七年级上期中考试数学.doc

合集下载

数学七年级上册期中考试试卷【含答案】

数学七年级上册期中考试试卷【含答案】

数学七年级上册期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 有理数大小比较,-5____-7(大于、小于、等于)A. 大于B. 小于C. 等于4. 下列哪个数是立方数?A. 27B. 28C. 30D. 325. 一个等腰三角形的顶角是50°,那么它的一个底角是多少度?A. 65°B. 70°C. 75°D. 80°二、判断题(每题1分,共5分)1. 任何偶数都可以表示为2的倍数。

()2. 0是最小的自然数。

()3. 1的倒数是1。

()4. 等边三角形一定是锐角三角形。

()5. 对角线互相垂直的四边形一定是菱形。

()三、填空题(每题1分,共5分)1. 最大的负整数是____。

2. 一个正方形的边长是a,那么它的面积是____。

3. 如果一个数的平方是36,那么这个数可能是____或____。

4. 1千米等于____米。

5. 两个等腰直角三角形可以拼成一个正方形。

()四、简答题(每题2分,共10分)1. 请解释有理数的概念。

2. 什么是算术平方根?3. 简述平行线的性质。

4. 请说明等边三角形的性质。

5. 什么是比例线段?五、应用题(每题2分,共10分)1. 小明有5个苹果,小华有7个苹果,他们一共有多少个苹果?2. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

3. 一个数的3倍加上10等于29,求这个数。

4. 一个等腰三角形的底边长是10厘米,腰长是13厘米,求这个三角形的周长。

5. 如果一辆汽车以60千米/小时的速度行驶,那么它行驶100千米需要多少时间?六、分析题(每题5分,共10分)1. 画出边长为3厘米的正方形,并标出它的对角线。

七年级上学期数学期中考试卷(含答案)

七年级上学期数学期中考试卷(含答案)

七年级上学期数学期中考试卷(含答案)一.选择题(共30分)1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.在有理数﹣1,﹣2,0,2中,最小的是()A.﹣1B.﹣2C.0D.23.如果|x|=2,那么x=()A.2B.﹣2C.2或﹣2D.2或4.计算(﹣3)+(﹣2)的结果等于()A.﹣5B.﹣1C.5D.15.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃6.若a,b互为相反数,c的倒数是4,则3a+3b﹣4c的值为()A.﹣8B.﹣5C.﹣1D.167.与2÷3÷4运算结果相同的是()A.2÷(3÷4)B.2÷(3×4)C.2÷(4÷3)D.3÷2÷48.2022年3月11日,新华社发文总结2021年中国取得的科技成就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤重量1731克.其中数据40000000用科学记数法表示为()A.0.4×108B.4×107C.4.0×108D.4×106 9.下列结论不正确的是()A.abc的系数是1B.多项式1﹣3x2﹣x中,二次项是﹣3x2C.﹣ab3的次数是4D.-3xy不是整式410.当x=﹣2时,式子3x2+ax+8的值为16,当x=﹣1时,这个式子的值为()A.2B.9C.21D.311.下列说法正确的是()A.﹣3xy的系数是3B.xy2与﹣xy2是同类项C.﹣x3y2的次数是6D.﹣x2y+2x﹣3是四次三项式12.化简3xy2﹣xy2结果正确的是()A.2xy B.2xy2C.2x2y D.2y213.下列添括号正确的是()A.﹣b﹣c=﹣(b﹣c)B.﹣2x+6y=﹣2(x﹣6y)C.a﹣b=+(a﹣b)D.x﹣y﹣1=x﹣(y﹣1)14.一个长方形的长是a+b,宽是a,其周长是()A.2a+b B.4a+b C.4a+2b D.2a+2b15.如果a和﹣4b互为相反数,那么多项式2(b﹣2a+10)+7(a﹣2b﹣3)的值是()A.﹣3B.﹣1C.1D.3二.填空题(共30分)16.若x=﹣3,则|x|的值为.17.数轴上的点A、B分别表示﹣3、2,则点离原点的距离较近(填“A”或“B”).18.已知|m|=5,|n|=2,且n<0,则m+n的值是.19.中秋节当天,高州市的最高气温是32℃,而在我国最北端的漠河市的最高气温是﹣3℃,则两城市中最大的温差是℃.20.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则代数式a﹣b+2c=.21.若代数式2x2+3x+7的值是8,则代数式2x2+3x﹣7的值是.22.若单项式﹣5x2y m与x n y是同类项,则m﹣n=.23.﹣x2﹣2x+3=﹣()+3.24.某校购买价格为a元/个的排球100个,价格为b元/个的篮球50个,则该校一共需支付元.25.“24点游戏”指的是将一副扑克牌中任意抽出四张,根据牌面上的数字进行加减乘除混合运算(每张牌只能使用一次),使得运算结果是24或者是﹣24,现抽出的牌所对的数字是4,﹣5,3,﹣1,请你写出刚好凑成24的算式.三.解答题(共40分)26.(12分)计算:+(﹣2);(1)(﹣1)×(﹣4)+(﹣9)÷3×13)﹣|﹣1﹣5|;(2)﹣12022+(﹣2)3×(﹣12(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3;(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].27.(5分)将下列各数在给出的数轴上表示出来,并用“<”把它们连接起来:﹣1,﹣(﹣3.5),﹣|﹣3|,0,|﹣5|.228.(5分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求a+b+m﹣2022cd的值.29.(5分)如图,请用两种不同的方法求阴影部分的面积.30.(8分)代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.31.(5分)已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n的值.参考答案一.选择题1.C.2.B.3.C.4.A.5.D.6.C.7.B.8.B.9.D.10.B.11.B.12.B.13.C.14.C.15.B.二.填空题16.3.17.B.18.3或﹣7.19.35.20.﹣2.21.﹣6;22.﹣1.23.x2+2x.24.(100a+50b).25.3×[4﹣(﹣5)﹣1](答案不唯一).三.解答题26.解:(1)(﹣1)×(﹣4)+(﹣9)÷3×1+(﹣2)3﹣2=4﹣3×13=4﹣1﹣2=1;)﹣|﹣1﹣5|(2)﹣12022+(﹣2)3×(﹣12)﹣6=﹣1﹣8×(﹣12=﹣1+4﹣6=﹣3;(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3=(4﹣3)a3+(﹣3+1)a2b+(5﹣5)ab2=a3﹣2a2b;(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)]=5x2﹣7x﹣(3x2+2x2﹣8x+2)=5x2﹣7x﹣3x2﹣2x2+8x﹣2=x﹣2.27.解:如图所示:,从左到右用“<”连接为:.28.解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,∴当m=2时,a+b+m﹣2022cd=0+2﹣2022×1=2﹣2022=﹣2020;当m=﹣2时,a+b+m﹣2022cd=0﹣2﹣2022×1=﹣2﹣2022=﹣2024.29.解:方法1:(2a+3b)(2a+b)﹣2a×3b=4a2+2ab+6ab+3b2﹣6ab=4a2+2ab+3b2;方法2:2a×a×2+b(2a+3b)=4a2+2ab+3b2.30.解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.31.解:∵关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,∴m+5=0,n﹣1=0,∴m=﹣5,n=1.。

【精选】人教版七年级上册期中数学试卷(含答案).doc

【精选】人教版七年级上册期中数学试卷(含答案).doc

七年级(上)期中数学试卷一、你一定能选对(本题共有10小题,每小题3分,共30分,下列各题均有四个备选答案,其中有且只有一个是正确的)1.﹣3的相反数是()A.B. C.3 D.﹣32.武汉冬季某天的最高气温9℃,最低气温﹣2℃,这一天武汉的温差是()A.11℃ B.﹣11℃C.7℃D.﹣7℃3.的倒数是()A.﹣B.C.﹣6 D.64.下列关于单项式﹣3x5y2的说法中,正确的是()A.它的系数是3 B.它的次数是7 C.它的次数是5 D.它的次数是25.把(﹣3)﹣(﹣4)+(﹣6)﹣(﹣7)写成省略括号的形式是()A.﹣3+4﹣6﹣7 B.﹣3﹣4+6﹣7 C.﹣3﹣4﹣6﹣7 D.﹣3+4﹣6+76.一条河的水流速度是1.5km/h,某船在静水中的速度是vkm/h,则该船在这条河中逆流行驶的速度正确的是()A.(v+1.5)km/h B.(v﹣1.5)km/h C.(v+3)km/h D.(v﹣3)km/h7.下列各项是同类项的是()A.ab2与a2b B.xy与2y C.ab与 D.5ab与6ab28.某企业去年7月份产值为a万元,8月份比7月份减少了10%,9月份比8月份增加了15%,则9月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%)(1+15%)万元9.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为46,则这9个数的和为()A.69 B.84 C.126 D.20710.下列说法中不正确的个数有()①1是绝对值最小的有理数;②若a2=b2,则a3=b3;③两个四次多项式的和一定是四次多项式;④多项式x2﹣3kxy﹣3y2+xy﹣8合并同类项后不含xy项,则k的值是.A.1个B.2个C.3个D.4个二、你能填得又快又准吗?(每小题3分)11.如果水位升高3m时水位变化记作+3m,那么水位下降2m时水位变化记作:m.12.武汉园博会自9月25日开幕至“十一”期间累计接待游客480000人,成全国瞩目的焦点,数480000用科学记数法表示为.13.多项式2a4﹣3a2b2+4的常数项是.14.若﹣3x4b﹣1y4+2x3y2﹣a=﹣x3y4,则a+b=.将卡片正面的数由大到小排列,然后将卡片翻转,卡片上的字母组成的单词是.16.已知一个两位数M的个位数字母是a,十位数字母是b,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N,则2M﹣N=(用含a和b的式子表示).三、解下列各题(本题共8题,共72分)下列各题需要在指定位置写出文字说明、证明过程、演算步骤或画出图形17.计算:(1)8﹣(﹣15)+(﹣2)×3(2)﹣32﹣(﹣2)3÷4.18.计算:(1)﹣5mn+8mn+mn(2)2(2a﹣3b)﹣3(2b﹣3a)19.先化简再求值:﹣3(n﹣mn)+2(mn﹣m),其中|m+n+3|+(mn﹣2)2=0.20.下列各数是10名学生在某一次数学考试中的成绩:92,93,88,76,105,90,71,103,92,91(1)他们的最高分与最低分的差是;(2)请先用一个整十的数估计他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估算能力.21.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.(2)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.22.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.23.将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a,宽为b,且a>b.(1)当a=9,b=2,AD=30时,请求:①长方形ABCD的面积;②S1﹣S2的值;(2)当AD=30时,请用含a,b的式子表示S1﹣S2的值.(3)若AB长度不变,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,而S1﹣S2的值总保持不变,则a,b满足的关系是.24.已知式子M=(a+5)x3+7x2﹣2x+5是关于x的二次多项式,且二次多项式系数为b,数轴上A、B两点所对应的数分别是a和b.(1)则a=,b=.A、B两点之间的距离=;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点P所对应的有理数.(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P 到点A的距离的3倍?若可能请求出此时点P的位置,并直接指出是第几次运动,若不可能请说明理由.七年级(上)期中数学试卷参考答案与试题解析一、你一定能选对(本题共有10小题,每小题3分,共30分,下列各题均有四个备选答案,其中有且只有一个是正确的)1.﹣3的相反数是()A.B. C.3 D.﹣3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.武汉冬季某天的最高气温9℃,最低气温﹣2℃,这一天武汉的温差是()A.11℃ B.﹣11℃C.7℃D.﹣7℃【考点】有理数的减法.【专题】应用题.【分析】温差等于最高气温减去最低气温.【解答】解:9﹣(﹣2)=9+2=11℃.故选:A.【点评】本题主要考查的是有理数的减法,根据题意列出算式是解题的关键.3.的倒数是()A.﹣B.C.﹣6 D.6【考点】倒数.【分析】根据倒数的定义,即可解答.【解答】解:的倒数是6,故选:D.【点评】本题考查了倒数的定义,解决本题的关键是熟记倒数的定义.4.下列关于单项式﹣3x5y2的说法中,正确的是()A.它的系数是3 B.它的次数是7 C.它的次数是5 D.它的次数是2【考点】单项式.【分析】直接利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,分别得出答案.【解答】解:A、单项式﹣3x5y2的系数是﹣3,故此选项错误;B、单项式﹣3x5y2的次数是7,故此选项正确;由B选项可得,C,D选项错误.故选:B.【点评】此题主要考查了单项式的次数与系数定义,正确把握单项式的次数与系数的定义是解题关键.5.把(﹣3)﹣(﹣4)+(﹣6)﹣(﹣7)写成省略括号的形式是()A.﹣3+4﹣6﹣7 B.﹣3﹣4+6﹣7 C.﹣3﹣4﹣6﹣7 D.﹣3+4﹣6+7【考点】有理数的加减混合运算.【专题】计算题.【分析】有理数加减混合运算,先把减法转化成加法,再写成省略括号的和的形式,然后运用加法法则进行计算,注意尽量运用运算律简化运算.【解答】解:(﹣3)﹣(﹣4)+(﹣6)﹣(﹣7)=﹣3+4﹣6+7.故选D.【点评】本题考查了有理数的加减混合运算,对有理数加减法统一成加法,并且要熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.6.一条河的水流速度是1.5km/h,某船在静水中的速度是vkm/h,则该船在这条河中逆流行驶的速度正确的是()A.(v+1.5)km/h B.(v﹣1.5)km/h C.(v+3)km/h D.(v﹣3)km/h【考点】列代数式.【分析】利用静水速度﹣水流速度=逆水速度列出式子即可.【解答】解:逆水速度为(v﹣1.5)km/h.故选:B.【点评】此题考查列代数式,掌握静水速度、水流速度、逆水速度、顺水速度之间的关系是解决问题的关键.7.下列各项是同类项的是()A.ab2与a2b B.xy与2y C.ab与 D.5ab与6ab2【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,几个常数项也是同类项.【解答】解:A、ab2与a2b字母的指数不同,故不是同类项;B、xy与2y所含字母不同,故不是同类项;C、符合同类项的定义,故是同类项;D、5ab与6ab2字母的指数不同,故不是同类项.故选:C.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还应注意同类项与字母的顺序无关,几个常数项也是同类项.8.某企业去年7月份产值为a万元,8月份比7月份减少了10%,9月份比8月份增加了15%,则9月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%)(1+15%)万元【考点】列代数式.【分析】根据7月份的产值是a万元,用a把8月份的产值表示出来为(1﹣10%)a,进而得出9份产值列出式子(1﹣10%)a×(1+15%)万元,即可得出选项.【解答】解:7月份的产值是a万元,则8月份的产值是(1﹣10%)a万元,9月份的产值是(1+15%)(1﹣10%)a万元,故选:D.【点评】此题主要考查了列代数式,解此题的关键是能用a把8、9月份的产值表示出来.9.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为46,则这9个数的和为()A.69 B.84 C.126 D.207【考点】一元一次方程的应用.【专题】应用题.【分析】设圈出的数字中最小的为x,则最大数为x+16,根据题意列出方程,求出方程的解得到x的值,进而确定出9个数字,求出之和即可.【解答】解:设圈出的数字中最小的为x,则最大数为x+16,根据题意得:x+x+16=46,移项合并得:2x=30,解得:x=15,∴9个数之和为:15+16+17+22+23+24+29+30+31=207.故选D【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.10.下列说法中不正确的个数有()①1是绝对值最小的有理数;②若a2=b2,则a3=b3;③两个四次多项式的和一定是四次多项式;④多项式x2﹣3kxy﹣3y2+xy﹣8合并同类项后不含xy项,则k的值是.A.1个B.2个C.3个D.4个【考点】多项式;绝对值;有理数的乘方.【分析】①0的绝对值是0;②若a2=b2,则a=b或a=﹣b;③两个多项式的四次项可能是同类项且系数互为相反数;④根据合并后不含xy项可知:﹣3k+=0.【解答】解:①0是绝对值最小的有理数,故①错误;②若a2=b2,则a=b或a=﹣b,故②错误;③两个两个四次多项式的和一定不高于四次,故③错误;④由合并后不含xy项可知:﹣3k+=0,解得k=,故④正确.综上所述,错误的共有3个.故选:C.【点评】本题主要考查的是多项式、绝对值、有理数的乘法,掌握相关概念和法则是解题的关键.二、你能填得又快又准吗?(每小题3分)11.如果水位升高3m时水位变化记作+3m,那么水位下降2m时水位变化记作:﹣2m.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:∵水位升高3m时水位变化记作+3m,∴水位下降2m时水位变化记作﹣2m.故答案为:﹣2.【点评】此题主要考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.武汉园博会自9月25日开幕至“十一”期间累计接待游客480000人,成全国瞩目的焦点,数480000用科学记数法表示为 4.8×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将480000用科学记数法表示为:4.8×105.故答案为:4.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.多项式2a4﹣3a2b2+4的常数项是4.【考点】多项式.【分析】根据常数项的定义即不含字母的项叫做常数项,进而得出答案.【解答】解:多项式2a4﹣3a2b2+4的常数项是4.故答案为:4.【点评】此题考查了多项式,正确把握多项式中常数项的定义是解题关键.14.若﹣3x4b﹣1y4+2x3y2﹣a=﹣x3y4,则a+b=﹣1.【考点】合并同类项.【分析】根据合并同类项,系数相加字母和字母的指数不变,可得答案.【解答】解:由﹣3x4b﹣1y4+2x3y2﹣a=﹣x3y4,得2﹣a=4,4b﹣1=3,解得a=﹣2,b=1,a+b=﹣2+1=﹣1.故答案为:﹣1.【点评】本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变.将卡片正面的数由大到小排列,然后将卡片翻转,卡片上的字母组成的单词是.【考点】有理数大小比较.【分析】根据0大于负数,正数大于负数和0,两个负数绝对值大的反而小.【解答】解:a=﹣(﹣1)=1,h=|﹣2|=2,k=(﹣1)3=﹣1,n=0,s=﹣3,t=+5,则+5>2>1>0>﹣1>﹣3,即t>h>a>n>k>s,故答案为:thanks.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,正数大于负数和0,两个负数绝对值大的反而小.16.已知一个两位数M的个位数字母是a,十位数字母是b,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N,则2M﹣N=19b﹣8a(用含a和b的式子表示).【考点】整式的加减;列代数式.【分析】根据题意得出M、N的值,代入代数式进行计算即可.【解答】解:∵由题意得,M=10b+a,N=10a+b,∴2M﹣N=2(10b+a)﹣(10a+b)=20b+2a﹣10a﹣b=19b﹣8a.故答案为:19b﹣8a.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.三、解下列各题(本题共8题,共72分)下列各题需要在指定位置写出文字说明、证明过程、演算步骤或画出图形17.计算:(1)8﹣(﹣15)+(﹣2)×3(2)﹣32﹣(﹣2)3÷4.【考点】有理数的混合运算.【分析】(1)先算乘法,再算加减法;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:(1)8﹣(﹣15)+(﹣2)×3=8+15﹣6=17;(2)﹣32﹣(﹣2)3÷4=﹣9+8÷4=﹣9+2=﹣7.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.18.计算:(1)﹣5mn+8mn+mn(2)2(2a﹣3b)﹣3(2b﹣3a)【考点】整式的加减.【专题】计算题.【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=(﹣5+8+1)mn=4mn;(2)原式=4a﹣6b﹣6b+9a=13a﹣12b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.先化简再求值:﹣3(n﹣mn)+2(mn﹣m),其中|m+n+3|+(mn﹣2)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出m+n与mn的值,代入计算即可求出值.【解答】解:原式=﹣n+3mn+2mn﹣m=﹣(m+n)+5mn,∵|m+n+3|+(mn﹣2)2=0,∴,则原式=3+10=13.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.下列各数是10名学生在某一次数学考试中的成绩:92,93,88,76,105,90,71,103,92,91(1)他们的最高分与最低分的差是34;(2)请先用一个整十的数估计他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估算能力.【考点】正数和负数.【分析】(1)找出最高分和最低分,然后用最高分减最低分即可;(2)把超过90的部分用正数表示,不足90的部分用负数来表示,然后再进行计算即可.【解答】解:(1)105﹣71=34.故答案为:34.(2)估计这10名同学的平均成绩为90分.把他们成绩超过90的部分记作正数,不足90的部分记作负数.这10位学生的分数分别记为:+2,+3,﹣2,﹣14,+15,0,﹣19,+13,+2,+1.90+(2+3﹣2﹣14+15+0﹣19+13+2+1)÷10=90+0.1=90.1.答:这10名学生的平均成绩是90.1,我估计的分值与此很接近.【点评】本题主要考查的是有理数的加法、正负数,引入正负数进行简便计算是解题的关键.21.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.(2)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.【考点】数轴.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C的位置;(2)计算出电瓶车一共走的路程,即可解答.【解答】解:(1)如图,(2)电瓶车一共走的路程为:|+2|+|2.5|+|﹣8|+|+4|=16.5(千米),∵16.5>15,∴该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.【点评】本题考查了利用数轴表示一对具有相反意义的量,借助数轴用几何方法解决问题,有直观、简捷,举重若轻的优势.22.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款200x+16000元.(用含x的代数式表示)若该客户按方案二购买,需付款180x+18000元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.【考点】列代数式;代数式求值.【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30带人求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带更合算.【解答】解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:200x+16000 …方案二费用:180x+18000 …(2)当x=30时,方案一:200×30+16000=22000(元)…方案二:180×30+18000=23400(元)所以,按方案一购买较合算.…(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带.则20000+200×10×90%=21800(元)…【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.23.将7张相同的小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为S1,S2,已知小长方形纸片的长为a,宽为b,且a>b.(1)当a=9,b=2,AD=30时,请求:①长方形ABCD的面积;②S1﹣S2的值;(2)当AD=30时,请用含a,b的式子表示S1﹣S2的值.(3)若AB长度不变,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,而S1﹣S2的值总保持不变,则a,b满足的关系是a=4b.【考点】整式的加减;列代数式;代数式求值.【专题】计算题.【分析】(1)①根据长方形的面积公式,直接计算即可;②求出S1和S2的面积,相减即可;(2)用含a、b的式子表示出S1和S2的面积,即可求得结论;(3)用含a、b、AD的式子表示出S1﹣S2,根据S1﹣S2的值总保持不变,即与AD的值无关,整理后,让AD的系数为0即可.【解答】解:(1)①长方形ABCD的面积为30×(4×2+9)=510;②S1﹣S2=(30﹣3×2)×9﹣(30﹣9)×4×2=﹣48;(2)S1﹣S2=a(30﹣3b)﹣4b(30﹣a)=30a﹣3ab﹣120b+4ab=ab+30a﹣120b;(3)∵S1﹣S2=4b(AD﹣a)﹣a(AD﹣3b),整理,得:S1﹣S2=(4b﹣a)AD﹣ab,∵若AB长度不变,AD变长,而S1﹣S2的值总保持不变,∴4b﹣a=0,解得:a=4b.即a,b满足的关系是a=4b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.已知式子M=(a+5)x3+7x2﹣2x+5是关于x的二次多项式,且二次多项式系数为b,数轴上A、B两点所对应的数分别是a和b.(1)则a=﹣5,b=7.A、B两点之间的距离=12;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点P所对应的有理数.(3)在(2)的条件下,点P会不会在某次运动时恰好到达某一位置,使点P到点B的距离是点P 到点A的距离的3倍?若可能请求出此时点P的位置,并直接指出是第几次运动,若不可能请说明理由.【考点】一元一次方程的应用;数轴.【分析】(1)根据二次多项式的定义得到a+5=0,由此求得a的值;然后由多项式的系数的定义得到b的值,则易求线段AB的值.(2)根据题意得到点P每一次运动后所在的位置,然后由有理数的加法进行计算即可.(3)设点P对应的有理数的值为x,分情况进行解答:点P在点A的左侧,点P在点A、B之间、点P在点B的右侧三种情况.【解答】解:(1)∵式子M=(a+5)x3+7x2﹣2x+5是关于x的二次多项式,且二次多项式系数为b,∴a+5=0,b=7,则a=﹣5,∴A、B两点之间的距离=|﹣5|+7=12.故答案是:﹣5;7;12.(2)依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2014﹣2015,=﹣5+1007﹣2015,=﹣1013.答:点P所对应的有理数的值为﹣1013;(3)设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【点评】本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,解答(3)题时,一定要分类讨论.112016年3月10日12。

2024—2025学年人教版七年级数学上册期中考试试卷

2024—2025学年人教版七年级数学上册期中考试试卷

七年级上册数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.将“1410000000”用科学记数法表示正确的是()A.14.1×108B.1.41×109C.0.141×1010D.1.41×10102.下列各对数中,数值相等的是()A.﹣(﹣3)2与﹣(2)3B.﹣32与(﹣3)2C.﹣3×23与﹣32×2D.﹣27与(﹣2)73.下列表示数轴的方法正确的是()A.B.C.D.4.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为﹣0.12毫米,第三个为﹣0.15毫米,第四个为0.16毫米,则质量最差的零件是()A.第一个B.第二个C.第三个D.第四个5.下列有理数大小关系判断正确的是()A.﹣(﹣)>﹣|﹣|B.0>|﹣10|C.|﹣3|<|+3|D.﹣1>﹣0.016.下列说法正确的有()A.是整式B.是单项式C.不是整式D.是多项式7.如果a表示一个任意有理数,那么下面说法正确的是()A.﹣a是负数B.|a|一定是正数C.|a|一定不是负数D.|a|一定是负数8.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.﹣3C.7或﹣3D.不能确定9.如图所示,点在数轴上,则将m、n、0、﹣m、﹣n从小到大排列正确的是()A.﹣m<﹣n<0<m<n B.m<n<0<﹣m<﹣nC.﹣n<﹣m<0<m<n D.m<n<0<﹣n<﹣m 10.如图,长为y(cm),宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短的边长为4cm,下列说法中正确的有()①小长方形的较长边为(y﹣12)cm;②阴影A的较短边和阴影B的较短边之和为(x﹣y+4)cm;③若x为定值,则阴影A和阴影B的周长和为定值;④当x=20时,阴影A和阴影B的面积和为定值.A.1个B.2个C.3个D.4个二、填空题(6小题,每题3分,共18分)11.笔记本的单价是x元,圆珠笔的单价是y元,买4本笔记本和2支圆珠笔共需元.12.2024的倒数是.13.单项式的系数是14.若关于a,b的代数式﹣3a3b x与9a y b是同类项,则x y的值是15.已知x与y互为相反数,m与n互为倒数,且|a|=3,则=.16.已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数…依此类推,那么a1+a2+…+a100的值是第II卷七年级上册数学期中模拟考试试卷人教版2024—2025学年七年级上册姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算(1);(2).18.先化简,再求值:a+2(5a﹣3b)﹣3(a﹣3b),其中a=,b=﹣2.19.有理数a、b、c在数轴上的位置如图所示:(1)比较﹣a、b、c的大小(用“<”连接);(2)化简|c﹣b|﹣|b﹣a|+|a+c|.20.足球比赛中,根据场上攻守形势,守门员会在球门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m)+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到了球门线上?(2)守门员在这段时间内共跑了多少米?(3)如果守门员离开球门线的距离超过10m(不包括10m),那么对方球员挑射极有可能破门.请问在这段时间内,对方球员有几次挑射破门的机会?21.为了加强公民的节水意识,合理利用水资源,某市采取价格调控手段以达到节水的目的,如表是该市自来水收费价格的价目表(注:水费按月结算)每月用水量单价不超过6立方米的部分2元/立方米超过6立方米但不超过10立方米的部分4元/立方米超过10立方米的部分8元/立方米(1)若某户居民2月份用水4立方米,则应缴纳水费元.(2)若某户居民3月份用水a(6<a<10)立方米,则该用户3月份应缴纳水费多少元(用含a的代数式表示,并化成最简形式)?(3)若某户居民4,5月份共用水15立方米(5月份用水量多于4月份),设4月份用水x立方米,求该户居民4,5月份共缴纳水费多少元.(用含x的代数式表示,并化成最简形式)22.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少a2,第三个数是第一个数与第二个数的差的3倍,第四个数比第一个数少﹣2b,若第二个数用x表示,第三个数用y表示,第四个数用z表示.(1)用a,b分别表示x,y,z三个数;(2)若第一个数的值是3时,求这四个数的和;(3)已知m,n为常数,且mx+2ny﹣3z﹣4的结果与a,b无关,求m,n的值.23.数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2+2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2﹣2a=2,则2a2﹣4a=;(2)已知a﹣b=5,b﹣c=3,求代数式(a﹣c)2+3a﹣3c的值;(3)当x=﹣1,y=2时,代数式ax2y﹣bxy2﹣1的值为5,则当x=1,y=﹣2时,求代数式ax2y﹣bxy2﹣1的值.24.两个边长分别为a和b的正方形按如图1放置,记未叠合部分(阴影)的面积为S1.在图1大正方形的右下角再摆放一个边长为b的小正方形(如图2),记两个小正方形叠合部分(阴影)的面积S2.(1)用含a,b的代数式分别表示S1,S2.(2)若a=5,b=3,求S1+S2的值.(3)若S1+S2=64,求图3中阴影部分的面积S3.25.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。

山东省济南章丘市2024-2025学年七年级上学期期中考试数学试题(文档版)

山东省济南章丘市2024-2025学年七年级上学期期中考试数学试题(文档版)

章丘区2024-2025学年第一学期期中考试七年级数学试题本试题分选择题和非选择题两部分.选择题部分共2页,满分为40分;非选择题部分共6页,满分为110分.本试题共8页,满分为150分.考试时间120分钟.本考试不允许使用计算器.选择题部分 共40分一、选择题(本大题共10小题,每小题4分,共40分.每个小题给出四个选项中,只有一项符合题目要求)1.中国是最早使用正负数表示具有相反意义的量的国家,早在我国秦汉时期的《九章算术》中就引入了负数.若在粮谷计算中,益实二斗(增加2斗)记为+2斗,那么损实5斗(减少5斗)记为( )A .+5斗B .﹣5斗C .+3斗D .﹣3斗2.下列长方体、圆柱体和圆锥体木料,切开后截面形状与其他三个不同的是( )A .B .C .D .3.2024年6月4日嫦娥六号完成世界首次从月球背面采样盒起飞,这趟往返76万公里的旅途中,是轨道器,着陆器,上升器,返回器,四器分工协作,完成了极其复杂,极具挑战的任务.“760000”用科学记数法表示正确的是( )A .7.6×106B .76×106C .7.6×105D .76×1054. 下列数,﹣21,25%,3.1415926,0,-,﹣|﹣10|,|﹣6|中,负有理数有( )A .3个B .4个C .5个D .2个5.下列计算中,正确的是 A .B .C .D .6. 小轩制作了一个正方体灯笼,六个面上写有“祝福祖国万岁”,其平面展开图如图所示,那么在该几何体中和“福”字相对的字是( )4π-3.0 ()6410a b ab +=2242734x y x y x y -=22770a b ba -=2248816x x x +=A .祖B .国C .万D .岁7.下列判断中正确的是( )A .3a 2bc 与b 2ca 2是同类项 B.是整式C .单项式﹣2π2xyz 2的系数为﹣2π D .多项式a 4﹣2a 2b 2c+b 4是四次三项式8.有理数a ,b ,c 的位置如图所示,则下列各式:①ab <0 ②b ﹣a +c >0 ③ ④|a ﹣b |﹣|c +a |+|b ﹣c |=-2a ,其中正确的有( )个.A .1B .2C .3D .49.新定义:符号“”表示一种新运算,它对一些数的运算结果如下:运算(一,,,(1),(2),运算(二,,,,利用以上规律计算:( );A. -4049 B. 4049 C. 0 D. -110.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( ).A .2024B .6070 C.2022 D.606952n m 1=++cc b b a a f ):(2)213f -=--=-(1)112f -=--=-(0)011f =-=-f 110=-=f 211=-=⋯1):(33f -=-1()22f -=-1(22f =1()33f =⋯1(2024)(2025f f ---=章丘区2024-2025学年第一学期期中考试七年级数学非选择题部分 共110分二.填空题(本大题共5小题,每小题4分,共20分)11.如果 12.如图,将一刻度尺放在数轴上.若刻度尺上0cm 和5cm 对应数轴上的点表示的数分别为﹣3和2,则刻度尺上7cm 对应数轴上的点表示的数是 .13. 已知单项式与单项式的和仍为单项式,则 14.已知,则= 15.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,如图所示的运算程序中,若开始输入x 的值为3,则第2024次输出的结果是( )三.解答题(本大题共10小题,共90分. 解答应写出文字说明、证明过程或演算步骤)16.(本小题满分7分)(1)把数1,﹣2,0,+(﹣1),|﹣5|,表示在下面的数轴上.(2)比较这六个数的大小,并用“>”连接.=+<==b ,0,5,2a ab b a 则且272m x y 685n x y -=+n m 22224x y -=23621x y --)213(--17.(本小题满分7分)先化简,再求值:,其中.18.(本小题满分7分)如图是由一些相同的棱长均为1cm 的小正方体组成的几何体.(1)请在方格纸中用粗实线画出该几何体的从正面、从左面、从上面看到的形状图;(2)这个几何体的表面积(包括底面)为______.19.计算:(本小题满分8分)(1)﹣12024﹣|1﹣0.5|×(2).222223[22(4)]5a b ab a b ab ab ---+-()0122=+++b a []2)3(221--⨯53(8.0)31(321422-÷⎥⎦⎤⎢⎣⎡+-⨯-⨯20.(本小题满分8分)已知关于x ,y 的多项式A =2x 2+ax ﹣5y +b ,(其中a ,b 为有理数).(1)求4A ﹣(3A +2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求的值.21.(本小题满分9分)随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售  斤;(2)根据记录的数据可知前三天共卖出 斤;本周实际销售总量达到了计划数量没有?(3)若冬枣每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?(4)小明想知道销售量的变化情况,请你用表格表示出来:星期一二三四五六日销售量变化(与前一天比)325232--+-=y x bx B )52()51(B b A a ++-22.(本小题满分10分)【观察思考】【规律发现】(1)第10个图案中“△”的个数为 ;(2)第n(n为正整数)个图案中“〇”的个数为 ,”△”的个数为 ;(用含n 的式子表示)【规律应用】(3)结合上面图案中“〇”和“△”的排列方式及规律,第35个图案中共需要多少个“〇”和“△”才能组成?23.(本小题满分10分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价40元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠两盒乒乓球;乙店的优惠办法是:全部商品按定价的8.5折(8.5折即按原价的85%计算)出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于8盒).(1)当购买乒乓球的盒数为x盒时,在甲店购买需付款 元;在乙店购买需付款 元.(用含x的代数式表示)(2)当购买乒乓球盒数为20盒时,去哪家商店购买较合算?请计算说明.(3)当购买乒乓球盒数为20盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.(本小题满分12分)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示,单位:米)留下一个“T”型图形(阴影部分).(1)用含x,y的代数式表示“T”型图形的周长;(2)若此图作为某施工图,“T”型图形的周边需围上单价为每米20元的栅栏,原长方形周边的其余部分需围上单价为每米15元的栅栏.请用含x,y的代数式表示材料所需的造价.(3)当x=5,y=7,工人4人(每人每天150元)工作3天,请你计算这次施工的总费用。

七年级上学期数学期中考试试卷含答案(word版)

七年级上学期数学期中考试试卷含答案(word版)

七年级上学期数学期中考试试卷含答案(word版)七年级数学第一学期期中考试试卷考试时间:100分钟满分:120分一、选择题(共12小题,满分36分)1.若在记账本上把支出6元记为-6,则收入3元应记为()A.+3B.-3C.+6D.-62.多项式-x+2/x+1的各项分别是()A.-x,2B.-x,-2C.x^2,x,1/2D.x,-2/x,-1/23.2019的相反数的绝对值是()A.-2019B.2019C.-2019D.4.下列去括号正确的是()A.-(2x+5)=-2x+5B.-(6x-4)=-3x+42C.(5x-3y)=1/3x+yD.-(2x-2y/3)=-x+2y/35.若m+n>0,则m与n的值()A、一定都是正数B、一定都是负数C、一定是一个正数,一个负数D、至少有一个是正数6.单项式-5πxy^m的系数和次数分别是()A.-π,7B.-5,6C.-5π,6D.-5,77.已知a>0,b<0,且a<b,则下列关系正确的是()A、b<-a<a<-bB、-a<b<a<-bC、-a<b<-b<aD、b<-a<-b<a8.一个多项式与x-2x+1的和是3x-2,则这个多项式为()A.x-5x+3B.-x+x-1C.-x+5x-3D.x-5x-39.若a=3,|b|=6,则a-b的值()A.3B.-3C.3或-9D.-3或910.已知2xy和-2xyn^2是同类项,则式子3m-2n的值是()A.-3B.3C.-6D.611.下列各数(-2),-(-2),(-3),-(-3)中,负数的个数有()A.1B.2C.3D.412.有一组单项式如下:-2x,3x,-4x,5x……,则第100个单项式是()A.100x^100B.-100x^100C.101x^100D.-101x^100二、填空题(共4小题,满分16分)13.将数轴上表示-8的点向右移动5个单位长度到点M,则点M所对应的数为__________.14.已知2m-6与4互为相反数,则m的值为__________.15.用科学记数法表示38万米是__________米.16.在一个正三角形场地中,如果在每边上放2盆花,则共需要6盆花;如果在每边上放3盆花,则共需要9盆花;以此类推,如果在每边上放25盆花,则共需要75盆花。

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年七年级上期中考试 - 数学
说明:本试题满分
100 分,考试时间 100 分钟。

一、用心选一选。

(每小题
3 分,共 36 分)
1.某天的温度上升了- 2℃的意义是
A .上升了
2℃
B .没有变化
C .下降了-
2℃
D .下降了
2℃
2.如下图,在数轴上表示到原点的距离为
3 个单位的点有
A . D 点
B . A 点
C . A 点和
D 点 D .B 点和 C 点
3.下列计算结果等于
1 的是 A . ( 2) ( 2)
B . ( 2)
( 2) C . 2 ( 2) D . ( 2) ( 2)
4.下列说法:①有理数是指整数和分数;
②有理数是指正数和负数;③没有最大的有理数,
但是最小的有理数是
0;④有理数的绝对值都是非负数;⑤ a 一定是负数;⑥倒数等
于本身的有理数只有 1。

其中正确的有
A . 2 个
B . 3 个
C . 4 个
D .多于 4 个
5.多项式 1
x m
(m 2) x 7 是关于 x 的二次三项式,则 m 的值是
2
A . 2
B .- 2
C . 2 或- 2
D .3
6.已知 a , b 互为倒数, m , n 互为相反数,则代数式
(5m 5n
3ab ) 2 的值是
2
A .
3
B .
9 C .
3
D .
9
2
4
4
4
7.2007 年搭载我国首颗探月卫星“嫦娥一号”的长征三号甲运载火箭在西昌卫星发射中心
发射,并成功飞向距地球约
384400000 米的月球。

这个数据用科学记数法可表示为
A . 38.44 10 8 米
B . 3.844 108

C . 3.844 10 9 米
D . 3.8 10 9 米
8.计算 ( 2) 2
( 2) 3 的结果是
A .- 4
B . 2
C . 4
D .12
9.若 abc 0 ,则 a 、 b 、 c 三个有理数中负因数的个数是
A . 0 个
B . 1 个
C . 2 个
D .0 个或 2 个
10. 2008 年 5 月 5 日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200 米的“珠峰大本营”,向山顶攀登。

他们在海拔每上升100 米,气温就下
降 0.6 ℃,在低温和缺氧的情况下,登山运动员于 5 月8 日9 时17 分,成功登上海拔
8844.43 米的地球最高点.而此时“珠峰大本营”的温度为-4℃,峰顶的温度为(结
果保留整数)
A.- 26℃B.- 22℃C.- 18℃D.22℃
11.已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是
A.a b B.ab 0 C.b a 0 D.a b 0 12.观察下列算式:21 2 ,22 4 , 23 8 , 24 16 , 25 32 , 26 64 ,⋯⋯根据上述算式中的规律,猜想22009的末位数字应是
A. 2 B. 4 C. 6 D.8
二、细心填一填。

(每小题 2 分,共26 分)
13.写出一个比- 2 大比- 1 小的有理数是 __________。

(一个即可)
14.某公交车原来坐有22 人,经过 4 个站点是上下车情况分别如下(上车为正,下车为负):(+ 4,- 8),(- 5,+ 6),(- 3,+ 2),(+ 1,- 7)。

现在车上还有__________ 人。

15.在北京奥运会羽毛球冠亚军比赛中,福建选手林丹以21︰19,21︰ 8 的成绩战胜对手获得金牌。

林丹的净胜球数是__________ 。

16.用四舍五入得到的近似数 6.80 106 有 _________个有效数字,精确到_________位。

17.单项式22 x2 y 3 的系数是 _______,次数是 ________;多项式a3 ab 2 2
a2 c 8 的
3 3
常数项是 __________ 。

18.轮船在 A、 B 两地间航行,水流速度为m 千米/时,船在静水中的速度为n 千米/时,则轮船逆流航行的速度为__________ 千米/时。

19.如果有
m 3 (
n
2) 2 0 ,则m 2n 的值为。

__________
20.小王在超市买了一袋洗衣粉,包装上标有“净重:800±5g”的字样,那么这袋洗衣粉的重量应不多于__________g。

21.如果 3x 2 m y 5 与 2x 2 y 3n 1 是同类项,那么 m n __________ 。

22.用火柴棍搭三角形,如下图:
1 个
2 个
3 个
4 个

请你找出规律猜想搭
n 个三角形需要
__________根火柴棍。

三、耐心做一做。

(共
38 分)
23.(每小题 4 分,本题满分 l2 分)计算:
( 1) 12 ( 18) ( 7) 15
( 2)
22 3 ( 1)4
( 4) 5
( 3) 5( a 2 b 2ab 2 c) 4(2c 3a 2b ab 2 )
24.(本题满分 6 分)先化简,再求值
1 x 2( x 1 y
2 ) (
3 x
1
y 2 ) ,其中 x
2, y 2
2 3
2 3
3
25.(本题满分 5 分)阅读计算过程:
3 1 22 [( 1 )2 ( 3 0.75)] 5
3 2
解:原式
3
1
2
2
[
1
3
3
] 5

3
4
4
3 1
4 [ 2] 5

3
3
1
2 ③
3 5
3 11
15
回答下列问题:
( 1)步骤①错在 ______________________________ ;
( 2)步骤①到步骤②错在 ______________________________ ;
( 3)步骤②到步骤③错在 ______________________________ ;
( 4)此题的正确结果是 ____________________。

26.(本题满分 7 分)有 8 筐白菜,以每筐
25 千克为标准,超过的千克数记作正数,不足
的千克数记作负数,称后的纪录如下:
回答下列问题:
( 1)这 8 筐白菜中最接近标准重量的这筐白菜重__________ 千克;
(2)与标准重量比较, 8 筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价 2.6 元,则出售这 8 筐白菜可卖多少元?
27.(本题满分8 分)如下图,在重建美好家园中,某乡镇准备在一长方形休闲广场的四角设计一块半径都相同的四分之一圆的花坛,正中设计一个圆形喷水池,若四周圆形和中
间圆形的半径都为r 米,广场长为 a 米,宽为b米。

( 1)请列式表示广场空地的面积;
( 2)若休闲广场的长为500 米,宽为200 米,r20 米,求广场空地的面积。

(计算
结果保留)
2009-2010 学年度山东省济宁市嘉祥县第一学期初一期中考试数学
试卷参考答案
一、用心选一选
1— 5 DCDAB 6— 10 BBDDA 11— 12 AA
二、细心填一填
13.- 1.5 (写出一个即可)14. 32 15. 15
16. 3,千17.22
, 5,- 8 18.(n m) 3
19.- 1 20. 805 21. 1 22.2n 1 三、耐心做一做
23.( 1) 12 ( 18) ( 7) 15
12 18 7 15
30 22
8
(2)
23 3 ( 1) 4 ( 4) 5
4 3 ( 20)
1 20
19
(3) 5(
2
2 2 ) 4( 2
3 2 2
)
a b
ab
c c a b
ab
5a 2b 10ab 2 5c 8c 12a 2 b
4ab 2
7a 2b 6ab 2 3c
24.解:原式
1 x 2x
2 y 2
3 x 1 y 2 2
3 2
3
3x
y 2
当 x
2, y
2 时
3
原式
( 3) ( 2) ( 2
)
2
6 4 6 4
3
9 9
25.( 1)去括号错误
⋯⋯⋯⋯⋯⋯⋯⋯ 1 分 (2)乘方计算错误 ⋯⋯⋯⋯⋯⋯⋯⋯ 2 分 (3)运算顺序错误 ⋯⋯⋯⋯⋯⋯⋯⋯ 3 分 (4) 4
2
⋯⋯⋯⋯⋯⋯⋯⋯
5 分
3
26.( 1) 24.5
( 2)不足 5.5kg
(3) 505.7 元
(分值: 2 分, 2 分, 3 分)
27.(( 1)小题 4 分,( 2)小题 4 分)
(1) (ab
2 r 2 ) 平方米;
(2) (100000
800 ) 平方米。

相关文档
最新文档