高中奥林匹克物理竞赛解题方法+12类比法

高中奥林匹克物理竞赛解题方法+12类比法
高中奥林匹克物理竞赛解题方法+12类比法

高中奥林匹克物理竞赛解题方法

十二、类比法

方法简介

类比法是根据两个研究对象或两个系统在某些属性上类似而推出其他属性也类似的思维方法,是一种由个别到个别的推理形式. 其结论必须由实验来检验,类比对象间共有的属性越多,则类比结论的可靠性越大.

在研究物理问题时,经常会发现某些不同问题在一定范围内具有形式上的相似性,其中包括数学表达式上的相似性和物理图像上的相似性. 类比法就是在于发现和探索这一相似性,从而利用已知系统的物理规律去寻找未知系统的物理规律.

赛题精讲

例1 图12—1中AOB是一内表面光滑的楔形槽,固定

在水平桌面(图中纸面)上,夹角(为了能看清楚,

图中画的是夸大了的). 现将一质点在BOA面内从A处以

速度射出,其方向与AO间的夹角

设质点与桌面间的摩擦可忽略不计,质点与OB面及OA面的

碰撞都是弹性碰撞,且每次碰撞时间极短,可忽略不计,试求:

(1)经过几次碰撞质点又回到A处与OA相碰?(计算次数时包括在A 处的碰撞)

(2)共用多少时间?

(3)在这过程中,质点离O点的最短距离是多少?

解析由于此质点弹性碰撞时的运动轨迹所满足的规律

和光的反射定律相同,所以可用类比法通过几何光学的规律

进行求解. 即可用光在平面镜上反射时,物像关于镜面对称

的规律和光路是可逆的规律求解.

(1)第一次,第二次碰撞如图12—1—甲所示,由三角形的外角等于不相邻的一两个内角和可知,故第一次碰撞的入射角为.

第二次碰撞,,故第二次碰撞的入射角为.

因此每碰一次,入射角要减少1°,即入射角为29°、28°、…、0°,当入射角为0°时,质点碰后沿原路返回. 包括最后在A处的碰撞在内,往返总共60次碰撞.

(2)如图12—1—乙所示,从O依次作出与OB边成

图12—1—乙

1°、2°、3°、……的射线,从对称规律可推知,在AB

的延长线上,BC′、C′D′、D′E′、……分别和BC、

CD、DE、……相等,它们和各射线的交角即为各次碰撞的

入射角与直角之和. 碰撞入射角为0°时,即交角为90°时

开始返回. 故质点运动的总路程为一锐角为60°的Rt△AMO

的较小直角边AM的二倍.

所用总时间

(3)碰撞过程中离O的最近距离为另一直角边长

此题也可以用递推法求解,读者可自己试解.

例2 有一个很大的湖,岸边(可视湖岸为直线)停放着一艘小船,缆绳突然断开,小船被风刮跑,其方向与湖岸成15°角,速度为2.5km/h.同时岸上一人从停放点起追赶小船,已知他在岸上跑的速度为

4.0km/h,在水中游的速度为2.0km/h,问此人能否追及小船?

解析费马原理指出:光总是沿着光程为极小值的路径传播. 据此可以证明,光在平面分界面上的折射是以时间为极小值的路程传播. 本题求最短时间问题,可类比类在平面分界面上的折射情况,这样就把一个运动问题通过类比可转化为光的折射问题求解.

如图12—2所示,船沿OP方向被刮跑,设人从O点出发先沿湖岸跑,

在A点入水游到OP的B点,如果符合光的折射定律,则所用时间最短.

根据折射定律:

在这最短时间内,若船还未到达B点,则人能追上小船,若船已经通过了B点,则人不能追上小船,所以船刚好能到达B点所对应的船速就是小船能被追及的最大船速

根据正弦定理①

由以上两式可解得 ②

此即小船能被人追上的最大速度,而小船实际速度只有2.5km/h,小于,所以人能追上小船.

例3 一只蚂蚁洞沿直线爬出,已知爬出速度的大小与距蚂蚁洞中心的距离L成反比,当蚂蚁爬到距蚂蚁洞中心距离L1=1m的A点时,速度大小为,问当蚂蚁爬到距蚂蚁洞中心L2=2m的B点时,其速度大小蚂蚁从A点到达B点所用的时间t=?

解析虽然蚂蚁的运动我们不能直接用已学过的运动学公式求解,但只要能找到描述蚂蚁运动的公式和学过的公式的形式相同,便可借助学过的公式形式使问题得以解决.

由已知得:蚂蚁在距离巢中心△处的速度为,代入已知得:,所以当

由速度的定义得蚂蚁从L到L+△L所需时间为△t

所以①

类比初速的匀加速直线运动的两个基本公式

在t到△t时刻所经位移为②

比较①、②两式可以看出两式的表述形式相同.

据此,可得蚂蚁问题中的参量t和L分别类比为初速为零的匀加速直线运动中的s和t.而相当于加速度a,于是可得:在此蚂蚁问题中令t1对应L1,t2对应L2,则所求时间为

代入已知可得从A到B所用的时间为

此题也可以用图像法、等效法求解,读者可试试.

例4 如图12—3所示为一很大的接地导体板,在与导体板相距为d的

A处放一带电量为-q的点电荷.

图12—3

(1)试求板上感应电荷在导体内P点产生的电场强度;

(2)试求感应电荷在导体外点产生的电场强度,P

与对导体板右表面是对称的;

(3)在本题情形中根据场强分析证明导体表面附近的电

场强度的方向与导体表面垂直;

图12—3—甲

(4)试求导体上的感应电荷对点电荷-q的作用力;

(5)若在切断导体板与地的连线后,再将+Q电荷置于导

体板上,试说明这部分电荷在导体板上如何分布可达到静电平

衡.(略去边缘效应)

解析面电荷问题有时可用点电荷场来类比,使问题大大简化.

(1)因导体处于静电平衡状态,内部场强为零,因此感应电

荷在P点产生的场强可用点电荷场类比,若在A点放+q在导体中

P点产生的场和感应电荷在P点产生的场相同,因此有,方向如图12—3—甲所示.(r为AP间距离)

(2)同理,感应电荷在导体外点产生的电场跟把+q放在与A关于导

体右表面对称的点产生的电场相同,即,方向如图12—3甲所示.

图12—3—乙

(3)取导体外极靠近导体表面的一点P1,此处电场由感应电

荷和-q共同产生,可类比等量异号点电荷形成的电场,导体表面

可类比为等势面,场强和等势面是垂直的,因此P1点的场强方向跟

导体表面垂直.如图12—3—乙所示.

(4)感应电荷对-q的作用力也可类比在点放的+q对它的

库仑力来求. 如图12—3—乙所示.

(5)切断接地线后,感应电荷分布不变,感应电荷和-q在导体中

产生的电场强度为零(相当于不带电情况),将+Q置于导体板上时,

类比孤立无限大带电平板,电荷将均匀分布

图12—4

例5 如图12—4所示为一无限多电容器连成的网络,

若其中每个电容器的电容均为C,求此网络A、B间的等

效电容C AB.

解析电容器两极板间所加电压为U,正极板上的电

量为Q时,电容为:C=Q/U. 电阻器两端所加电压为U,通过的电流为I 时,电阻为R=U/I.

在C、R表达式中U相同,Q与I类比,但两个式子显然有颠倒的关系,若为电容器引入

C*便可与R类比,通过对R的求解,求出C*,再求出它的倒数即为C.当将阻值为R的电阻替换电容C时,可以求得:AB间的总电阻为

现在用C*取代R,可解得

图12—5

也即

所以AB间的等效电容为

例6 电容器网络如图12—5所示,各电容器以为

单位的电容量数值已在图中标出. 求A、B两点之间的等效

电容C AB.

解析同样用类比法为电容器引入辅助参量,则C*的串并联公式与电阻R的串并联公式完全一样,而且如图12—5—甲中两个电容网络元之间有完全类似于电阻网络元的Y—△变换.

变换公式为:

图12—5—乙

图12—5—丙

通过变换公式对题中的网络进行交换,从而求解.

将中间同为的电容变为,再将三个C*组成的△网络元变换为

的三个Y网络元,于是将原网络等效为如图12—5—乙网络,图12—5—乙中所标数值均为C*值,为此网络可等效如图12—5—丙网络,图中所标数值仍是C*值.

图12—5—丁

因为此网络中没有电流图12—5—丙可当作平衡的

桥式电路,中间的电容可拆去,此网络又可等效为

图12—5—丁,再类比电阻串并联公式可得

故原网络A、B间的等效电容为

图12—6

例7 如图12—6所示,一个由绝缘细线构成的刚性圆形

轨道,其半径为R. 此轨道水平放置,圆心在O点,一个金属

小珠P穿在此轨道上,可沿轨道无摩擦地滑动,小珠P带电

荷Q. 已知在轨道平面内A点()放有一电荷q.

若在OA连线上某一点A1放电荷q1,则给P一个初速度,它

就沿轨道做匀速圆周运动. 求A1点位置及电荷q1之值.

解析因为P可沿圆轨道做匀速圆周运动,说明此圆轨道是一等势线,将此等势线看成一个球面镜的一部分. 已知半径为R,所以此球面镜的焦距为.

由成像公式

若q为物点,q1为像点不成立,只能是q1为物点成虚像于q,所以有又

解得

图12—7

例8 将焦距为10cm的一块双凸透镜沿其表面的垂直方向

切割成相同的两部分,把这两部分沿垂直于主轴的方向移开一段

距离,并用不透明的材料将其挡住. 若在原透镜左侧

主轴上,距透镜光心20cm处放一点光源M,如图12—7所示,

点光源能射出波长为的单色光,那么在透镜另一侧距透镜

50cm的屏幕(垂直于透镜主轴放置)上,将出现多少亮条纹?

解析由透镜成像规律可知,单色点光源M,经切割成的两个半透镜

分别成两个像M1,M2(此时每个半透镜相当于一个透镜). 这两个像距相等,关于主光轴对称,形成相干光源,从而在屏幕上可看到干涉条纹,屏幕中央是零级亮条纹,两侧依次分布着各级干涉条纹.

根据透镜成像公式:①

设两个像之间的距离

由图12—7—甲中的几何关系可知 ②

由①、②两式得③

由图12—7—甲知

类比光的双缝干涉作图12—7—乙. 设屏幕上Q为一

级亮条纹,则光程差为⑤

因为解很小,所以有

将其代入⑤式得:⑥

将③、④代入⑥式得:⑦

由于干涉条纹是等间距的,所以屏幕上出现的亮条纹数目为⑧

由图12—7—甲中几何关系得:

解得⑨

将⑨代入⑧式得⑩

图12—8

将已知代入⑩得N=46.6

所以亮条纹的条数为46条.

例9 如图12—8所示,半径R=10cm的光滑凹球面容器固定

在地面上,有一小物块在与容器最低点P相距5mm的C点由静止

无摩擦滑下,则物块自静止下滑到第二次通过P点时所经历的时间

是多少?若此装置放在以加速度a向上运动的实验舱中,上述所求

的时间又是多少?

解析本题中的小物块是在重力、弹力作用下做变速曲线运动,我们若抓住物体受力做往复运动的本质特征,便可以进行模型等效,即把小物块在凹球面上的运动等效为单摆模型.

将上述装置等效为单摆,根据单摆的周期公式

若此装置放在以加速度a向上运动的实验舱中,比较两种情形中物体受力运动的特征,可以等效为单摆的重力加速度为的情形,经类比推理可得:

针对训练

1.宇航员站在一星球表面上的某高处,沿水平方向抛出一个小球,经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L.若抛出时的初速度增大到2倍,则抛出点与落地点之间的距离为. 已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G. 求该星球的质量M.

2.如图12—9所示,有一半径为R的接地导体球,在距离球心a处放有一点电荷Q,由于静电感应,球的表面出现感应电荷,求点电荷Q和导体球之间的相互作用力.

3.如图12—10所示,如果导体球不接地,且与外界绝缘,带电量为q,则点电荷Q和导体球之间的作用力大小是多少?

4.已知,,试求如图12—11所示的电路中,A、B间的等效电容

C AB.

5.电容器网络如图12—12所示,各电容器以为单位的电容量数值已在图中标出,试求A、B两点间的等效电容C AB.

6.许多电容量都为C的电容器组成一个多级网络,如图12—13所示.

(1)问在最后一级右边的电容器上并联一个多大的电容,可使整

个网络的总电容也等于C?

(2)如不加,但无限增加级数,问整个网路的总

电容是多少?

(3)当电路中的级数足够多时,如果在最后一级

右边的电容器上并联一个任意大小的电容,

问整个网路的总电容是多少?

7.将焦距为f的一块透镜沿其表面的垂直方向切割成两部分.

如图12—14所示,把两块半透镜移开一小段距离,如果在透镜的一

方距离处放置一个单色点光源,问在透镜的另一方距H处的屏

幕上,将出现多少条干涉条纹?

8.将焦距的凸薄透镜从正中切去宽度为a的小部分,如图12—15所示,再将剩下两半粘在一起,构成一个“粘合透镜”,见图12—15甲中

D=2cm. 在粘合透镜一侧的中心轴线上距镜20cm处,置一波长的单色点光源S,另一侧垂直于中心轴线处放置屏幕,见图12—15—乙. 屏幕上出现干涉条纹,条纹间距试问:

(1)切去部分的宽度a是多少?

(2)为获得最多的干涉条纹,屏幕应离透镜多远?

2007年第38届国际物理奥林匹克理竞赛实验题答案

Solution (The Experimental Question): Task 1 1a. nominal =5′=0.08 nominal (degree) 0.08 If a is the distance between card and the grating and r is the distance between the hole and the light spot so we have ,...,21x x f 0,2 tan a r We want 0 to be zero i.e. r 04.0007.0170,10 rad rad mm a mm r 0 0.4range of visible light (degree) 13 26 中 华 物 理 .c o m 中华物理竞赛网 https://www.360docs.net/doc/1214537741.html, 官方网站 圣才学习网 https://www.360docs.net/doc/1214537741.html,

1c. min R (21.6±0.1) k 0 5′ = 0.081min R R=(192±1) k 0=5′ because = 5′ => R= (21.9±0.1) k =-5′ => R= (21.9±0.1) k 1d. Table 1d. The measured parameters (degree) R glass (M )R glass (M )R film (M )R film (M ) 15.00 3.770.03183315.50 2.580.02132216.00 1.880.0187116.50 1.190.0151.50.517.000.890.0133.40.317.500.680.0119.40.118.000.4860.00510.40.118.500.3650.005 5.400.0319.000.2740.003 2.660.0219.500.2250.002 1.420.0120.000.2000.0020.8800.00520.500.2270.0020.8220.00521.000.3680.003 1.1230.00721.500.6000.005 1.610.0122.000.7750.005 1.850.0122.500.830.01 1.870.0123.000.880.01 1.930.0223.50 1.010.01 2.140.0224.00 1.210.01 2.580.0224.50 1.540.01 3.270.0225.00 1.910.01 4.130.0216.25 1.380.0166.50.516.75 1.000.0140.00.317.250.720.0123.40.217.750.5350.00512.80.118.250.3910.003 6.830.0518.750.2930.003 3.460.0219.250.2350.003 1.760.0119.750.1950.0020.9880.00520.250.2010.0020.7760.00520.75 0.273 0.003 0.89 0.01 中 华 物 理 竞 赛 网 w w w .100w u l i .c o m 中华物理竞赛网 https://www.360docs.net/doc/1214537741.html, 官方网站 圣才学习网 https://www.360docs.net/doc/1214537741.html,

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

第二十六届全国中学生物理竞赛(北京赛区)

第二十六届全国中学生物理竞赛(赛区) (实验中学杯) 获 奖 名 单 北京物理学会 市中学生物理竞赛委员会 2009年11月5日

简报 全国中学生物理竞赛是经教育部批准,在中国科协领导下,由中国物理学会主办,中学生自愿参加的学科竞赛。竞赛的目的是促进中学生提高学习物理的兴趣、扩大学生的视野、增强学习能力,促进学校开展物理课外活动,为学有余力的学生提供发展空间。 第26届全国中学生物理竞赛(赛区)于9月6日举行了预赛(4100人参加)、9月19日举行复赛理论考试(398人参加)、9月27日进行复赛实验操作考试。经过预赛、复赛,评出赛区一等奖34名、二等奖120名、三等奖165名,优秀辅导教师奖多名。 根据教育部有关文件规定,凡荣获全国中学生物理竞赛省市赛区一等奖的学生,将获得下一年度全国高等学校高考保送生资格。 市代表队由17名选手组成,于10月31日—11月5日参加在XX市举行的全国中学生物理竞赛决赛。全国决赛经过理论考试、实验操作考试,评出一等奖50名、二等奖98名、三等奖132名。人大附中俞颐超、实验中学于乾、清华附中戴哲昊、人大附中生冀明、十一学校周琛同学荣获一等奖;十一学校王鹤、八中周叶、四中李新然、人大附中段嘉懿、十一学校孙伟伦、杜超同学荣获二等奖;北师大二附中王沫阳、四中熊泓宇、十一学校梁辰、四中贾弘洋、人大附中X金野、北大附中王焱同学荣获三等奖。人大附中俞颐超同学荣获决赛总成绩最佳奖(第一名)和理论成绩最佳奖(第一名)。 在国际奥林匹克物理竞赛的成绩: 2009年5月,人大附中管紫轩、X思卓同学在第十届亚洲中学生物理竞赛中均获得金牌;2009年7月,人大附中管紫轩同学在墨西哥举行的第四十届国际奥林匹克物理竞赛中获得金牌。 本届竞赛还得到了北师大附属实验中学、十一学校大力支持。在此,物理学会、市中学生物理竞赛委员会向支持本届物理竞赛工作的单位和个人表示衷心的感谢。 北京物理学会 市中学生物理竞赛委员会 2009年11月5日

高中奥林匹克物理竞赛解题方法 10图像法

高中奥林匹克物理竞赛解题方法 十、图像法 方法简介 图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图像法在处理某些运动问题,变力做功问题时是一种非常有效的方法。 赛题精讲 例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。AB 两地相距s ,火 车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度的绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需的最短时间为 。 解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。 根据题意作v —t 图,如图11—1所示。 由图可得1 1t v a = vt t t v s t v a 21)(21212 2=+== 由①、②、③解得2 121)(2a a a a s t += 例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车突然以恒定 的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为 ( ) A .s B .2s C .3s D .4s 解析:物体做直线运动时,其位移可用速度——时间图像 中的面积来表示,故可用图像法做。 作两物体运动的v —t 图像如图11—2所示,前车发 生的位移s 为三角形v 0Ot 的面积,由于前后两车的刹车 加速度相同,根据对称性,后车发生的位移为梯形的面积 S ′=3S ,两车的位移之差应为不相碰时,两车匀速行驶 时保持的最小车距2s. 所以应选B 。 ① ② ③ 图11—2

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

高中奥林匹克物理竞赛解题方法 一 整体法

一、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。 赛题精讲 例1:如图1—1所示,人和车的质量分别为m 和M , 人用水平力F 拉绳子,图中两端绳子均处于水平方向,不 计滑轮质量及摩擦,若人和车保持相对静止,且水平地面 是光滑的,则车的加速度为 。 解析:要求车的加速度,似乎需将车隔离出来才能求 解,事实上,人和车保持相对静止,即人和车有相同的加 速度,所以可将人和车看做一个整体,对整体用牛顿第二 定律求解即可。 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力。在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有: 2F = (M + m)a ,解得:a =2F M m 例2:用轻质细线把两个质量未知的小球悬挂起来,如图1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并对小球b 持续施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是( ) 解析:表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a 和小球b 的拉力的方向,只要拉力方向求出后,。图就确定了。 先以小球a 、b 及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a + m b )g ,作用在两个小球上的恒 力F a 、F b 和上端细线对系统的拉 力T 1 。因为系统处于平衡状态, 所受合力必为零,由于F a 、F b 大

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

高中物理竞赛解题方法之降维法例题

十三、降维法 方法简介 降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。由于三维问题不好想像,选取适当的角度,可用降维法求解。降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。 赛题精讲 例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何? 解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。但这四个力不在同一平面内,不容易看出它们之间的关系。我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。 将重力沿斜面、垂直于斜面分解。我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。 如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为: G G F F 2 22 12 = += ' F ′的方向沿斜面向下与推力成α角, 则 ?=∴== 451 tan 1ααF G 这就是物体做匀速运动的方向 物体受到的滑动摩擦力与F ′平衡,即 2/2G F f = '= 所以摩擦因数:3 630cos 2/2=? ==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子? 解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的

全国高中物理奥林匹克竞赛试卷及答案

高中物理竞赛试卷 .一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分. 1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于 A.αB.α1/3C.α3D.3α 2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是 A.密度秤的零点刻度在Q点 B.秤杆上密度读数较大的刻度在较小的刻度的左边 C.密度秤的刻度都在Q点的右侧 D.密度秤的刻度都在Q点的左侧 3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和 p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为 A.50Hz B.60Hz C.400Hz D.410Hz 4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动 方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于 线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的 形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分 别为F1、F2和F3。若环的重力可忽略,下列说法正确的是 A. F1> F2> F3 B. F2> F3> F1 C. F3> F2> F1 D. F1 = F2 = F3 5.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,则 A.当m B=m A时,碰后B球的速度最大 B.当m B=m A时,碰后B球的动能最大 C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大 D.在保持m B

物理竞赛之国际物理奥林匹克竞赛赛事流程

国际物理奥林匹克竞赛赛事流程 每一代表队包括5名年龄在20岁以下的中学生、1名领队和1名副领队,国际间旅费自负,东道国负责竞赛期间各队的食宿和旅游费用。各国可自派观察员参加,费用由派出国自筹。 赛期一般为9天。第1天报到后,队员和领队分开居住,住地一般相距几公里以上。东道国为每一参赛队学生配备1名翻译兼导游,这对东道国来说是一种很大的负担,有些国家难以承办IPhO活动,其部分原因也在于此。因华裔子弟遍布世界各地,东道国为我们代表队配备的翻译几乎都是在该国读研究生的华人学子。 第2天上午是开幕式,常在大学礼堂举行,气氛淡雅肃穆,学术气氛浓厚。开幕式后领队与队员暂不往来,且自觉地互不通电话联系,有事均通过翻译转达。第2天下午学生由主办者组织旅游或参观,领队们则参加本届国际委员会正式会议并集体讨论、修改和通过理论赛题,再由各国领队将题文翻译成本国文字,交由组委会复印。会议开始时,各国领队与观察员分别就座,组委会执行主席及其助手们的座位安排在正前方。东道国将3道理论题的题文和题解,以及评分标准的4种文本(英、俄、德、法)之一发给各国领队。大约一小时后,命题者代表用英语向大家介绍该题的命题思想及解题思路等,然后大会讨论,提出修改意见,最后通过这道理论题。3道题逐题进行,若其中某道题被否决,组委会便公开备用的第4道题。 3道题通过后常已近深夜,这期间除晚餐外,还供应饮料和点心。中国领队们而后所做的翻译工作,一般都会持续到次日清晨6点左右,真可谓"通宵达旦"。

第3天上午8点开始,学生们进行5小时的理论考试,其间有饮料和点心供应,学生们用本国文字答卷。组委会为领队们安排旅游或参观活动;尽管大多数人已经非常疲乏,也许因为身临异国他乡,仍是游兴十足。第3天下午东道国安排的休息性活动常能使领队与学生有机会见面,然而师生间很少谈及上午的考试,为的是不在情绪上影响后面的实验考试。 第4天讨论、修改、通过及翻译实验赛题。实验赛题为1-2道,2道居多。 第5天学生分为两组,分别在上、下午进行5小时的实验考试。若有2道题,则每题2。5小时。实验考试后学生们的紧张情绪骤然间消失,队与队之间频繁交往,学生们"挨门串户"地互赠小礼品,最受欢迎的当数各国硬币。此时,领队们开始悉心研究由组委会送来的本队队员的试卷复印件,上面有评分结果。分数由东道国专设的阅卷小组评定,在评定我国学生试卷时,常请另一位懂中文的研究生协助阅读试卷上的中文内容。 东道国通常在第6、7天安排各国领队与阅卷小组成员面谈,商讨和解决评分中可能出现的差错和意见分歧。第7天的下午或晚上举行最后一次国际委员会会议,多数领队借此机会互赠小礼品。会议最重要的议程是通过学生的获奖名单。理论题每题10分,满分30分;实验题若有2道,则每题10分,满分20分。按现在的章程规定,前三名选手的平均积分计为100%,积分达90%者,授予一等奖(金牌);积分低于90%而达78%者,授予二等奖(银牌);积分低于78%而达65%者,授予三等奖(铜牌);积分低于65%而达50%者,授予表扬奖;积分低于50%者,发给参赛证书。上述评奖积分界限均舍尾取整。例如第24届IPhO前三名平均积分为40。53分,其90%为36。48,取整为36分,即成金牌分数线。通常得奖人数占参赛人数的一半。金牌第1名被授予特别奖。此外,还可由东道国自设各种特别奖,例如女生最佳奖、

高中物理竞赛 解题 方法

高中奥林匹克物理竞赛解题方法 五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立 弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理, 小球所受合力为零的位置速度、动能最大。所以速最大时有 mg =kx ① 图5—1 由机械能守恒有 22 1)(kx E x h mg k +=+ ② 联立①②式解得 k g m m g h E k 2 221?-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至 斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关, 求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a = 该质点沿轨道由静止滑到斜面所用的时间为t ,则 OP at =22 1 所以β cos 2g OP t = ① 由图可知,在△OPC 中有 图5—2

) 90sin()90sin(βαα-+=- OC OP 所以) cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-= 显然,当2,1)2cos(αββα= =-即时,上式有最小值. 所以当2α β=时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计 空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。 以水平向右为x 轴正方向,竖直向下为y 轴正方向, 则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t = 该点的坐标为 θθ2202200tan 221tan g v gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+ 解得小球离开斜面的最大距离为 θθsin tan 220?=g v H 。 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取 2/10s m g =,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 图5— 3 图5—4

高中奥林匹克物理竞赛解题方法+12类比法

高中奥林匹克物理竞赛解题方法 十二、类比法 方法简介 类比法是根据两个研究对象或两个系统在某些属性上类似而推出其他属性也类似的思维方法,是一种由个别到个别的推理形式. 其结论必须由实验来检验,类比对象间共有的属性越多,则类比结论的可靠性越大. 在研究物理问题时,经常会发现某些不同问题在一定范围内具有形式上的相似性,其中包括数学表达式上的相似性和物理图像上的相似性. 类比法就是在于发现和探索这一相似性,从而利用已知系统的物理规律去寻找未知系统的物理规律. 赛题精讲 例1 图12—1中AOB是一内表面光滑的楔形槽,固定 在水平桌面(图中纸面)上,夹角(为了能看清楚, 图中画的是夸大了的). 现将一质点在BOA面内从A处以 速度射出,其方向与AO间的夹角 设质点与桌面间的摩擦可忽略不计,质点与OB面及OA面的 碰撞都是弹性碰撞,且每次碰撞时间极短,可忽略不计,试求: (1)经过几次碰撞质点又回到A处与OA相碰?(计算次数时包括在A 处的碰撞) (2)共用多少时间?

(3)在这过程中,质点离O点的最短距离是多少? 解析由于此质点弹性碰撞时的运动轨迹所满足的规律 和光的反射定律相同,所以可用类比法通过几何光学的规律 进行求解. 即可用光在平面镜上反射时,物像关于镜面对称 的规律和光路是可逆的规律求解. (1)第一次,第二次碰撞如图12—1—甲所示,由三角形的外角等于不相邻的一两个内角和可知,故第一次碰撞的入射角为. 第二次碰撞,,故第二次碰撞的入射角为. 因此每碰一次,入射角要减少1°,即入射角为29°、28°、…、0°,当入射角为0°时,质点碰后沿原路返回. 包括最后在A处的碰撞在内,往返总共60次碰撞. (2)如图12—1—乙所示,从O依次作出与OB边成 图12—1—乙 1°、2°、3°、……的射线,从对称规律可推知,在AB 的延长线上,BC′、C′D′、D′E′、……分别和BC、 CD、DE、……相等,它们和各射线的交角即为各次碰撞的 入射角与直角之和. 碰撞入射角为0°时,即交角为90°时 开始返回. 故质点运动的总路程为一锐角为60°的Rt△AMO 的较小直角边AM的二倍. 即 所用总时间 (3)碰撞过程中离O的最近距离为另一直角边长 此题也可以用递推法求解,读者可自己试解. 例2 有一个很大的湖,岸边(可视湖岸为直线)停放着一艘小船,缆绳突然断开,小船被风刮跑,其方向与湖岸成15°角,速度为2.5km/h.同时岸上一人从停放点起追赶小船,已知他在岸上跑的速度为 4.0km/h,在水中游的速度为2.0km/h,问此人能否追及小船?

高中物理竞赛方法集锦 等效法

四、等效法方法简介 在一些物理问题中,一个过程的发展、一个状态的确定,往往是由多个因素决定的,在这一决定中,若某些因素所起的作用和另一些因素所起的作用相同,则前一些因素与后一些因素是等效的,它们便可以互相代替,而对过程的发展或状态的确定,最后结果并不影响,这种以等效为前提而使某些因素互相代替来研究问题的方法就是等效法. 等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律.因此应用等效法时往往是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解. 赛题精讲 例1:如图4—1所示,水平面上,有两个竖直的光滑 墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙 之间的O 点斜向上抛出,与A 和B 各发生一次弹性 碰撞后,正好落回抛出点,求小球的抛射角θ. 解析:将弹性小球在两墙之间的反弹运动,可等效为 一个完整的斜抛运动(见图).所以可用解斜抛运动的 方法求解. 由题意得:g v v t v d θ θθsin 2cos cos 2000? =?= 可解得抛射角 20 2arcsin 21v gd = θ 例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B 时的速度. 解析 从A 到B 的整个运动过程中,由于加速度均匀增加,故此运动是非匀变速直线 运动,而非匀变速直线运动,不能用匀变速直线运动公式求解,但若能将此运动用匀变速直线运动等效代替,则此运动就可以求解. 因加速度随通过的距离均匀增加,则此运动中的平均加速度为 n a n n a an n a n a a a a a 2)13(232)1(2 -= -=-++= += 末 初平 由匀变速运动的导出公式得2 22v v L a B -=平 解得 n aL n v v B )13(2 0-+ = 例3一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成

高中奥林匹克物理竞赛解题方法

高中奥林匹克物理竞赛解题方法 一、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运用整体思维可以产生不同凡响的效果,显现“变”的魅力,把物理问题变繁为简、变难为易。 赛题精讲 例1:如图1—1所示,人和车的质量分别为m 和M , 人用水平力F 拉绳子,图中两端绳子均处于水平方向, 不计滑轮质量及摩擦,若人和车保持相对静止,且 水平地面是光滑的,则车的加速度为 . 解析:要求车的加速度,似乎需将车隔离出来才 能求解,事实上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用牛顿第二定律求解即可. 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力.在竖直方向重力与支持力平衡,水平方向绳的拉力为2F ,所以有: 2F=(M+m)a ,解得: m M F a +=2 例2 用轻质细线把两个质量未知的小球悬挂起来,如图 1—2所示,今对小球a 持续施加一个向左偏下30°的恒力,并 对小球b 持续施加一个向右偏上30°的同样大 小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )

解析表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小球a和小球b的拉力的方向,只要拉力方向求出后,。图就确定了。 先以小球a、b及连线组成的系统为研究对象,系统共受五个力的作用,即两个重力(m a+m b)g,作用在两个小球上的恒力F a、F b和上端细线对系统的拉力T1.因为系统处于平衡状态,所受合力必为零,由于F a、F b大小相等,方向相反,可以抵消,而(m a+m b)g的方向竖直向下,所以悬线对系统的拉力T1的方向必然竖直向上.再以b球为研究对象,b球在重力m b g、恒力F b和连线拉力T2三个力的作用下处于平衡状态,已知恒力向右偏上30°,重力竖直向下,所以平衡时连线拉力T2的方向必与恒力F b和重力m b g的合力方向相反,如图所示,故应选A. 例3有一个直角架AOB,OA水平放置,表面粗糙,OB竖直向下,表面光滑,OA上套有小环P,OB上套有小环Q,两个环的质量均为m,两环间由一根质量可忽略、不何伸长的细绳相连,并在某一位置平衡,如图1—4所示.现将P环向左移动一段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态相比,OA杆对P环的支持力N和细绳上的拉力T的变化情况是()A.N不变,T变大B.N不变,T变小 C.N变大,T变小D.N变大,T变大 解析先把P、Q看成一个整体,受力如图1—4—甲所示, 则绳对两环的拉力为内力,不必考虑,又因OB杆光滑,则杆在 竖直方向上对Q无力的作用,所以整体在竖直方向上只受重力和 OA杆对它的支持力,所以N不变,始终等于P、Q的重力之和。 再以Q为研究对象,因OB杆光滑,所以细绳拉力的竖直分量等 于Q环的重力,当P环向左移动一段距离后,发现细绳和竖直方向 夹角a变小,所以在细绳拉力的竖直分量不变的情况下,拉力T应变小.由以上分析可知应选B. 例4 如图1—5所示,质量为M的劈块, 其左右劈面的倾角分别为θ1=30°、θ2=45°, 质量分别为m1=3kg和m2=的两物块, 同时分别从左右劈面的顶端从静止开始下滑,

全国中学生物理竞赛内容提要(俗称竞赛大纲)2020版

说明: 1、2016版和2013版相比较,新增了一些内容,比如☆科里奥利力,※质心参考系☆虚功原理,☆连续性方程☆伯努利方程☆熵、熵增。另一方面,也略有删减,比如※矢量的标积和矢积,※平行力的合成重心,物体平衡的种类。有的说法更严谨,比如反冲运动及火箭改为反冲运动※变质量体系的运动,※质点和质点组的角动量定理(不引入转动惯量) 改为质点和质点组的角动量定理和转动定理,并且删去了对不引入转动惯量的限制,声音的响度、音调和音品声音的共鸣乐音和噪声增加限制(前3项均不要求定量计算)。 2、知识点顺序有调整。比如刚体的平动和绕定轴的转动2013版在一、运动学的最后,2016版独立为一个新单元,---很早以前的版本也如此。 3、2013年开始实行的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。2016年开始实行的进一步细化,其中标☆仅为决赛内容,※为复赛和决赛内容,如不说明,一般要求考查定量分析能力。 全国中学生物理竞赛内容提要 (2015年4月修订,2016年开始实行) 说明:按照中国物理学会全国中学生物理竞赛委员会第9次全体会议(1990年)的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛、复赛和决赛命题的依据。它包括理论基础、实验、其他方面等部分。1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。1991年9月11日在南宁经全国中学生物理竞赛委员会第10次全体会议通过,开始实施。 经2000年全国中学生物理竞赛委员会第19次全体会议原则同意,对《全国中学生物理竞赛内容提要》做适当的调整和补充。考虑到适当控制预赛试题难度的精神,《内容提要》中新补充的内容用“※”符号标出,作为复赛题和决赛题增补的内容,预赛试题仍沿用原规定的《内容提要》,不增加修改补充后的内容。 2005年,中国物理学会常务理事会对《全国中学生物理竞赛章程》进行了修订。依据修订后的章程,决定由全国中学生物理竞赛委员会常务委员会组织编写《全国中学生物理竞赛实验指导书》,作为复赛实验考试题目的命题范围。 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2013年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 2015年对《全国中学生物理竞赛内容提要》进行了修订,其中标☆仅为决赛内容,※为复赛和决赛内容,如不说明,一般要求考查定量分析能力。 力学 1. 运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度

高中物理竞赛方法集锦

例11:如图13—11所示,用12根阻值均为r的相同的电阻丝构成正立方体框架。试求AG两点间的等效电阻。 解析:该电路是立体电路,我们可以将该立体电路“压扁”,使其变成平面电路,如图13—11—甲所示。 考虑到D、E、B三点等势,C、F、H三点等势,则电路图可等效为如图13—11—乙所示的电路图,所以AG间总电阻为

r r r r R 6 5363=++= 例12:如图13—12所示,倾角为θ的斜面上放一木 制圆制,其质量m=0.2kg ,半径为r ,长度L=0.1m ,圆柱 上顺着轴线OO ′绕有N=10匝的线圈,线圈平面与斜面 平行,斜面处于竖直向上的匀强磁场中,磁感应强度 B=0.5T ,当通入多大电流时,圆柱才不致往下滚动? 解析:要准确地表达各物理量之间的关系, 最好画出正视图,问题就比较容易求解了。如 图13—12—甲所示,磁场力F m 对线圈的力矩 为M B =NBIL ·2r ·sin θ,重力对D 点的力矩为: M G =mgsin θ,平衡时有:M B =M G 则可解得:A NBL mg I 96.12== 例13:空间由电阻丝组成的无穷网络如图13—13 所示,每段电阻丝的电阻均为r ,试求A 、B 间的等效 电阻R AB 。 解析:设想电流A 点流入,从B 点流出,由对称 性可知,网络中背面那一根无限长电阻丝中各点等电 势,故可撤去这根电阻丝,而把空间网络等效为图13—13—甲所示的电路。

(1)其中竖直线电阻r ′分别为两个r 串联和一个r 并联后的电阻值, 所以 r r r r r 3 232=?=' 横线每根电阻仍为r ,此时将立体网络变成平面网络。 (2)由于此网络具有左右对称性,所以以AB 为轴对折,此时网络变为如图13—13—乙所示的网络。 其中横线每根电阻为21r r = 竖线每根电阻为32r r r ='= '' AB 对应那根的电阻为r r 32 =' 此时由左右无限大变为右边无限 大。 (3)设第二个网络的结点为CD ,此后均有相同的网络,去掉AB 时电路为图13—13—丙所示。再设R CD =R n -1(不包含CD 所对应的竖线电阻) 则N B A R R =',网络如图13—13—丁所示。

相关文档
最新文档