中的应用。
实验方法
本次实验选取了一片城市区域为研究对象,使用遥感卫星获取该区
域的影像数据,包括多光谱影像、高分辨率影像等。
利用遥感软件对
影像数据进行处理,提取城市区域的土地利用类型、植被覆盖情况等
信息。
进一步分析影像数据,得出城市区域的发展状况和环境质量等
数据。
实验结果
经过处理分析,我们得出了以下结论:
1. 城市区域的土地利用类型主要包括居住区、公园绿地、工业区等;
2. 植被覆盖率较高的地方主要集中在公园绿地和一些住宅区;
3. 部分工业区存在着环境污染问题,需要加强治理。
实验讨论
根据实验结果,我们可以得出一些启示:
1. 遥感技术在城市规划中的应用能够帮助我们更好地了解城市发展现状,指导城市规划工作;
2. 通过监测城市区域的植被覆盖情况,可以及时发现环境问题,保护城市生态环境;
3. 遥感技术在环境保护和资源管理方面有着重要的作用,需要进一步推广应用。
结论
本次实验通过遥感技术获得了城市区域的地表信息,分析了土地利用类型、植被覆盖情况等数据,对城市规划和环境保护具有一定的参考意义。
遥感技术作为一种高效的信息获取手段,将在未来有更广泛的应用前景。
希望通过本次实验能够加深对遥感技术的理解,促进其在各个领域的发展和应用。
遥感课程设计实验报告

遥感课程设计实验报告一、遥感课程设计的实验目的和意义1、加深理解和巩固《遥感技术基础》这门课程的相关内容,主要理解遥感图像解译的原理,加深对遥感基本原理的理解以及遥感技术的综合应用。
2、熟练掌握运用遥感软件如ERDAS IMAGINE 、ENVI、PCI等独立分析问题,解决具体问题的实际工作能力。
二、课程设计的主要内容主要利用了老师提供的图像数据,使用遥感软件对这些图像进行处理,完成了图像预处理,几何纠正,图像镶嵌,图像增强、图像裁剪、图像分类等的内容。
三、课程设计主要运用到了原理1、辐射定标是指传感器的探测值的标定过程方法,用以确定传感器入口处的准确辐射值2、几何纠正通过计算机对离散结构的数字图像中的每一个像元逐个校正。
基本原理:利用图像坐标与地面之间的数学关系,即输入图像和输出图像之间的坐标转换关系实现。
3、图像镶嵌因研究范围的要求,需要在几何上将左右两幅图像连接在一起,并且保证拼接后的图像反差一致,色调相近,没有明显的接缝。
遥感影像在镶嵌之前,必须包含投影信息、地理坐标信息,还要有相同的波段数。
在挑选遥感图像数据时要选择时间和成像条件相似的遥感图像。
4、图像分类运用监督分类、非监督分类,波段比值等方法来分类地物,提取相关感兴趣的地物特征。
如冰川面积、湖泊等水体,植被等。
在这次的课程实践中,我主要使用了5、多光谱图像的四则运算针对多源遥感图像的特点,可以利用多源遥感图像之间的四则运算来达到或增加某些信息或消除某些影响的目的。
(1)减法运算可以增加不同地物间的光谱反射率以及在两个波段上的变化趋势相反时的反差。
如果是两个不同时相同一波段图像相减时,可以地面目标的变化信息。
(2)除法运算能压抑因地形坡度和方向引起的辐射量变化,消除地形起伏的影响;也可以增强某些地物之间的反差。
例如提取冰川面积就可以使用波段比值阈值法(可以使用Landsat卫星TM3/TM5,TM4/TM5)。
在本次实验中我就使用了减法运算和除法运算,具体地感受了他们比值的效果。
卫星遥感实验报告

实验一认识遥感图像一、实验目的通过实验,了解常用的遥感图像处理软件的名称;同时熟悉ENVI的功能及操作界面,并掌握如何利用该软件进行遥感图像的读取等操作。
二、实验内容1. 常用遥感软件遥感软件的发展伴随着遥感技术的发展而出现很多遥感软件,目前国内外最常用的遥感图像处理软件有:1)ERDAS IMAGINE,是美国Leica公司开发的遥感图像处理系统,它以先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。
2)ENVI(The Environment for Visualizing Images),是美国RSI公司(2006年5月更名为ITT Visual Information Solutions公司)的旗帜产品,ENVI是由遥感领域科学家采用IDL(Interactive Data Language)开发的一套功能强大的遥感图像处理软件;它是首屈一指的以快速、便捷、准确地从地理空间图像中提取信息的软件解决方案,它提供先进的、人性化的使用工具来方便用户读取、准备、探测、分析和共享图像中的信息。
目前,ENVI已以其人性化的优势渐渐占领了中国市场,成为中国用户最广泛的专业遥感软件。
3)PCI Geomatica,是加拿大PCI公司开发的用于摄影测量分析、遥感图像处理、几何制图、GIS 分析、雷达数据分析,以及资源管理和环境监测的多功能软件系统。
2. ENVI4.6功能结构与特点现今,众多的图像分析和科研人员选择ENVI来获取遥感图像中的信息,其应用领域包括科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防和安全、地球科学、公共设施管理、遥感工程、水利、海洋、测绘勘察、城市与区域规划等。
ENVI是一个完整的遥感图像处理平台,其软件处理技术覆盖了图像数据的输入/输出、定标、图像增强、纠正、正射校正、镶嵌、数据融合以及各种变换、信息提取、图像分类、与GIS的整合、DEM及三维信息提取、雷达数据处理、三维立体显示分析,提供了专业可靠的波谱分析工具和高光谱分析工具。
应用PCI处理遥感影像初步探讨

以 及 对 融合 后 的 遥 感影 像 增 强 、拉 伸 、 亮度 、对 比度 的 调 整 完 成 So pt 影 像 处 理 过 程 。 5的
关 键 词 :P I 理 ;遥 感 影像 ;森林 资 源 C处 中 图分 类号 :¥7 . 7 18 文 献标 识 码 :A 文 章 编 号 : 10 —05 (07 6 03 2 0 1 0 X 20 )0 —0 1 —0
Ke y wor s: PCIp o e sn d rc sig; rmoe s ni g i g e t e sn ma e;fr s e o r e oe tr s uc
1 引 言
辨率 ,但 是 只 有 单 波 段 信 息 。所 以 把 So pt 色 5彩 1m、So 0 pt 色 25 5全 .m的 影像 数 据 进 行 融 合 ,使 其 既有 丰 富的色 彩信息 又有 较高 的空 间分辨 率 ,处 理 后 的影 像数 据接 近 自然彩 色 ,便 于判读 及 野外调 绘
S e y n 1 2 hn a gl0 2 ) 1
Ab ta t F ri rvn e q ai o rs r s uc e o d ca s iv s g t n h n ig te t dt n l a frl fma s c : o r mp o ig t u  ̄ ff e t e o re s c n — ls n e t ai ,c a gn r i o a y o e e p h l o i o h a i w i
基于PCI的遥感地质蚀变信息提取实验简析

基于PCI的遥感地质蚀变信息提取实验简析实验目的了解遥感地质蚀变信息基本原理,熟悉PCI蚀变信息提取基本步骤教材准备:○1PCI○2ETM数据原理简述:主要造岩矿物在可见光—近红外光谱(0.35-0.25um)并不产生具有鉴定意义的反射谱带,其光谱特征主要由岩石中为数不多的次要矿物决定:一是含铁(Fe2+,Fe3+)基团产生,含铁矿物主要有角闪石、赤铁矿、褐铁矿、针铁矿、磁铁矿、黄钾铁矾等,他们在TMl、TM4波段有强的吸收带,若岩石中含多量的Fe3+,而含Fe2+较少,这类岩石的主要吸收谱带位于TM4和TM1波段,反射波长相当于TM3波段的电磁波。
若含大量的Fe2+、含Fe3+较少,则主要吸收谱带位于1波段,对于波长相当于TM2波段的电磁波有某种程度的反射。
二是含羟基(OH-)、水(H2O)或碳酸根(CO32-)基团产生,羟基的吸收谱带主要有二处:2.2um,2.3um,由于OH-在2. 2—2.3um附近存在强吸收谷(称为羟基谱带),使得TM7产生低值,TM5产生高值,含羟基矿物大多为次级蚀变矿物,如高岭土、叶腊石、云母类矿物、绿泥石、绿帘石等,水在 1.4um和1.9um处有特征吸收带。
含碳酸根矿物主要有五个特征吸收谱带(1.9-2.55um),较强的两个在2.35um和2.55um波长处(称为碳酸根谱带),相对较弱的在1.9um,2.0um,2.16um三处。
主成分分析方法遥感图像各波段间存有一定的相关性,为了减少相关性对分类的影响,常使用主分量分析法去相关。
主分量分析基于变量之间的相互关系,在信息总量守恒的前提下,利用线性变换的方法来实现去相关性。
由于所获各主分量之间不相关,故各主分量之间信息没有重复或冗余。
故主分量分析这一基本性质在蚀变异常信息提取中被充分利用并很有成效。
蚀变提取○1铁染蚀变异常提取针对各个波段波谱所反映的特征,选取TM1、TM3、TM4、TM5这4个波段作为组合波段做主成分分析。
遥感图像处理实验指导书(PCI)1

实验一、遥感图像的输入与导出
实验目的:通过熟悉PCI遥感图像处理专业软件,了解PCI各模块的基本功能,学会各种格式的遥感图像的输入与导出。
实验内容:1、熟悉PCI遥感图像处理专业软件的各模块;
2、学习各种格式的遥感图像的输入与导出;
3、学会添加与删除通道;
4、学会裁剪子区图像。
实验步骤:
第一步:熟悉PCI遥感图像处理专业软件的各模块(从左至右);
1、ImageWorks模块——图像处理的基本模块
该模块能做图像打开、图像简单增强、图像格式转换、投影转换、图像分类等处理。
2、EASI模块——相当DOS操作
3、Xpace模块——图像处理子模块集
4、GCPWorks模块——图像校正与镶嵌模块
第二步:学习遥感图像的输入与导出
1、打开图像
点击ImageWorks模块,弹出如下窗口:
点击Use Image File,确定图像文件的路径,并选择图像文件,点击打开
点击Accept &Load
即可打开图像,并加载显示(如点击Accept,则只打开图像,但不加载显示)
打开窗口包括主窗口和控制面板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCI遥感实验报告
——地信1101 XXX
2013年6月18日
实验二几何校正
准备数据:
125-41.pix,125-42.pix(均包含7个波段,见实验一)
靖县地形图.jpg。
实验步骤:
第一步、熟悉图像几何校正、镶嵌的基本原理
第二步、图像几何校正
运行PCI,选择GCPWorks模块,在Source of GCPs选择User Entered
Coordinates(用户输入投影坐标系统),点击Accept后,弹出校正模块:
选择第一项加载需要校正的图像:
选择第二项,选择Other确定投影系统,点击Earth Model确定地球模型。
注意输入6度带的中央经度与向东平移500公里(500000米)。
选择第三项采集地面控制点。
在采集地面控制点之前,利用看图软件打开扫描后的电子地形图“靖县地形图.jpg”。
分别在遥感图像和地形图中找到一个同名点,然后在地形图中量算出该点的大地坐标,精确到米,X坐标为6位(要去掉2位6度带的带号),Y坐标7位。
再将坐标输入到GCP编辑窗口中,并点击Accept as GCP接受为一个控制点。
用同样的方法采集更多的地面控制点。
注意:前三个点不显示误差,从第四个点开始才出现误差。
一般要求选择15个以上控制点,并且各点的误差<1个像元,将误差过大的点删除,直到误差<1个像元为止(实验时误差可放宽到2-3个像元)。
共选择了15个控制点。
最后,关闭GCP编辑窗口,选择第五项(如果对整个图像进行几何校正,则第四项可以省略),执行几何校正。
点击OK
Geo-Referencing Information选择Use bands and resolution。
并点击Create 与Yes生产校正后的图像。
选择Change Resolution
选择Yes
回到图像校正窗口,建立原图像与校正后图像各通道的对应关系,设置重采样方式(一般选择Cubic)与内存大少(一般300左右),点击Perform Registration 执行校正。
下图为具有坐标系的靖县地形图:
利用GCPWorks
控制点尽量多!
要保证数据的精度!
点击Close关闭改窗口。
校正前的125-42遥感影像:
校正后的125-42遥感影像:
数据最能说明问题:
校正前左上角象元的坐标:校正后左上角象元的坐标:
注:左上角象元
实验三图像镶嵌
镶嵌方法A:
用Xpace 进行镶嵌(这里用的125-42.pix 为7 个channel ,分三次镶嵌,123 一次,456 一次,7 一次)
在进行图像镶嵌前,先利用Xpace模块的Kernel (Pacages)中的CIM (Create Database)生成一个空图像文件,大小满足镶嵌图像的需要,即:南北两景图像镶嵌时,图像的列数为单景图像列数加上1000(像元),图像的行数
为两景图像的行数之和减去1000(像元);东西两景图像镶嵌时,图像的列数为两景图像的列数之和减去1000(像元),图像的行数为单景图像行数加上1000(像元)。
点击“Kernel”包下的“III”(图像);
FILI 输入的文件名
FILO 输出的文件名
DBIC 输入的通道编号
DBOC 输出的通道编号
DBIW 输入图像的窗口大小
DBOW 输出图像的窗口大小
设置好参数后,点击“Run”按钮。
***用“NUM”可以查看。
此次试验相关数据如下:
X Y
数据:125-41 7844 7117
125-42 7871 7052
故:DBSZ处应填8871(7871(比7844大)+1000),13169(7117+7052-1000)
DBNC改为7
引用参考:
利用Xpace模块的Kernel (Pacages)中的III(Image Transfer)将其中一景图像传输到空图像文件中(作为参考图像),注意图像所处的位置(起点坐标)。
以下划线处和红色轮廓图片为引用参考:
在Xpace中选择“Kernel”-> “III”,在弹出的对话框中设置相关参数:
依次单击Status、Run即可。
打开125-4142.pix后,我们可以看到结果,如下所示。
点击GCPWorks模块,默认设置,点击Accept确定,先后选择并加载未校正(需要镶嵌的图像)和参考图像,得到两景整图及其放大窗口图像共四个窗口。
再选择Collect GCPs,分别在两景图像中初步选择重叠区域内的同名点,
并在放大窗口中精确定位。
再选择Collect GCPs,分别在两景图像中初步选择重叠区域内的同名点,并在放大窗口中精确定位。
控制点尽量多选。
点击Match后,
选择Cubic,点击Registration Overview查看预览效果
点击Uncorrected Disk Registration下的第1、2、3行,再点击Output File Image Channels下的第1、2、3行。
直到出现上面红框处的显示。
如果点击错误,点击Reselect(重选)进行重新设定,Memory (MB) 处改为500左右。
点击Perform,出现下面的窗口。
利用Image Works 打开前三个波段镶嵌的图像如下:
下面我们继续镶嵌第4、5、6波段,重复上面的步骤,打开GCPWorks
选择125-41.pix文件
点击第二项
以上是打开4、5、6波段的四个窗口,可看到颜色与1、2、3波段的明显不同。
接下来按照上面的步骤采集控制点。