毕业设计-常压储罐设计

毕业设计-常压储罐设计
毕业设计-常压储罐设计

常州大学

毕业设计(论文)

(2012届)

题目燃料气稳压罐设计

学生※※※

学院※※※※※专业班级※※※

校内指导教师※※※专业技术职务※※

校外指导老师专业技术职务

二○一二年六月

燃料气稳压罐的设计

摘要:本设计说明书是关于燃料气温压罐的设计,主要进行储罐的材料选择、结构设计、强度计算、焊接工艺评定及检验。本设计说明书是依据设计内容的的顺序所编制。首先根据任务书对设计的基本参数进行了确定,根据基本参数及介质特性对储罐筒体、封头及主要附件的材料进行了选取,然后确定了储罐的基本尺寸及结构,接下来是对设计中所需要的附件进行选取及校核,如人孔、支座、法兰、盘管等。强度校核是对筒体、封头、支座等进行应力校核,以确保设计的合理性及安全性。最后是焊接工艺评定任务书及预焊接工艺规程的编制,检验、压力试验的一般规定说明。

关键词:基本参数;强度校核;焊接工艺评定;压力试验

The design of the fuel gas stabilization tank

The design specification is about fuel temperature pressure tank design, material selection, structural design of the tanks, strength calculation, welding procedure qualification and inspection. The design specification of the tank is prepared according to the order of the design content. According to the mission statement on the basic parameters of the design to determine the basic parameters and media characteristics of the tank cylinder, head and main attachment materials selected, and then determine the size and structure of the tank, followed by selecting and checking the design of the required accessories, such as manhole, bearings, flange coil, etc.. The strength check of stress on the cylinder, head, bearing checking ensure that the rationality of the design and safety. Finally, it is the general provisions of welding procedure assignment, preliminary welding procedure specification, inspection and pressure testing.

Keywords:basic parameters; strength check; welding procedure qualification;

pressure test

目录

摘要 (Ⅰ)

Abstract (Ⅱ)

目次 (Ⅲ)

1 引言 (1)

1.1 储罐概述 (1)

1.1.1 储罐分类 (1)

1.1.2 储罐结构 (2)

1.2 液化石油气概述 (2)

1.2.1 主要用途 (2)

1.2.2 主要成分 (3)

2 设计参数确定及材料选择 (3)

2.1 设计参数确定 (3)

2.1.1设计压力的确定 (3)

2.1.2 设计温度的确定 (3)

2.1.3 工作介质性质确定 (3)

2.1.4 压力容器类别 (4)

2.2 材料选择 (4)

2.2.1 筒体、封头材料选择 (4)

2.2.2 附件材料选择 (4)

3 结构设计 (4)

3.1 设计厚度计算 (4)

3.1.1 液柱静压力计算 (4)

3.1.2 筒体设计厚度计算 (4)

3.1.3 封头选型 (5)

3.1.4 封头设计厚度计算 (5)

3.2 基本尺寸设计 (5)

3.2.1 设计结构草图 (5)

3.3附件设计及选择 (6)

3.3.1 接管法兰选型 (6)

3.3.2 紧固件选配 (8)

3.3.3 接管选型及校核 (10)

3.3.4 垫片选配 (10)

3.3.5 人孔选型 (12)

3.3.6 盘管及其固定结构 (13)

3.3.7 支座选型 (15)

4 强度计算 (16)

4.1 筒体应力校核 (16)

4.2 封头应力校核 (17)

4.3 支座应力校核 (19)

5 焊接工艺评定,无损检测及压力试验 (20)

5.1 焊接工艺评定 (20)

5.1.1 焊接工艺评定一般过程 (20)

5.1.2 预焊接工艺规程评定表 (21)

5.2 无损检测 (31)

5.2.1 基本检测 (31)

5.2.2 重复检测 (31)

5.3 压力试验 (31)

5.3.1 试验介质 (31)

5.3.2 试验压力 (31)

5.3.3 应力校核 (31)

5.3.4试验温度 (31)

5.3.5 试验方法 (31)

5.3.6 合格标准 (31)

6.结论 (32)

参考文献 (35)

致谢 (36)

1 引言

1.1 储罐概述

用于储存液体或气体的钢制密封容器即为钢制储罐[1],防腐储罐工程是石油、化工、粮油、消防、交通、冶金、国防等行业必不可少的、重要的基础设施,我们的经济生活总是离不开大大小小的钢制储罐,钢制储罐在国民经济发展中所起的重要作用是无可替代的。钢制储罐是储存各种液体(或气体)原料及成品的准用设备,对于许多企业来讲没有储罐就无法正常生产。

燃料气稳压罐是盘锦某公司6万吨/年丁基橡胶项目中的一个重要环节。燃料气稳压罐的设计既涉及到很多相关的国家和行业标准,例如:TSG R0004-2009《固定式压力容器安全技术监察规程》、GB150《钢制压力容器》、JB/T4731《钢制卧式容器》等等,又与项目的其他设备相关联。燃料气稳压罐是卧式容器[1]中一个典型的产品,对该产品的设计和制造工序的掌握和熟悉,可以使学生在压力容器方面设计的能力和制造工艺[19]掌握进一步得到提高,在参加工作时能够更快更好的适应工作、参与到工作之中。熟悉过程装备设计及制造的相关知识,由此可以看出压力容器在化工,石油化工生产中非常重要,我们必须了解压力容器的特性和结构。

1.1.1 储罐分类

由于储存介质的不同,储罐的形式也是多种多样的。

按位置分类:可分为地上储罐、地下储罐、半地下储罐、海上储罐、海底储罐等。

按油品分类:可分为原油储罐、燃油储罐、润滑油罐、食用油罐、消防水罐等。

按用途分类:可分为生产油罐、存储油罐等。

按形式分类:可分为立式储罐、卧式储罐等。

按结构分类:可分为固定顶储罐、浮顶储罐、球形储罐等。

按大小分类: 1003

m以上为大型储罐,多为立式储罐;1003m以下的为小型储罐,多为卧式储罐。

按储罐的材料:储罐工程所需材料分为罐体材料和附属设施材料。罐体材料可按抗拉屈服强度或抗拉标准强度分为低强钢和高强钢,高强钢多m以上储罐;附属设施(包括抗风圈梁、锁口、盘梯、护栏等)用于50003

均采用强度较低的普通碳素结构钢,其余配件、附件则根据不同的用途采用其他材质,制造罐体常用的国产钢材有20、20R、16Mn、Q345R、以及Q235系列等。

1.1.2储罐的结构

目前我国使用范围最广泛、制作安装技术最成熟的是拱顶储罐、浮顶储罐和卧式储罐。

拱顶储罐构造:拱顶储罐是指罐顶为球冠状、罐体为圆柱形的一种钢制容器。拱顶储罐制造简单、造价低廉,所以在国内外许多行业应用最为广泛,最常用的容积为1000 -100003

m,目前国内拱顶储罐的最大容积已经达到300003

m。

罐底:罐底由钢板拼装而成,罐底中部的钢板为中幅板,周边的钢板为边缘板。边缘板可采用条形板,也可采用弓形板。一般情况下,储罐内径< 16.5m时,宜采用条形边缘板,储罐内径≥ 16.5m 时,宜采用弓形边缘板。

罐壁:罐壁由多圈钢板组对焊接而成,分为套筒式和直线式。套筒式罐壁板环向焊缝采用搭接,纵向焊缝为对接。拱顶储罐多采用该形式,其优点是便于各圈壁板组对,采用倒装法施工比较安全。直线式罐壁板环向焊缝为对接。优点是罐壁整体自上而下直径相同,特别适用于内浮顶储罐,但组对安装要求较高、难度亦较大。

罐顶:罐顶有多块扇形板组对焊接而成球冠状,罐顶内侧采用扁钢制成加强筋,各个扇形板之间采用搭接焊缝,整个罐顶与罐壁板上部的角钢(或称锁口)焊接成一体。

浮顶储罐的构造:浮顶储罐是由漂浮在介质表面上的浮顶和立式圆柱形罐壁所构成。浮顶随罐内介质储量的增加或减少而升降,浮顶外缘与罐壁之间有环形密封装置,罐内介质始终被内浮顶直接覆盖,减少介质挥发。

罐底:浮顶罐的容积一般都比较大,其底板均采用弓形边缘板。

罐壁:采用直线式罐壁,对接焊缝宜打磨光滑,保证内表面平整。浮顶储罐上部为敞口,为增加壁板刚度,应根据所在地区的风载大小,罐壁顶部需设置抗风圈梁和加强圈。

浮顶:浮顶分为单盘式浮顶、双盘式浮顶和浮子式浮顶等形式。单盘式浮顶:由若干个独立舱室组成环形浮船,其环形内侧为单盘顶板。单盘顶板底部设有多道环形钢圈加固。其优点是造价低、好维修。双盘式浮顶:由上盘板、下盘板和船舱边缘板所组成,由径向隔板和环向隔板隔成若干独立的环形舱。其优点是浮力大、排水效果好。

内浮顶储罐的构造:内浮顶储罐是在拱顶储罐内部增设浮顶而成,罐内增设浮顶可减少介质的挥发损耗,外部的拱顶又可以防止雨水、积雪及灰尘等进入罐内,保证罐内介质清洁。这种储罐主要用于储存轻质油,例如汽油、航空煤油等。内浮顶储罐采用直线式罐壁,壁板对接焊制,拱顶按拱顶储罐的要求制作。目前国内的内浮顶有两种结构:一种是与浮顶储罐相同的钢制浮顶;另一种是拼装成型的铝合金浮顶。

m,通常用于生卧式储罐[2]的构造:卧式储罐的容积一般都小于1003

产环节或加油站。卧式储罐环向焊缝采用对接,纵向焊缝采用对接。圈板

交互排列,取单数,使端盖直径相同。卧式储罐的端盖分为平端盖和碟形端盖,平端盖卧式储罐可承受40kPa 内压,碟形端盖卧式储罐可承受0.2MPa 内压。地下卧式储罐必须设置加强环,加强还用角钢煨制而成。

1.2液化石油气概述

随着石油化学工业的发展,液化石油气作为一种化工基本原料和新型燃料,已愈来愈受到人们的重视。在化工生产方面,液化石油气经过分离得到乙烯、丙烯、丁烯、丁二烯等,用来生产合塑料、合成橡胶、合成纤维及生产医药、炸药、染料等产品。用液化石油气作燃料,由于其热值高、无烟尘、无炭渣,操作使用方便,已广泛地进入人们的生活领域。此外,液化石油气还用于切割金属,用于农产品的烘烤和工业窖炉的焙烧等。

1.2.1主要用途

液化石油气主要用作石油化工原料,用于烃类裂解制乙烯或蒸气转化制合成气,可作为工业、民用、内燃机燃料。其主要质量控制指标为蒸发残余物和硫含量等,有时也控制烯氫含量。液化石油气是一种易燃物质,空气中含量达到一定浓度范围时,遇明火即爆炸[3]。

1.2.2 主要成分

液化石油气是炼油厂在进行原油催化裂解与热裂解时所得到的副产品。催化裂解气的主要成份如下(%):氢气5~6.甲烷10.乙烷3~5.乙烯3.丙烷16~20.丙烯6~11.丁烷42~46.丁烯5~6,含5个碳原子以上的烃类5~12。热裂解气的主要成份如下(%):氢气12.甲烷5~7.乙烷5~7.乙烯16~18.丙烷0.5.丙烯7~8.丁烷0.2.丁烯4~5,含5个碳原子以上的烃类2~3。这些碳氢化合物都容易液化,将它们压缩到只占原体积的1/250~l/33,贮存于耐高压的钢罐中,使用时拧开液化气罐的阀门,可热裂解气的主要成份如下(%):氢气12.甲烷5~7.乙烷5~7.乙烯16~18.丙烷0.5.丙烯7~8.丁烷0.2.丁烯4~5,含5个碳原子以上的烃类2~3。这些碳氢化合物都容易液化,将它们压缩到只占原体积的1/250~l/33,贮存于耐高压的钢罐中,使用时拧开液化气罐的阀门,可燃性的碳氢化合物气体就会通过管道进入燃烧器。点燃后形成淡蓝色火焰,燃烧过程中产生大量热。并可根据需要,调整火力,使用起来既方便又卫生。

液化石油气虽然使用方便,但也有不安全的隐患。万一管道漏气或阀门未关严,液化石油气向室内扩散,当含量达到爆炸极限(1.7%~10%)时,遇到火星或电火花就会发生爆炸。为了提醒人们及时发现液化气是否泄漏,加工厂常向液化气中混入少量有恶臭味的硫醇或硫醚类化合物。一旦有液化气泄漏,立即闻到这种气味而采取应急措施。

2 设计参数的确定及材料选择

2.1.1 设计压力的确定

工作压力:w p =0.5MPa

根据GB150-2011安全阀开启压力:z p ≤(1.1~1.05)w p ,设计压力取:

p =0.6MPa

2.1.2 设计温度的确定

最高工作温度:w t =30℃ 根据GB150-2011设计温度取:t =50℃

2.1.3 工作介质性质确定

根据HG 20660-2000《压力容器中化学介质毒性危害和爆炸危险程度分类》:工作介质性质:易燃易爆轻度危害性质的液化气体

2.1.4 压力容器类别

根据《过程设备设计》:本设备内介质属于第一组介质且p =0.6MPa

PV=0.6×10000MPa ·L=6000 MPa ·L <50000MPa.L 故为第Ⅰ类压力容器[4]。

2.2 材料选择

2.2.1筒体、封头的材料选择

材料选择:根据GB150-2011《钢制压力容器》,由于所设计的卧式容器为常规压力容器,考虑使用条件和综合成本,选择筒体与封头的材料为钢板Q345R ,Q345R 属于低合金钢,具有优良的综合力学性能和制造工艺性能[5],其强度、韧性、耐腐蚀性、低温与高温性能均优于相同含碳量的低碳钢,并且采用低合金钢可以减少容器的厚度,减轻重量,节约钢材 。

根据GB713-2008《锅炉和压力容器用钢板》和GB/T709-2006《热轧钢板和钢带的尺寸、外形、重量及允许偏差》规定,Q345R 钢板负偏差mm C 3.01 。

2.2.2 附件材料的选择

根据HG/T 20635-2009《钢制管法兰、垫片紧固件选配规定》的选择法兰的材料选择为16Mn Ⅱ;

根据GB 8163-2008《无缝钢管》,接管及盘管的材料选择16Mn;

根据HG/T 20635-2009《钢制管法兰、垫片紧固件选配规定》确定法兰紧固件的材料:螺栓 35CrMo,螺母30CrMo;

根据HG/T 20635-2009《钢制管法兰、垫片紧固件选配规定》的确定垫片的材料为聚四氟乙烯;

另:人孔,支座为组合件,其材料见第三章。

3 结构设计

3.1.1 液柱静压力计算

ρ液 =585Kg/3m , 满载时液柱静压力为0.01MPa 根据GB

150-2011,液柱静压力小于设计压力的5%时,可忽略不计,故c p =p =0.6MPa 。

3.1.2 筒体设计厚度计算

假设材料许用应力[]t

σ=170MPa (厚度为6~16mm 时)

焊接方式:根据GB150-2011,选用双面焊对接接头,20%无损探伤,故焊接系数85.0=φ。

δ=c i P D /(2[]t σΦ-C P )=3.74mm .............................. (3.1)

根据 GB150-2011 得:2c =2mm

设计厚度:

2d C δδ=+ =3.74+2=5.74mm .............................. (3.2) 名义厚度:

1n d C δδ=++? =8.0mm (圆整值) 1C 取0.3mm ........ (3.3)

经验算:n δ=8.0mm 时[]t σ=170MPa,与假设相符,故名义厚度8.0mm 合适。 3.1.3 封头的选型(标准椭圆封头)

图1 标准椭圆封头

表1 封头尺寸

公称直径DN/mm

总深度H/mm 内表面积/2m 容积/3m 1/1/4i h D =,25o h mm =,1450h mm =

3.1.4 封头设计厚度计算

假设材料许用应力[]t σ=189MPa (厚度为6~16mm 时)

焊接方式:根据GB150-2011,选用双面焊对接接头,20%无损探伤,故焊接系数85.0=φ。

δ=c i

P D /(2[]t σΦ-0.5C P )=3.74mm ........................ (3.4)

乙醇精馏塔设计毕业论文

乙醇精馏塔设计毕业论文 目录 摘要................................................................. I Abstract............................................................. II 第一章绪论 (1) 1.1 设计的目的和意义 (1) 1.2 产品的性质及用途 (1) 1.2.1 物理性质 (1) 1.2.2 化学性质 (2) 1.2.3 乙醇的用途 (2) 第二章工艺流程的选择和确定 (3) 2.1 粗乙醇的精馏 (3) 2.1.1 精馏原理 (3) 2.1.2 精馏工艺和精馏塔的选择 (3) 2.2 乙醇精馏流程 (5) 第三章物料和能量衡算 (7) 3.1 物料衡算 (7) 3.1.1 粗乙醇精馏的物料平衡计算 (7) 3.1.2 主塔的物料平衡计算 (8) 3.2 主精馏塔能量衡算 (9) 3.2.1 带入热量计算 (9) 3.2.2 带出热量计算 (10) 3.2.3 冷却水用量计算 (10) 第四章精馏塔的设计 (11) 4.1 主精馏塔的设计 (11) 4.1.1 精馏塔全塔物料衡算及塔板数的确定 (11) 4.1.2 求最小回流比及操作回流比 (12) 4.1.3 气液相负荷 (12) 4.2 求操作线方程 (12) 4.3 图解法求理论板 (13) 4.3.1 塔板、气液平衡相图 (13) 4.3.2 板效率及实际塔板数 (14) 4.4 操作条件 (14) 4.4.1 操作压力 (14) 4.4.2 混合液气相密度 (15) 4.4.3 混合液液相密度 (16) 4.4.4 表面力 (16)

常压储罐安全管理规定(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 常压储罐安全管理规定(通用 版) Safety management is an important part of production management. Safety and production are in the implementation process

常压储罐安全管理规定(通用版) 部门 储运部 编制 田琳 审核 周中华 培训课程 中国海洋石油总公司常压储罐安全管理规定 编制时间 2015.12.3 项目负责人 周中华 培训对象

液化气车间 培训讲师 中国海洋石油总公司常压储罐安全管理规定课件 培训内容 目的2、适用范围 编制依据4、释义 5、储罐设计、施工安装及验收安全管理 6、储罐运行的安全管理 7、储罐日常检查维护安全管理 8、清罐作业安全管理 9、储罐全面检修作业安全管理 培 训 总 结 今日我车间组织学习了中国海洋石油总公司常压储罐安全管理

规定,我罐区属于压力容器储罐区,没有常压储罐,通过这次的学习也让我车间员工对常压储罐有了进一步的认识。此次规定涵盖储罐的设计、施工、运行、检维修等全过程的安全管理,详细讲解了常压储罐的日常运行,调合、收付油、脱水等的日常运行及日常检查维护所需注意的问题,安全检修的操作要求及各类型储罐安全附件检查维护内容表,涵盖范围广泛,给操作人员做出了具体指导意见,能够确保常压储罐安全、稳定、长周期的运行。 是否考核 是□否▉ 培训时间 2015.12.03 出勤情况 15人 云博创意设计 MzYunBo Creative Design Co., Ltd.

立式储罐课程设计说明书

立式贮罐设计 前言 玻璃钢罐分为立式、卧式机械缠绕玻璃钢储罐、运输罐、反应罐、各种化 工设备,玻璃钢卧式罐、立式贮罐、运输罐、容器及大型系列容器、根据所用(贮存或运输)介质选用环氧呋喃树脂、改性或聚酯树脂、酚醛树脂为粘结剂, 由高树脂含量的耐腐蚀内衬层、防渗层、纤维缠绕加强层及外表保护层组成。 玻璃钢具有耐压、耐腐蚀、抗老化、使用寿命长、重量轻、强度高、防渗、 隔热、绝缘、无毒和表面光滑等特点。机械缠绕玻璃钢容器可以通过改变树脂 系统或采用不同的增强材料来调整产品的物理化学性能以适应不同介质和工 作条件需要,通过结构层厚度、缠绕角和壁厚设计制不同压力,是纤维缠绕复 合材料的显著特点。 由于有以上的特点,玻璃钢贮罐可广泛应用于石油、化工、纺织、印染、 电力、运输、食品酿造、给排水、海水淡化、水利灌溉及国防工程等行业。储 存各种腐蚀性介质可以耐多种酸、碱、盐和有机溶剂,主要应用于石油、化工、 制药、印染、酿造、给排水、运输等行业,适应于盐酸、硫酸、硝酸、醋酸、 双氧水、污水、次氯酸钠等多种产品的贮存、运输,也可作地下油槽、保温储槽、运输槽车等[1]。 本设计为容积180,贮存质量分数为的硫酸,使用温度为90℃的立式贮罐,设计中分别从造型、性能、结构、工艺、零部件、防渗漏、安装、检验等八个方面做了说明、计算和设计,整体介绍了立式贮罐的设计流程、方法及主要事项,最终设计出了满足设计要求的立式贮罐。

1.造型设计 1.1设计要求 立式玻璃设计,容积为140,贮存质量分数为的醋酸,使用温度为常温,拱形顶盖设计。 1.2贮罐构造尺寸确定 贮罐容积V140,取公称直径为D3800, 则贮罐高度为(式1.1)初定贮罐结构尺寸为D H 1.3拱形顶盖尺寸设计 与锥形顶盖相比,其结构简单、刚性好、承载能力强,是立式贮罐广为使用的一种形式。为取得罐顶和罐壁等强度,罐顶的曲率半径与贮罐直径差值不超过20%。即 (式1.2)式中——拱顶球面曲率半径,; ——贮罐内径,,等于。 取罐顶高为h,r为转角曲率半径,r小则h小,一般取此时[1]。 所以 1.4贮罐罐底设计 罐体和罐底的拐角处理,对贮罐设计极为重要。尤其是立式贮罐底部附近的受力较为复杂,应引起足够的重视。一般在拐角处都应设计成一定的圆弧过渡区,圆弧半径不应小于38。如果罐壳和罐底分开制造,则应注意在罐壳和罐底的结合处内外进行有效的补强。拐角区域的最小厚度等于壳壁和底部的组合厚度。拐角区

乙醇水溶液提纯精馏塔设计毕业设计

乙醇水溶液提纯精馏塔设计毕业设计 目录 1.绪论 (1) 1.1.设计背景 (1) 1.2.设计意义 (1) 1.3.设计步骤 (1) 2.精馏塔设计计算 (2) 2.1.精馏流程的确定 (2) 2.2.塔的物料衡算 (2) 2.2.1.查阅文献,整理有关物性数据 (2) 2.2.2.料液及塔顶、塔底产品的摩尔分数 (3) 2.2.3. 平均摩尔质量 (3) 2.2.4. 物料衡算 (3) 2.3. 塔板数的确定 (3) 2.3.1. 乙醇—水物系的气液平衡数据 (4) 2.3.2. 求最小回流比及操作回流比 (4) 2.3.3. 求精馏塔的气液相负荷 (4) 2.3.4. 求操作线方程 (4) 2.3.5. 图解法求理论塔板层数 (4) 2.3.6. 求实际塔板数 (5) 2.4 塔的工艺条件及物性数据计算 (6) 2.4.1. 操作压力 (6) 2.4.2. 平均摩尔质量 (7) 2.4.3. 平均密度 (7) 2.4. 3.1 .....................................................气相密度7 2.4. 3.2 ................................................. 液相平均密度7 2.4.4. 液体表面力 (8) 2.5 精馏塔的塔体工艺尺寸计算 (9) 2.5.1. 塔径的计算 (9) 2.5.2. 精馏塔有效高度的计算 (9) 2.6 塔板主要工艺尺寸的计算 (9) 2.6.1. 堰长 (9) 2.6.2. 溢流堰高度 (10) 2.6.3. 弓形降液管宽度和截面积 (10) 2.6.4. 降液管底隙高度 (11) 2.7 塔板布置 (11) 2.7.1. 塔板的分块 (12) 2.7.2. 边缘区宽度确定 (12)

石油化工储运系统罐区设计规范

石油化工储运系统罐区设计规范SHT3007-2007 石油化工储运系统罐区设计规范 1 范围 本规范规定了石油化工储运系统罐区储罐的选用、常压、低压和压力储罐区的设计原则和技术要求本规范适用于石油化工企业的液体物料(包括原料、成品及辅助生产物料)储运系统地上钢制储罐区的新建工程设计。改扩建工程可参照执行。 本规范不适用于液化烃的低温常压储罐区设计。 2 规范性引用文件 下列文件中条款通过本规范的引用面成为本规范的条款,凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版均不适用于本规范,然而,鼓励根据本规范达成协议的歌方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 GB50074 石油库设计规范 GB50160 石油化工企业设计防火规范 SH3022 石油化工设备和管道涂料防腐蚀技术规范 SH3063 石油化工企业可燃气体和有毒气体监测报警设计规范 SH3074 石油化工钢 制压力容器 SH/T3036 液化烃球形储罐安全设计规范国家质量技术监督局压力容器安全技术监察规程 3 一般规定 罐区的布置应遵守下列原则: 原料罐区宜靠近相应的加工装置;成品罐区宜靠近装车台或装船码头;罐区的位置应结合液体物料的流向布置;宜利用地形使液体物料自留输送;性质相近的液体物料储罐宜布置在一起。可燃液体的储存温度应按下列原则确定: 应高于可燃液体的凝固点(或结晶点),低于初馏点;应保证可燃液体质量,减少损耗;应保证可燃液体的正常输送;应满足可燃液体沉降脱水的要求; 加有添加剂的可燃液体,其储存温度尚应满足添加剂的特殊要求;应合理利用热能;需加热储存的可燃液体储存温度应杜宇其自然点; 对一些性质特殊的液体化工品,确定的储存温度应能避免自聚物和氧化物的产生。 可燃液体的储存温度可选用表1推荐值。 储罐选用 储罐容量

常压储罐设计审查、购置导则

常压储罐设计审查、购置导则 1 目的 为公司相关人员参与储运系统各类储罐的项目规划、讨论,以及为常压储罐设计审查提供系统性的帮助与指导,特制定本导则。 2 适用范围 本导则规定了常压储罐设计审查时必须审查的主要内容。 本导则适用于储罐初步设计审查和施工图设计审查。 3 总则 3.1 储罐设计内容、设计依据、设计原则必须符合工艺专业委托以及有关会议纪要内容。 3.2储罐设计与施工应符合立式圆筒形钢制焊接油罐设计规范、石油化工储运系统罐区设计规范、石油库设计规范、立式圆筒形钢制焊接油罐施工及验收规范、常压立式圆筒形钢制焊接储罐维护检修规程等最新版本标准与规范。 3.3储罐设计应采用国内外先进成熟的方案,并考虑新技术、新工艺、新结构、新材料的使用,不断提高储罐的技术水平,同时应具备相应鉴定材料或工业应用证。 3.4储罐设计应满足职业安全和卫生标准要求。 4 审查内容 4.1总体设计审查 4.1.1对照技术协议、有关会议纪要内容和API650等标准,对设计文件、施工图有否偏离标准的情况进行审查。 4.1.2储罐选型审查。原油、汽油、溶剂油等油品,应选用外浮顶或内浮顶罐;航空煤油、灯油应选用内浮顶罐;芳烃、醇类、醛类、酯类、腈类等油品应选用内浮顶罐或固定顶罐;柴油类油口应选用外浮顶或固定顶罐;重油、润滑油等油品应选用固定顶罐;液化烃、轻汽油(初馏点至60℃)等油品应选用球罐或卧罐。 4.1.3储罐布局审查 4.1.3.1储罐罐区建筑防火要求应符合《建筑设计防火规范》(GBJ16-2001)、《石油和天然气工程设计防火规范》(GB50183-1993)。 4.1.3.2储罐与其他建筑物的安全距离应符合《石油化工企业设计防火规范》(GB50160-1992/1999修订)的规定。 4.1.3.3需根据以下几方面要求进行重点审查: a)罐区总容量与数量:固定顶罐区≯120000m3,外浮顶、内浮顶≯600000m3。

精馏塔的设计(毕业设计)讲义

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

常压精馏塔的设计

常压精馏塔的设计 常压精馏塔分离CS2-CCl4混合物。处理量为5000kg/h,组成为0.3(摩尔分数,下同),塔顶流出液组成0.95,塔底釜液组成0.025。 设计条件如下: 操作压力4kpa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kpa; 全塔效率E t=52%; 建厂地址陕西宝鸡。 试根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离CS2-CCl4混合物。对于二元混合物的分离,应采用连续精馏流程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送到储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.4倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 原料液及塔顶、塔底产品的摩尔分率

M CS2=76 kg/kmol M CCl4=154 kg/kmol M F=0.3*M CS2+0.7*M CCl4 =0.3*76+0.7*154=130.6kg/kmol F=kmol/h=38.28 kmol/h X F=0.3 X D=0.95 X W=0.025 总物料衡算F=D+W CS2的物料衡算F*X F=D*X D+W*X W 即38.28=D+W 38.28*0.3=0.95D+0.025W 联立解得D=11.26kmol/h W=27.02kmol/h (三)塔板数的确定 1.理论塔板层数N T的求取 CS2-CCl4属理想物系,可采用图解法求理论版层数。 ①由手册查得CS2-CCl4的气液平衡数据,绘出x---y图,见图如下:

毕业设计-常压储罐设计

常州大学 毕业设计(论文) (2012届) 题目燃料气稳压罐设计 学生※※※ 学院※※※※※专业班级※※※ 校内指导教师※※※专业技术职务※※ 校外指导老师专业技术职务 二○一二年六月

燃料气稳压罐的设计 摘要:本设计说明书是关于燃料气温压罐的设计,主要进行储罐的材料选择、结构设计、强度计算、焊接工艺评定及检验。本设计说明书是依据设计内容的的顺序所编制。首先根据任务书对设计的基本参数进行了确定,根据基本参数及介质特性对储罐筒体、封头及主要附件的材料进行了选取,然后确定了储罐的基本尺寸及结构,接下来是对设计中所需要的附件进行选取及校核,如人孔、支座、法兰、盘管等。强度校核是对筒体、封头、支座等进行应力校核,以确保设计的合理性及安全性。最后是焊接工艺评定任务书及预焊接工艺规程的编制,检验、压力试验的一般规定说明。 关键词:基本参数;强度校核;焊接工艺评定;压力试验

The design of the fuel gas stabilization tank The design specification is about fuel temperature pressure tank design, material selection, structural design of the tanks, strength calculation, welding procedure qualification and inspection. The design specification of the tank is prepared according to the order of the design content. According to the mission statement on the basic parameters of the design to determine the basic parameters and media characteristics of the tank cylinder, head and main attachment materials selected, and then determine the size and structure of the tank, followed by selecting and checking the design of the required accessories, such as manhole, bearings, flange coil, etc.. The strength check of stress on the cylinder, head, bearing checking ensure that the rationality of the design and safety. Finally, it is the general provisions of welding procedure assignment, preliminary welding procedure specification, inspection and pressure testing. Keywords:basic parameters; strength check; welding procedure qualification; pressure test

毕业设计--精馏塔的工艺和机械设计

毕业设计(论文) 2013 届 题目CS2和CCl4精馏塔的工艺和机械设计专业化工设备与维修技术

毕业论文(设计)任务书 1、论文(设计)题目:CS2和CCl4精馏塔的工艺 和机械设计 2、论文(设计)要求: (1)学生应在教师指导下按时完成所规定的内容和工作量,最好是独立完成。 (2)选题有一定的理论意义与实践价值,必须与所学专业相关。(3)主题明确,思路清晰。 (4)文献工作扎实,能够较为全面地反映论文研究领域内的成果及其最新进展。 (5)格式规范,严格按系部制定的论文格式模板调整格式。 (6)所有学生必须在5月15日之前交论文初稿。 3、论文(设计)日期:任务下达日期 2013.3.4 完成日期 2013.4.10 4、指导教师签字:

CS2和CCl4精馏塔的工艺和机械设计 摘要:本次设计的目的是通过精馏操作来完成二硫化碳和四氯化碳混合溶液的分离,从而获得较高浓度的轻组分二硫化碳。精馏是利用混合液中各组分挥发度不同而达到分离要求的一种单元操作。本设计详细阐述了设计的各部分内容,计算贯穿在整个设计中。本设计包括蒸馏技术的概述、精馏塔工艺尺寸的计算、塔板校核、精馏塔结构的设计、筒体及各部件材料的选择、筒体各处开孔补强的设计、塔体机械强度的校核及精馏塔装配图的绘制等主要内容。 关键字:精馏塔,塔板校核,开孔补强,机械强度。

目录 1.概论 (1) 1.1蒸馏技术背景、基本概念和分类 (1) 1.1.1蒸馏技术背景 (1) 1.1.3蒸馏技术分类 (1) 1.2塔设备的作用和类型 (2) 1.2.1塔设备的作用 (2) 1.2.2塔设备的类型 (2) 1.3蒸馏技术节能 (3) 1.4现在蒸馏技术面临的机遇和挑战 (3) 1.5本设计中的方案选择 (4) 2.精馏塔设计任务书 (6) 2.1设计题目:二硫化碳—四氯化碳精馏塔设计 (6) 2.2设计任务及操作条件 (6) 2.3设计内容 (6) 2.4设计基础数据 (7) 3.各部分结构尺寸的确定和设计计算 (8) 3.1.物料衡算 (8) 3.2全塔物料衡算 (8) 3.3塔板数的确定 (8) 3.4塔工艺条件及物性数据计算 (11) 3.4.1操作压强的计算P m (11) 3.4.3精馏塔气相密度 (11) 3.4.4精馏塔液相密度 (11) 3.5精馏塔气液负荷计算 (12) 3.6精馏塔和塔板的主要工艺尺寸的计算 (13) 3.6.1塔径的计算 (13) 3.6.2塔高计算 (14)

乙醇精馏塔-毕业设计

摘要 乙醇是一种极重要的有机化工原料,也是一种燃料,在国民经济中占有十分重要的地位。随着乙醇工业的迅速成熟,各种制乙醇的方法相继产生。由于乙醇与水混合物的特殊性,即相对挥发度的不同且在一定浓度时生成共沸物,精馏操作一直是乙醇生产不可缺少的工序。 本设计的主要内容是根据20万吨乙醇生产工艺的需求,通过物料衡算和热量衡算以及板式浮阀塔设计的理论知识来设计浮阀塔,并由负荷性能图来进行校验。此外,本设计遵循经济、资源综合利用、环保的原则,严格控制工业三废的排放,充分利用废热,降低能耗,提高工艺的可行性。 关键词:乙醇精馏;浮阀塔;塔附件设计

Abstract Ethanol is a very important organic chemical raw material, but also a fuel, in the national economy occupied a very important position. With the rapid ethanol industry matures, various methods have been found. As a characteristic of a mixture of ethanol and water, the difference of the relative volatility and is generated in a certain concentration azeotrope, distillation operation has been indispensable step of ethanol production. The design of the main content is based on 200,000 tons of ethanol production technology,which needs through material balance and energy balance and the plate valve column design theory to design the float valve column by load performance diagrams for verification. In addition, the design follows the economy, resource utilization, environmental protection principles, strictly control industrial waste emissions, the full use of waste heat, reduce energy consumption and improve the feasibility of the process. Keywords: Ethanol distillation,Valve column,Design

脱重塔毕业设计

本科毕业设计 (论文) 脱重塔的结构设计Structural Design of De-heavy Tower 学院:机械工程学院 专业班级:过程装备与控制工程 学生姓名:学号: 指导教师:徐舒 2013 年5月

目录 1 绪论 (1) 2 塔的结构设计 (3) 2.1 塔板 (3) 2.2 降液装置结构型式 (3) 2.3 受液盘 (3) 2.4 人孔 (2) 2.5裙座 (3) 2.6 吊柱 (2) 2.7法兰及封头的设计 (3) 3 机械设计 (3) 3.1 塔器强度计算 (3) 3.2 塔器质量计算 (6) 3.3 塔器自身基本自振周期计算 (7) 3.4 地震载荷和地震弯矩计算 (9) 3.5 风载荷和风弯矩计算 (11) 3.6 各计算截面的最大弯矩 (13) 3.7 圆筒应力校核 (13) 3.8 裙座壳轴向应力校核 (16) 3.9 基础环厚度计算 (17) 3.10 地脚螺栓计算 (19) 3.11 裙座和壳体的连接焊缝验算(对接焊缝) (22) 3.12 塔设备挠度计算 (22) 3.13 开孔接管及补强设计 (23) 4 技术要求 (31) 结论 (33) 致谢 (34) 参考文献 (35)

附表清单: 表1 分段塔器各段质量 (8) 表 2 风载荷计算 (9) 表3塔器各段弯矩计算 (11) 表4 I-I截面处的强度和稳定性计算 (15) 表5 接管外径与最小壁厚 (23) 表6 其他无须另行补强的开孔接管尺寸 (31)

1 绪论 塔设备是化工、石油化工和炼油等生产中重要的设备之一。它可使气(汽)液或液液两相之间进行紧密接触,达到相际传质和传热的目的。可在塔设备中完成的常见的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两项传质和传热的增湿、减湿等。 在化工厂、石油化工厂、炼油厂等中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面,都有重大的影响。据有关资料报道,塔设备的投资费用占整个工艺设备投资用的较大比例;它所耗用的刚才重量在各类工艺设备中也属最多。因此,塔设备的设计和研究,受到化工、炼油等行业的极大重视。 塔设备经过长期发展,形成了形式繁多的结构,以满足各方面的特殊需求。为了便与研究和比较,人们从不同角度对塔设备进行分类。例如:按操作压力分为加压塔、常压塔和减压塔;按单元操作分为精馏塔、吸收塔、解吸塔、萃取塔、反应塔和干燥塔;按形成相际接触界面的方式分为具有固定相界面的塔和流动过程中形成的相界面的塔;也有按塔釜形式分类的。但长期以来,最常用的分类是按塔的内件结构分为板式塔和填料塔两大类,还有几种装有机械运动构件的塔。 随着塔设备技术的发展,各行业国家还陆续制订了多种气液接触元件及有关塔盘制造、安装、验收的标准规范和技术条件等,以保证塔设备运行的质量和缩短其制造、安装周期,进而减少设备的投资费用。当然盲目的套用标准或是忽视标准等修订工作,也会对技术的发展起到阻碍作用。 目前,我国常用的板式塔型仍为泡罩塔、浮阀塔、筛板塔和舌形塔等,填料种类除拉西环、鲍尔环外,阶梯环以及波纹填料、金属丝网填料等规整填料也常采用。近年来,参考国外塔设备技术的发展动向,加强了对筛板塔的科研工作,提出了斜孔塔和浮动喷射塔等新塔型。对多降液管塔盘、导向筛网孔塔盘等,也都做了较多的研究,并推广应用于生产。其他如大孔径筛板、双孔径筛板、穿流式可调开孔率筛板、浮阀-筛板复合塔盘等多种塔型的试验工作也在进行,有些已取得一定的成果或用于生产。 随着我国国名经济快速发展,作为国民经济支柱产业的化工、石油化工等行业发展的加速,对压力容器的设计需求增加,要求也不断提高。于是大部分的设计工作者也走出办公室,走入化工设备制造厂,进入施工安装现场监察、学习。 设计过程是多种有机结合大的媒介。换言之,把物质资源转变为一种新的产品或是形成一种有效的服务能力要取决于多方面因素的有机结合,如科研成果,技术发明,材料,人力和资金等。 该说明书的设计包括计算塔设备的结构参数,并对设备进行强度的计算及稳定性的校核,以及开孔补强设计等。在给定设计参数的前提下,按设计的一般步

常压储罐管理规定

常压储罐管理规定 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

文件编号:常压储罐管理规定 文件会签表

目录

1 目的 为加强公司储罐管理,确保储罐安全、稳定、长周期运行,依据国家相关法律、法规和中国神华煤制油化工有限公司《设备管理办法》及《常压储罐管理制度》,制定本规定。 2 适用范围 本规定适用公司用于储存非人工制冷、非剧毒的油品、化工类原料、中间产品、产品、助剂等液体介质的常压立式圆筒形钢制焊接储罐。 3 编制依据 GB 50128-2005 立式圆筒形钢制焊接储罐施工及验收规范 GB 50236-2011 现场设备、工业管道焊接工程施工及验收规范 SHS 01011-2004 钢制圆筒形常压容器维护检修规程 SHS 01012-2004 常压立式圆筒形钢制焊接储罐维护检修规程 SH 3046-1992 石油化工立式圆筒形钢制焊接储罐设计规范 NB/(JB/T 钢制焊接常压容器 NB/T ~ NB/T 47001-2009钢制焊接常压容器固体料仓钢制液化石油气卧式储罐型式与基本参数 NB/T (JB/T 固体料仓 中国神华煤制油化工有限公司《设备管理办法》 中国神华煤制油化工有限公司《常压储罐管理制度》 4 术语和定义 常压储罐,就是设计压力是常压,基本跟大气压相同的固定顶罐,内浮顶,外浮顶都属于常压储罐。

5 组织与职责 机械动力部 (1)负责储罐的归口管理,贯彻执行国家有关法律、法规和煤制油化工有限公 司有关储罐管理规定,制定公司常储罐管理规定,并检查执行情况; (2)组织或参与储罐设计、购置、安装、使用、修理、改造、更新和报废等全 过程管理,保证储罐安全、稳定、长周期运行; (3)组织建立、健全储罐设备技术管理档案,掌握设备状况,做好设备技术状 况分析; (4)组织编制和审核储罐的年度修理及检测计划,审定主要储罐检修方案,并 组织实施; (5)针对储罐运行过程中存在的问题,组织技术攻关,推广应用新技术、新工 艺、新结构、新材料,不断提高储罐的技术管理水平; (6)组织编制和审核储罐设备的更新改造计划,参加新、改、扩建项目中储罐 的设计方案审查和竣工验收; (7)组织或参与储罐事故的调查、分析和处理; (8)负责储罐备品配件的技术管理,组织编制并审定备品配件计划; (9)负责储罐的检查、考核和评比工作,做好年度工作总结; (10)加强储罐全员、全过程管理,保持设备完好,充分发挥设备的效能,以达 到储罐使用寿命长、维修费用低、综合效能高的目标; (11)积极采用国内外先进的设备管理方法和检维修技术,不断提高储罐管理和 检维修技术水平。 生产运营部 (1)组织制定、审查储罐操作规程,并检查执行情况,保证储罐在设计规定的 工况下运行。 (2)根据储罐的年度修理、检测计划,及时合理地安排储罐修理检测时间。 (3)参加新、改、扩建项目中储罐的设计方案审查和竣工验收,负责协调与生 产相关联的问题。 (4)组织或参加储罐事故的调查、分析和处理。 安健环部

常压储罐管理规定

腈纶厂常压储罐管理规定 第一章总则 第一条为加强我厂常压储罐管理,确保常压储罐安全、稳定、长周期运行,根据《常压储罐管理制度(试行)》(中国石化生[2005]193号)等有关规章,结合我厂实际情况,制定本规定。 第二条本规定中所称常压储罐,是指我厂储存非人工制冷、非剧毒的石油、化工等液体介质的常压立式圆筒形钢制焊接储罐。 第三条依据公司规定,根据常压储罐在生产中的重要程度,对储罐进行分级管理。常压储罐按其重要和危险程度划分为主要储罐和一般储罐。主要储罐为公称容积大于或等于2000立方米的储罐,其它为一般储罐。 第二章分工与职责 第四条设备部是我厂常压储罐的主管部门,主要履行以下职责: (一)负责贯彻执行国家和上级有关法律、法规、规章和标准,制定我厂储罐管理规章,安排年度工作计划,并检查执行情况; (二)建立健全我厂常压储罐管理体系; (三)组织各相关单位实施常压储罐设计、购置、安装、使用、修 理、改造、更新和报废等环节的全过程管理; (四)负责审核各车间编制上报的常压储罐全面检查计划,并督促实施。根据检查结果及时掌握各车间常压储罐设备状况,并做好常压储罐技术状况分析; (五)针对常压储罐运行过程中存在的问题,组织技术攻关,提高储罐的技术管理水平; (六)负责审核我厂常压储罐设备的更新改造项目,参与新建和改扩建项

目中重要常压储罐的设计方案审查和竣工验收; (七)负责常压储罐事故的调查、分析和处理工作; (八)负责检查和考核各车间的常压储罐管理工作。 第五条生产技术部主要履行以下职责: (一)负责组织制定、审查常压储罐操作规程,检查执行情况; (二)根据储罐的全面检查计划和工艺操作状况,及时合理地安排常压储罐倒罐时间,保证全面检查工作顺利进行; (三)参加新建、改扩建项目中重要常压储罐的设计方案审查和竣工验收; (四)参与常压储罐事故的调查和处理。 第六条安全环保部主要履行以下职责: (一)负责制定我厂罐区有关安全管理规章,组织审定罐区事故应急救援预案。 (二)参加新建、改扩建项目中重要常压储罐的设计方案审查和竣工验收,检查安全环保设施“三同时”(同时设计、同时施工、同时投入使用)工作的落实情况; (三)参与常压储罐事故调查、分析和处理工作; (四)检查督促各单位做好与常压储罐有关的安全装备、消防气防设施、器材的维护保养和管理工作。 第七条各车间主要履行以下职责: (一)负责贯彻执行本规定,明确职责,责任到人; (二)负责本车间常压储罐的日常检查工作,做好储罐的维护和保养工作,及时发现和消除隐患; (三)负责储罐的外部检查和全面检查工作; (四)负责建立健全储罐设备技术档案,做好储罐技术状况分析和管理工作总结;

苯-氯苯连续精馏塔设计毕业论文外文翻译

学号: HEBEI UNITED UNIVERSITY 毕业设计外文翻译 G RADUATE D ESIGN F OREIGN L ANGUAGE T RANSLATION 设计题目:苯-氯苯连续精馏塔设计 学生姓名: 专业班级: 学院:机械工程学院 指导教师: 2012年5月26日

气-液传质设备主要分为板式塔和填料塔两大类。精馏操作既可采用板式塔,也可采用填料塔。板式塔在工业上最早使用的是泡罩塔、筛板塔,其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。目前从国内外实际使用情况看,主要的塔板类型为筛板塔、浮阀塔及泡罩塔,而前者使用尤为广泛。 在化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。它的应用面广、量大。据统计,塔设备无论其投资费还是所有消耗的钢材重量,在整个过程装备中所占的比例都相当高。 精馏是分离液体混合物最常用一种作,在化工、炼油等工业中应用很广。它通过汽、液两相的直接接触,利用组分挥发度的不同,使易挥发组分由液相向汽相传递,难挥发的由汽相向液相传递,是汽、液两相之间的传质过程。 本设计是笨-氯苯连续分离精馏塔,而氯苯是一种重要的基本有机合成原料,用作染料、医药、农药、有机合成中间体。用于制造苯酚、硝基氯苯、二硝基氯苯、苯胺、硝基酚及杀虫剂滴滴涕等,也用作乙基纤维素和许多树脂的溶剂。氯苯的下游产品中,硝基氯化苯是氯苯的主要消费用户,对硝基氯化苯是重要的染料、农药、医药的中间体。以对硝基氯化苯为原料可以生产对硝基苯酚、对硝基苯胺、对氨基苯酚、对苯二胺、对氨基苯甲醚和对氨基苯乙醚等一系列有机化工产品。但由于用苯氯化法制氯苯后,苯和氯苯互溶,因此需设计一个精馏塔用来分离易挥发的苯和不易挥发的氯苯。 首先,苯和氯苯的原料在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。因为被加热到泡点,混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下

毕业设计--500万吨年常减压装置常压汽提塔机械设计 精品

第一章绪论 一设计任务、设计思想、设计特点 (一) 设计任务 500万吨/年常减压装置常压汽提塔机械设计 主要参数如下: 操作压力:0.07MPa 塔内直径:Φ1400/Φ1800 设计压力:0.24MPa 塔内塔盘数:24 最高操作温度:390℃保温层厚度:硅酸铝镁120/150㎜ 塔总高:31675㎜容器类别:一类 塔基础高:4500㎜塔内介质平均密度:830Kg/m3 地震烈度:8度其他参数:参照茂石化四蒸馏 基本风压值:500Pa 建造场地类别:Ⅱ类 (二) 设计思想 1 根据GB《钢制压力容器》与JB《钢制塔式容器》等国家标准为基础进行设计。 2 满足工艺和操作要求,所设计出来的流程和设备能保证得到质量稳定的产品,设计的流程与设备需要一定的操作弹性,可方便地进行流量和传热量的调节。 3 满足经济上的要求,设计省热能和电能的消耗,减少设备与基础的费用,选择合适的回流比,节省冷却水,设计时要全面考虑,力求总费用尽可能低一些。 4保证生产安全,保证塔设备具有一定的刚度和强度。设计中设计压力确定壁厚,再校核其他载荷作用下容器的应力,是容器有足够的腐蚀裕度。 5 采用某些高新技术(如:一脱三注)或应用某些工艺系统来降低原料的含硫量,减缓腐蚀,延长设备的使用寿命。 (三) 设计特点 1 塔设备是石油、化工、轻工、食品等工业部门中重要的设备之一,塔设备通过其内部的结构使气(汽)液两相或液液之间充分接触,进行质量传递和热量传递。通过塔设备完全的单元操作有:精流、吸收、解吸、萃取、冷却等。 2 塔的结构形式各异,但根据塔内件,一般可将塔分成板式塔和填料塔两大类,两者的基本结构可以概括为:塔体、内件、支座、附件等。

精馏塔设计图(参考)

1 / 2 ∠1∶10 设计数量 职务姓名日期制图校核审核审定批准 比例 图幅 1∶20 A1 版次 设计项目设计阶段 毕业设计施工图 精馏塔 重量(Kg) 单件总重备注 件号 图号或标准号 名称 材料1 2345基础环 筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6 789 10111213 14151617JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92 GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘 塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱 111411111111 6.723.931.55322.7 94.2374.19140.62.97 5.382.364.67 1.170.411.0321.9376181210.69 2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A Q235-A Q235-A 1819202122232425 2627282930313233343536 3738394041 扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体 法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔 排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.540.6 16.944.3δ=8 1 40 6 23 45 41 39 38 37789 10 1112 3635 34 33 3213 14 31 15 1630 2917 28 2726 25 24 2318 19 202122 a b c d e f i g h j1 k l n m5 m7 Ⅵ Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 技术要求 1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 技术特性表 管口表 总质量:27685 Kg e m1-7a f i g h j2n j4 l j3 k j1 b c d j3 序号 项 目指 标11 109 87654 3 21设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 0.11500.027102 筒体、封头、法兰1700.58157.9327符号公称尺寸连接尺寸标准紧密面 型式用途或名称b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97 HG21515-95凹凹凹凹凹凹凹凹凹凹凹凹凹 温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口 313028263335373929 2732 3436 38404142 43 444546 474849 505125 24 2322 21201918 1716 151******** 8 7654 32114m6 m7 m5 m4 m3 m2 m1 1 2 3 4 5 30 31 32 33 3435 5051管口方位示意图 A、B类焊缝 1:2 整体示意图1:2 Ⅵ Ⅴ 1:5 1:5 Ⅳ A B B向 A向 Ⅲ 1:5 Ⅱ 1:5 Ⅰ 1:10 平台一 平台二 357 2901

相关文档
最新文档