第六章 参数检验与置信区间

合集下载

概率论与数理统计-第6章-第6讲-两个正态总体参数的置信区间

概率论与数理统计-第6章-第6讲-两个正态总体参数的置信区间

[0.3545 , 2.5545]
本讲内容
01 两个正态总体的情形 02 两个正态总体参数的置信区间 03 *6.2.3 单侧置信区间
03 *6.2.3 单侧置信区间
P(ˆ1 ˆ2 ) 1
[θˆ1, θˆ2 ] θ 的置信区间 双侧置信区间
但在某些实际问题中,例如,对于机器设备零部件来说,平均 寿命越长越好,我们关心的是平均寿命的“下限” ;又如,在购 买家具用品时,其中甲醛含量越小越好,我们关心的是甲醛含量均 值的“上限”.这就引出了单侧置信区间的概念.
2 1
2 2
2,
求均值差
1 2 的置信度为0.95 的置信区间;
02 两个正态总体参数的置信区间

(1) F0.025 (16, 12) 3.16,
F0.975 (16 ,
12)
1 F0.025 (12 ,
16)
1 2.89
由公式得方差比
2 1
2 2
的置信区间为
S12 S22
F0.975 (n2
12
2 2
n1 n2
P u U u 1,
2
2
( X Y uα 2
σ12 n1
σ
2 2
n2
,X
Y

2
σ12 σ22 ) n1 n2
5
02 两个正态总体参数的置信区间
(2)
2 1
2 2
2
未知,1 2 的置信区间
T
X
Y Sw
(1
1 n1
2)
1 n2
~
t (n1
n2
2)
Sw
估什么?
1 2
2 1

概率与统计学中的置信区间公式详解

概率与统计学中的置信区间公式详解

概率与统计学中的置信区间公式详解在概率与统计学中,置信区间是一种常用的统计方法,用于对总体参数的估计和推断。

在进行统计分析时,我们往往只能通过对样本进行观察和测量,并根据样本数据来推断总体的特征。

而置信区间可以给出一个区间范围,来表达对总体参数的估计程度和不确定性。

本文将详解置信区间的概念与公式,并为读者提供详实的例子来解释如何计算和应用置信区间。

一、概念解析1.1 总体与样本在概率与统计学中,我们研究的对象分为总体和样本。

总体是指我们想要研究的所有个体或事件的集合,而样本是从总体中随机抽取出的一部分个体或事件组成的集合。

通过对样本的观察和测量,我们可以推断总体的特征。

1.2 参数与统计量总体的特征可以用参数来描述,参数是总体的指标或特征值。

例如,总体的平均值、方差和比例等都是参数。

而样本的特征可以用统计量来描述,统计量是样本的指标或特征值。

例如,样本的平均值、方差和比例等都是统计量。

通过样本统计量的计算,我们可以对总体参数进行估计和推断。

1.3 置信区间的含义置信区间是对总体参数的估计给出一个区间范围。

假设我们从总体中抽取了一个样本,并计算出样本的统计量,我们可以根据样本数据和统计原理构造一个区间,这个区间可以包含总体参数的真实值。

该区间被称为置信区间。

二、置信区间的计算2.1 正态分布总体的情况当总体满足正态分布的情况下,我们可以利用正态分布的性质来计算置信区间。

以总体均值为例,假设总体的标准差已知为σ,样本的样本均值为x,抽样个数为n,置信水平为1-α(通常取α=0.05),则置信区间的计算公式如下:置信区间 = x ± Zα/2 * (σ/√n)其中,Zα/2是标准正态分布的上侧α/2分位点,反映了置信水平的大小。

在常见的置信水平为95%的情况下,Zα/2大约等于1.96。

2.2 未知标准差的情况当总体的标准差未知时,我们可以利用样本标准差s来近似代替总体标准差σ,并根据样本数据构造置信区间。

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计

数理统计中的参数估计与置信区间估计数理统计是概率论、数学统计和实证研究的基础,它研究的是通过观测和实验来获取数据,从而对总体的特征进行推断和估计的方法和理论。

在数理统计中,参数估计和置信区间估计是两个重要的概念和方法,用于对总体参数进行推断和估计。

一、参数估计参数估计是指通过样本数据对总体参数进行估计的方法。

总体参数是指总体的某个特征或指标,如均值、方差等。

参数估计可以分为点估计和区间估计两种方法。

1. 点估计点估计是指使用样本数据来估计总体参数的一个具体值,这个估计值被称为点估计量。

常用的点估计量有样本均值、样本方差等。

点估计的目标是使得估计值尽量接近真实的总体参数,即具有无偏性和有效性。

无偏性是指估计值的期望等于真实参数,有效性是指估计值的方差最小。

无偏性是一个重要的性质,它保证了估计值在大样本下趋近于真实值。

有效性则是在无偏估计的前提下,使估计值的方差最小,从而提高估计的准确性。

2. 区间估计区间估计是指通过样本数据得到总体参数的一个范围,这个范围被称为置信区间。

置信区间表示了总体参数的估计精度和可信程度。

在构造置信区间时,需要指定置信水平,常用的置信水平有95%和99%等。

置信水平为95%表示在大量重复抽样中,有95%的置信区间会包含真实的总体参数。

构造置信区间的方法有很多,如正态分布的置信区间、t分布的置信区间等。

不同的方法适用于不同的总体分布和样本信息。

在实际应用中,要根据具体的问题和数据的特点选择合适的置信区间方法。

二、数理统计中的应用参数估计和置信区间估计在数理统计中有广泛的应用,可以用于推断和估计各种领域的问题。

1. 总体均值的估计当我们要估计总体的均值时,可以使用点估计和区间估计的方法。

点估计是通过样本均值来估计总体均值,区间估计则是给出总体均值的一个范围。

2. 总体比例的估计当我们要估计总体的比例时,例如某种特征在总体中出现的比例,也可以使用点估计和区间估计的方法。

点估计是通过样本比例来估计总体比例,区间估计则是给出总体比例的一个范围。

置信区间的计算与解读

置信区间的计算与解读

置信区间的计算与解读置信区间是统计学中常用的一种方法,用于估计总体参数的范围。

在实际应用中,我们往往无法获得总体的全部数据,而只能通过抽样得到一部分样本数据。

通过计算置信区间,我们可以利用样本数据对总体参数进行估计,并给出一个范围,以表明我们对估计结果的不确定性程度。

一、置信区间的计算方法置信区间的计算方法主要有两种:参数估计法和非参数估计法。

1. 参数估计法参数估计法是基于总体参数的已知分布进行计算的。

常见的参数估计法有正态分布的置信区间和二项分布的置信区间。

正态分布的置信区间计算方法如下:假设总体服从正态分布N(μ, σ^2),样本容量为n,样本均值为x̄,样本标准差为s。

置信水平为1-α,α为显著性水平。

置信区间的计算公式为:x̄± Z(1-α/2) * (σ/√n)其中,Z(1-α/2)为标准正态分布的上分位数,可以在标准正态分布表中查找。

二项分布的置信区间计算方法如下:假设总体服从二项分布B(n, p),样本容量为n,样本成功次数为x,置信水平为1-α,α为显著性水平。

置信区间的计算公式为:p̄± Z(1-α/2) * √(p̄(1-p̄)/n)其中,p̄为样本成功率,可以通过样本成功次数除以样本容量得到。

2. 非参数估计法非参数估计法是基于样本数据的分布进行计算的。

常见的非参数估计法有中位数的置信区间和百分位数的置信区间。

中位数的置信区间计算方法如下:假设样本容量为n,样本数据按升序排列,第k个观测值为中位数,置信水平为1-α,α为显著性水平。

置信区间的计算公式为:[x(k-1)/2, x(n-k+1)/2]其中,x(k-1)/2为第k-1个观测值,x(n-k+1)/2为第n-k+1个观测值。

百分位数的置信区间计算方法类似,只需将中位数的位置换成相应的百分位数的位置。

二、置信区间的解读置信区间给出了对总体参数的估计范围,通常以置信水平来表示。

置信水平越高,估计结果的可信度越高,但估计范围也会相应增大。

应用统计学第6章参数估计(置信区间)ppt课件

应用统计学第6章参数估计(置信区间)ppt课件
从中解得
P{(n1)S2 2(n1)S2 }1
22(n1)
(n1) 2
p1 p t精选版2
20
于是 所求置信区间为:
(n1)S2 (n1)S2
[2
, 2(n1)
2 1
] 2(n 的 95% 置
信解区:间由。例1,S2 =196.52,n =10,
(1)实用中应在保证足够可靠的前提 下,尽量使得区间的长度短一些 .
(2)增大样本容量n,可在保证足够可 靠的前提下,提高估计的精度.
n
n
L 2 z /2
n
ppt精选版
31
估计均值μ时的样本容量n确定
1.指定估计的精度:
dX dL2z/2
n
2.指定估计的可靠度1-α;
3.确定σ:
(1)由历史资料确定;
对给定的置信水平1,
查正态分布表得 z 2 ,
使 P{|Xn|z2}1
ppt精选版
6
从中解得:
P{X nz2
Xnz2}
1
于是所求的 置信区间为
[X nz2, X nz2]
也可简记为
X n z 2
ppt精选版
7
求置信区间的一般步骤(1-2):
给定置信水平1:
1. 寻找参数的一个良好的点估计
T (X1,X2,…Xn)
实用中应在保证足够可靠的前提下,尽
量使得区间的长度短一些 .
ppt精选版
28
置信度与置信区间长度的关系
考虑单个正态总体μ的置信区间: 当σ已知时,
Z X n
~N(0, 1)
例如,由 P(-1.96≤U≤1.96)=0.95
我们得到 均值 的置信水平为 1 的

置信区间和假设检验含义

置信区间和假设检验含义

置信区间和假设检验含义置信区间和假设检验是统计学中常用的两种方法,用于研究数据的分布和参数的估计。

本文将分别介绍置信区间和假设检验的含义。

一、置信区间置信区间(confidence interval)是指由样本所计算出的区间估计,它是一种用于估计总体参数的方法。

在统计学中,我们通常只能获得一部分数据,即样本,而不能获取整个总体数据。

这时,我们需要通过样本所得数据来推断总体数据的信息。

置信区间就是在这种情况下对总体参数进行估计的一种方法。

置信区间的定义为:在样本数据中,对于总体参数(比如均值、方差等)的估计上限和下限的区间,这种估计有一定的置信度水平(confidence level)。

置信区间通常表示为:估计值± 误差范围,其中估计值是样本所得统计量(比如样本均值),误差范围是通过样本计算得出的误差,置信度水平代表此估计具有的置信程度。

例如,我们进行一项调查,从已知的人口中随机抽取100个人,并得到他们的平均收入为7500元。

如果我们希望得到平均收入的置信区间,假设我们选择95%的置信度水平,那么置信区间为:7500 ± 1.96 × 标准误差。

其中,1.96为95%的置信度下的标准正态分布值,标准误差是样本标准差除以样本大小的平方根。

这个置信区间的意思是:在样本大小为100,样本平均收入为7500元的情况下,我们有95%的置信度相信,总体的平均收入在区间(7325元,7675元)内。

二、假设检验假设检验(hypothesis testing)是一种利用统计方法来验证研究假设的方法,同时也是一种用于检验样本数据是否代表总体数据的方法。

在假设检验中,设定了一个零假设(null hypothesis)和一个备择假设(alternative hypothesis),并在已知样本数据的基础上推断总体数据是否支持零假设。

零假设通常是基于已有的理论、经验或研究,对数据总体的某个参数提出的一种假设。

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验

数理统计中的参数估计与置信区间估计及假设检验与拟合优度检验数理统计是一门研究如何利用数据对未知参数进行估计和进行推断的学科。

本文将介绍数理统计中的参数估计与置信区间估计,以及假设检验与拟合优度检验的基本概念和相关方法。

一、参数估计与置信区间估计在数理统计中,参数是描述总体特征的量,例如总体均值、总体方差等。

参数估计就是利用样本统计量对总体参数进行估计。

常用的参数估计方法有最大似然估计和矩估计。

最大似然估计是一种常用的参数估计方法,其基本思想是选择参数值使得观测到的样本出现的概率最大化。

假设总体服从某个分布,最大似然估计通过优化似然函数来估计参数。

最大似然估计具有良好的性质,例如渐近正态性和无偏性等。

矩估计是另一种常用的参数估计方法,其基本思想是利用样本矩与总体矩的对应关系来估计参数。

例如,样本均值可以用来估计总体均值,样本矩可以通过总体矩的方法进行计算得到。

矩估计具有较好的渐近正态性和无偏性。

参数估计的结果往往带有一定的不确定性,为了评估估计结果的准确性,常使用置信区间估计。

置信区间估计是指通过样本数据得到的区间,该区间包含了未知参数的真值的概率。

常见的置信区间估计方法有正态分布的置信区间估计和大样本下的置信区间估计。

二、假设检验在数理统计中,假设检验是一种推断方法,用于检验总体参数的假设是否成立。

假设检验的基本思想是通过样本数据来判断假设是否得到支持。

常用的假设检验方法有正态总体均值的假设检验、正态总体方差的假设检验和两样本均值的假设检验等。

假设检验包括建立原假设和备择假设,选择适当的检验统计量,并设定显著性水平,进行统计推断。

结果的判断依据是计算得到的检验统计量是否落在拒绝域内。

如果检验统计量落在拒绝域内,拒绝原假设,否则接受原假设。

假设检验的结果可以提供统计学上的证据,用于决策和推断。

三、拟合优度检验拟合优度检验是一种用于检验总体数据是否符合某个特定分布的方法。

在数理统计中,拟合优度检验常用于检验样本数据与给定的分布是否相符。

统计学中的参数估计和置信区间

统计学中的参数估计和置信区间

统计学中的参数估计和置信区间统计学是研究数据收集、分析、解释和推断的科学领域。

参数估计和置信区间是统计学中重要的概念和方法,用于推断总体特征并给出一定程度上的确定性度量。

本文将介绍参数估计和置信区间的基本概念、计算方法以及在实际应用中的意义。

一、参数估计参数估计是利用样本数据推断总体参数的数值或范围。

总体参数是指代表总体特征和分布的未知数值,如总体均值、总体比例等。

通过对样本数据进行分析,可以估计总体参数的取值。

在参数估计中,最常用的是点估计和区间估计。

点估计是根据样本数据估计总体参数的一个具体值。

常见的点估计方法有最大似然估计法和矩估计法。

例如,在估计总体均值时,最大似然估计法会选择使得样本观测的概率最大化的均值作为估计值。

区间估计是对总体参数的估计给出一个范围,称为置信区间。

置信区间表示估计值落在某一区间中的概率。

一般使用置信度(confidence level)来表示区间估计的确定程度,常见的置信度有90%、95%和99%等。

二、置信区间置信区间是参数估计中常用的一种方法,用于给出总体参数估计的一个范围。

置信区间通常以(下界,上界)的形式表示,包含了真实参数值的概率。

置信区间的计算方法基于抽样分布的性质,并依赖于样本量和置信度。

置信区间的计算可以通过两种方法:基于正态分布和基于t分布。

当样本量较大时(一般大于30),可以使用基于正态分布的方法。

当样本量较小时,则需要使用基于t分布的方法。

以估计总体均值为例,给定样本数据和置信度,可以计算出样本均值、标准差以及临界值。

然后根据临界值和标准差计算置信区间。

例如,假设样本均值为X,标准差为S,置信度为95%,那么置信区间可以表示为(X-S*t, X+S*t),其中t是自由度为n-1的t分布的临界值。

三、参数估计与置信区间的应用参数估计和置信区间在实际应用中具有广泛的应用。

它们能够帮助研究人员对总体特征进行推断,并给出一定程度上的确定性度量。

在医学研究中,可以利用参数估计和置信区间来估计某种药物的疗效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.置信区间 μ1-μ2的置信度为(1-α)100%的 置信区间为
[ x y t ( m n 2) d , x y t ( m n 2) d ]
2 2 2 2 ( m 1) s1m ( n 1) s2 n mn ( m n 2) mn
其中d
注:1.进一步考察哪一个总体为好。 以平均数为标准。 方法是比较两总体样本的平均数。 SPSS的处理:先拆分文件,再计算两总体样 本平均数,具体是: 先Data→ Split File→在主对话框选 ○compare group。 再DescriptiveStatistics→Descriptives…
其中 为来自X总体的样本平均数 与样本方差, Y , S 22n 为来自Y总体的样本平 均与样本方差。
X , S12m
(2)具体判断 根据t分布计算出的显著性概率 Sig.=P( T T值 ) 如果Sig.< ,其中 是给定的显著性 水平,则拒绝H0,即认为 1与 2有显著 差异; 如果Sig.> ,则接受H0,即认为 1与 2没有显著差异。
H 0 : 1 2 H1 : 1 2
并求μ1-μ2的置信度为(1-α)100%的置 信区间。
二、基本原理 1.假设检验 (1)检验所有的统计量 当H0成立时,
T X Y ( m 1) S12m ( n 1) S 22n mn ( m n 2) ~ t ( m n 2) mn

0
• (2)判定方法 • 根据t分布计算出的显著性概率 • Sig.=P( T T值 ) • 如果Sig.< ,其中是给定的显著性水平, 则拒绝H0,即认为 与 0有显著差异; • 如果Sig.> ,则接受H0,即认为 与 0 没有显著差异。
2.置信区间 所谓一个未知参数θ的置信区间是指:满足 P[θ1(x1,x2,…,xn)≤θ≤θ2(x1,x2,…, xn)]=1-α 则称[θ1(x1,x2,…,xn), θ2(x1,x2,…, xn)]是未知参数θ的置信度为1-α的置信区间, 其中θ1(x1,x2,…,xn),θ(x1,x2,…,xn) 是统计量,0<α<1为小概率。 对正态总体参数μ的(1-α)100%的置信区间是 s s [ x t (n 1) n , x t (n 1) n ]
3.结果说明 结合例6.1.1的结果来说明。 第二节 两个正态总体的均值检验与置信区间 一、基本问题
设样本X 1 , X 2 , X m 来自正态总体X ~ N ( 1 , 12 ), 样本Y1 , Y2 , , Yn 来自正态总体
2 2 2 Y ~ N ( 2 , 2 ), 其中 12, 2 未知,当 12= 2 时,欲检验如下假设
2
n
2
n
三、基本计算 1.数据文件 只有一个变量 2.选择统计方法 Analyze→Compare mean→OneSample T Test 变量进Test栏; Test下的小栏内填写100。 注:事实上是检验
H 0 : 0 0 H1 : 0 0, 置信区间也是对-0作出的。
第六章 参数检验与置信区间
第一节 单个正态总体的均值检验与置信区间 一、基本问题 , 2 ),样本x1,x2,…, 设总体X服从正态分布N( xn,欲检验如下假设 H 0 : 0 H1 : 0 并求平均值的置信度为(1-)100%的置信 区间。
二、基本原理 1.假设检验 (1)检验所用的统计量 在H0成立的条件下,
3.方差齐性检验 由于在检验时需要条件:两总体都服 从正态分布以及它们的方差相等,而正态 分布由中心极限定理比较容易满足,而它 们的方差是否相等,需要进行检验。 方法是:
2 2 欲检验H 0 : 12 2 H 1 : 12 2
在H 0成立的条件下,
2 S1*m F 2 ~ F ( m 1, n 1) S2n
• 2.结果的保存与导出的方法 • 保存用Save; • 导出用copy(对文本)或copy object(对图 表)。 • 补充:成对相依样本t检验 • 要比较同一组受试者在两次测验成绩的差异时使 用(测验成绩服从正态分布)。这时数据成对出 现(X,Y)。因此成对相依样本数据文件中的变量 是X与Y两个,选择统计方法是 • Analyze→Compare means→PairedSamples T Test
T x 0 sn n ~ t (n 1) 1 n ( xi x ) 2 n 1 i 1
1 n 其中x xi , sn n i 1
由于正态总体平均数的估计量是样本平均数, x 的偏差程度,反映了 与 0之间的差 0 所以 x 偏大, 值偏大, T 这说明 异程度。显然 与 0有显著性差异,即H0不成立。至于大到什么 程度才是“偏大”,一般这要用“临界值”来判 定。 SPSS是用“临界概率”(显著性概率)来判定。 (2)判定方法 根据t分布计算出的显著性概率 T T值 Sig.=P( ) 如果Sig.< ,其中是给定的显著性水平,则拒绝 H0,即认为 与 0有显著差异; 如果Sig.> ,则接受H0,即认为 与 0没有显 著差异。
当Sig. P( F F值 ) 时,H 0不成立;反之,H 0成立。
三、基本计算 1.数据文件 要有二个变量,一个是分组变量,另一个 是分析变量。 2.选择统计方法 Analyze→Comparemeans→Independent Samples T Test 两个变量分别进入对应的栏; 3.结果说明 结合例6.2.1的结果来说明。
相关文档
最新文档