直流系统中的各类绝缘故障、直流互窜故障、交流窜电故障检测

直流系统中的各类绝缘故障、直流互窜故障、交流窜电故障检测
直流系统中的各类绝缘故障、直流互窜故障、交流窜电故障检测

GDF-3000A直流接地故障查找仪

一、概述

直流系统绝缘故障、直流互窜故障及交流窜电故障是一种易发生且对电力系统危害性较大的故障,危害电力系统正常运行。

为了能够更好的帮助现场维护人员快速准确地找出直流故障,我公司通过多年努力,总结大量现场经验,开发出了直流故障查找仪。

直流接地查找仪采用高精度电流钳表,利用故障回路中的直流电流差值进行故障查找与定位,将快速FFT变换技术引入到直流故障查找设备中,可以检测出各电压等级(24V,48V,110V,220V)直流系统中的各类绝缘故障、直流互窜故障、交流窜电故障。

随着电力系统对安全运行的要求越来越高,电力系统中对各类直流故障查找的要求也将越来越高,因此,高精度、绝缘趋势分析将成为电力系统对新一代直流接地查找仪的基本要求。

基于直流电流差值检测原理的新型直流接地查找仪引入快速FFT变换技术,通过对检测量幅频特性的详细分析平衡了直流接地故障查找安全性与灵敏度方面的矛盾,将直流接地故障技术推向了一个新的高度,具有广泛的应用前景。

二、装置结构及原理:

2.1装置组成

直流接地查找仪由系统分析仪、支路探测仪、采集器三部分组成,如下图示:

2.2 装置原理

2.2.1 绝缘故障查找原理

系统分析仪与被测直流母线相连,采用乒乓原理计算被测直流系统的平衡桥电阻及对地绝缘电阻,如果被测直流系统存在绝缘故障,系统分析仪则向直流系统投入设定好频率和幅值的检测桥,探测仪通过对各支路中电流信号的检测来实现接地故障点的定位,检测原理如下图示:

图中馈线1为正常馈线,馈线n 为存在负对地绝缘故障的馈线,x R 为绝缘故障阻值,R 为系统平衡电桥。

分析仪检测到绝缘故障后向直流系统投入检测桥,该检测桥以图示中的E 、F 表示,该检测桥的投入使直流系统对地电压产生一个已知频率的周期性变化量,设该变化量的频率为f 、使直流系统产生的对地电压变化幅值为V ?,则流过x R 上的电流变化幅值为

x R V I ?=?5,变化频率与检测桥投

入频率f 相同。

探测仪分别在A ,B ,C 处进行检测。在A 处检测不到该变化电流信号,说明馈线1没有绝缘故障,在B 处可以检测到该变化电流信号,说明馈线n 存在绝缘故障,而在C 处检测不到该变化电流信号,从而可以

确定绝缘故障点处于B、C之间。

2.2.2 直流互窜查找原理

系统分析仪与被测两段直流母线相连,向其中一段母线切换检测桥,比较两段母线电压变化波形,通过电压变化关系判断系统是否存在环网故障或绝缘故障,如果存在环网故障或绝缘故障,则持续启动检测桥,以供支路探测仪实现环网故障点的定位。

当两段支路存在环网故障时,可使用探测仪和采集器对可能存在环网故障的支路进行逐一检测,根据探测仪显示波形和方向最终实现环网故障点的查找。

直流互窜检测原理图如下:

2.2.3 交流窜电查找原理

系统分析仪与被测直流母线相连,分析仪实时检测直流系统中的交流电压分量,如果检测到直流系统中的交流电压分量超过整定值,则判断直流系统中存在交流窜电故障。

交流窜电故障点的查找过程与绝缘故障点的查找过程一样。

三、功能特点

3.1主要功能介绍

(1).系统对地电压测量功能,仪器可测量系统正对地电压,负对地电压,系统电压,可实现0—300V的电压监测围;

(2).系统绝缘阻抗测量功能,仪器可测量系统正对地绝缘阻抗,负对地绝缘阻抗,平衡桥大小检测,测量围0—999.9KΩ;

(3).交流窜电检测功能,仪器可判断直流系统中的交流窜电故障,并可测量直流系统中窜入的交流电压值,交流电压测量围为0—280V;(4).系统分布电容测量功能,仪器可测量系统的分布电容并实时显示;(5).环网检测及定位功能,仪器可以检测两段母线中存在的各种环网故障,包括正极环、负极环、两极环及异极环等,并可通过波形显示及方向显示来实现环网故障点的定位;

(6).装置具有调幅、复位、电流波形选择和工作模式选择功能,可实现高阻环网故障的查找定位。

(7).支路绝缘阻抗测量及绝缘故障定位功能,仪器测量每条支路对地

绝缘阻抗大小,并可通过波形显示及方向显示实现绝缘故障点的定位;(8).故障电流频谱分析功能,装置通过快速FFT变换实现电流变化的频谱分析功能,有效提取被测电流频点的信号幅值,提高检测精度;(9).电流表功能,装置可做高精度电流表使用,电流测量分辨率可达0.01mA;

(10).波形曲线显示及方向显示功能,在使用探测仪对被测支路进行检测时,显示屏会以波形曲线形式显示被测支路电流变化情况,方便使用者快速准确地实现故障点的查找,有环网故障及接地故障时显示故障点方向。

3.2 设备特点

(1)高可靠性的设计

装置采用进口32位微控制器做主系统,硬件设计严格遵照电力及电磁兼容相关标准进行,部采用多处冗余方式保证装置与被测设备的可靠性。(2)精密选材

装置采用高精度采集器作为信号采集单元,电压采样采用高精度的进口模数转换芯片,电压与阻抗的测量准确;

(3)人性化的人机交互界面

“分析仪”与“探测仪”均采用TFT液晶显示屏供用户查看信息;

操作简单快捷,在实现对不同支路的检测时,只需要按一次启动键即可完成;

测试结果显示直观明了,测试结果可通过多种显示形式呈现给用户,包括接地与否,波形曲线,绝缘等级,绝缘阻抗,漏电流大小,方向信息等。

(4)智能化的检测识别系统

“分析仪”可以自动识别系统电压等级;

“分析仪”可判断环网故障类别;

“探测仪”与“分析仪”信息同步一次之后,不受检测距离的影响;

“探测仪”在进行检测时,采集器既可钳单根电源线,也可钳多根电源线,提高检测效率;

“探测仪”检测完成之后,如被测支路有环网或绝缘故障,会判断出故障点相对测试点的方向信息。

(5)完备的测试功能与处理故障能力

“分析仪”与“探测仪”之间置了无线数传模块进行通信,测试功能与显示信息完备,可以处理直流系统中的各类环网及绝缘故障情况。

“分析仪”具备“调幅”、“波形”、“模式”多种组合工作模式选择功能,可适应各种复杂的应用环境。

(6)高安全性

装置采用微安级的检测信号配合高分辨率的直流检测采集器实现故障检测及定位,对直流系统无任何影响。

四、主要技术指标

4.1分析仪主要技术指标

使用环境

?工作电源:DC40V-300V,

?环境温度:-20℃—55℃

?相对湿度:0—90%

直流电压测量

?直流电压测量围:0-300V

?直流电压测量分辨率:0.1V

?直流电压测量精度:0.2%

交流电压测量

?测量交流与直流窜电电压:0-280v ?交流电压测量分辨率:0.1V

?交流电压测量精度:0.5%

绝缘电阻测量

?绝缘电阻测量围:0-999.9KΩ

?绝缘电阻测量分辨率:0.1KΩ

?绝缘电阻测量精度:≤±5%

检测桥幅值调节围:0mA,0.25mA,0.5mA ,1mA,2mA 检测环网阻值围:50KΩ以

系统分布电容测量

?系统分布电容测量围:0-999.9uF

?系统对地容抗测量:0-1000kΩ

检测波形类型选择:正弦波、方波

工作模式:强制信号启动、自动信号启动

显示介质及分辨率:TFT,320x240

4.2 探测仪主要技术指标

绝缘电阻测量

?绝缘电阻测量围:0-500KΩ

?绝缘电阻测量分辨率:0.1KΩ

?绝缘电阻测量精度:≤±10%

频谱分析围

?频谱分析通道数量:1

?频谱分析频段围:0.125-12.5Hz

?频率分辨率: 0.125Hz

电流波形显示周期:8s;

可检测馈线电流围:0—2A;

电流测量围:-100—+100mA;

电流测量分辨率:0.01 mA

显示介质及分辨率:TFT,320x240

4.3无线通信技术指标

速率:2Mbps,由于空中传输时间很短,极大的降低了无线传输中的碰撞现象

多频点:125频点,满足多点通信和跳频通信需要

超小型:置2.4GHz天线,体积小巧,15x29mm

低功耗:当工作在应答模式通信时,快速的空中传输及启动时间,极大的降低了电流消耗。

五、使用方法

5.1 接线

5.1.1 分析仪接线

分析仪共配有两段连接插头,其中I段包括一条红色连接线、一条黑色连接线以及一条黄色连接线;II段包括一条红色连接线以及一条黑色连接线。

将配备的红、黄、黑三条连接线插座一端按颜色标记插入分析仪I段插头处;

断开电源开关,将红、黄、黑三条连接线的另一端按如下述接入:将红色连接线的红夹连接到第I段母线的正极处;

将黄色连接线的黄夹连接到第I段母线的地;

将黑色连接线的黑夹连接到第I段母线的负极处;

如果要检测直流互窜,需将配备的红、黑两条线按下述接入装置与系统:

将红色连接线与黑色连接线插座一端按颜色标记插入分析仪II段插头处;

将红色连接线的红夹连接到第II段母线的正极处;

将黑色连接线的黑夹连接到第II段母线的负极处;

如下图示:

不做直流互窜检测时不接第II段母线的两条连接线。

5.1.2 探测仪与采集器连接

将充满电量的4节5号充电电池装入探测仪的电池仓;

将采集器航空插一端与探测仪插座相连接。

5.1.3上电

检查各部分接线无误后,开启分析仪电源开关,电源指示灯与液晶屏均被点亮,设备进入工作状态,如果系统不存在接地,则分析仪正常指示灯亮,如果存在正接地则正接地指示灯亮,如果存在负接地则负接地指示灯亮。

5.2 操作

5.2.1 分析仪操作

分析仪面板上共有四个按键,可对分析仪的工作参数进行调整,按键排列图如下:

调幅:通过该按键可以实现电流信号幅值大小的调节,电流信号幅值可在0mA,0.25mA,0.5mA,1mA,2mA之间进行循环设定,开机默认为

1mA。

复位:通过该按键可以实现程序重新初始化重新运行。

波形:通过该按键可以实现电流波形的选择,电流波形可选择为方波或正弦波,当设定为方波时分析仪状态栏波形显示为“”,当设定为正弦波时分析仪状态栏显示为“”,开机默认为“”。

模式:通过该按键可以实现分析仪工作模式的选择,分析仪工作模式可选择为自动模式或强制模式,当设定为自动模式时分析仪状态栏模式显示为“Auto”,当设定为强制模式时分析仪状态栏模式显示Force”开机默认为“Auto”。

关于强制模式与自动模式的说明:当分析仪式工作在自动模式时,

只有检测到第I段母线系统对地电压发生一定偏差之后才启动检测桥进行故障判断,当系统恢复正常后会自动停止检测桥的投入;当分析仪工作在强制模式时,分析仪会主动启动检测桥进行故障检测,检测完成之后无论是否存在接地或环网故障都将会向系统对地投入检测桥。

5.2.2 探测仪操作

探测仪面板共设有三个按键,分别为“电源”“功能”“测试”,探测仪所有的检测功能均可通过这三个按键来实现,探测仪兼容D型采集器和A型采集器,使用时请注意接入的采集器类型以及不同采集器类型对应的分析仪的“”和“”波形状态。

电源:电源开关按键;

功能:按功能键选择所需要的测试功能项;

测试:选择需要的功能后按此键开始测试。

5.3 显示

5.3 .1分析仪显示

开机后分析仪进入主界面显示,分析仪有一个显示画面,显示容如下:

分析仪开机便会对系统进行检测,检测完毕后分析仪主界面上显示系统当前电压、系统正负对地电压、正负对地绝缘电阻大小、系统分布电容大小、交流窜电状态及是否存在环网故障。

如果分析仪检测到系统存在正极或负极绝缘故障,则对应的“正接地”或“负接地”故障指示灯闪烁。

如果分析仪检测到系统存在环网故障,则“正接地”与“负接地”故障指示灯同时闪烁。

指示灯闪烁时表示分析仪正在向被测系统对地按设定的信号幅度和频率切换检测桥,指示灯处于非闪烁状态时则分析仪没有切换检测桥。

开机后分析仪将主动启动检测桥对系统进行检测。

主界面状态栏显示了当前系统的工作状态:

电流:该值大小表示分析仪工作在当前检测桥投入大小模式下,可通过“调幅”键进行设定;

频率:系统默认显示0.25HZ;

波形:显示分析仪当前投入检测桥的波形类型,可通过“波形”键进行设定;

模式:显示分析仪当前工作模式,可通过“模式”键进行设定;5.3 .2探测仪界面操作与显示

将充好电的5号充电电池装入探测仪电池仓,并将采集器与探测仪相连后,开启探测仪“电源”开关,即进入探测仪功能选择界面:

显示接入采集器类型

显示波形形状

功能选择画面

在该界面下,用户可以通过“功能”键在“故障定位波形分析”、“故障信号频谱分析”、“直流漏电电流测试”三个功能之间切换。当“◇”符号位于该功能项前时表示该功能项处于激活状态。

状态栏分别显示了当前接入采集器的类型,分析仪投入检测桥时形成的波形状态,电压幅值,检测桥投入的频率,通信状态,电池电量等信息,采集器类型有“N”表示未接任何采集器,“D”表示接入的是D型采集器,“A”表示接入的是A 型采集器;波形状态显示:“”表示当前分析仪投入检测桥时形成的波形形态为方波,“”表示当前分析仪投入检测桥时形成的波形形态为正弦波。

选定好功能项,将探测仪采集器钳入被测支路,按下“测试”键即可按选定的功能对被测支路进行检测。

注意:当使用A型采集器进行检测时分析仪波形状态必须调节为“”,使用D型采集器极进行检测时,必须调节波形状态为“”。

故障定位画面如下:

检测桥投入频率

通信状态

故障定位画面

该画面显示了被测回路的电流波形图、绝缘阻抗大小、故障点方向等信息。上图中左图为接A型采集器时对故障支路进行检测的显示界面,右图为接D型采集器对故障支路检测的显示界面。

对于存在故障支路的检测,从图中可以看出探测仪检测到了与分析仪所发同频率信号和投入检测桥同频率的电流信息,并以波形的形式显示出来,检测完成之后并指出故障点的方向。故障点方向显示为“同向”或“反向”,该方向是相对于检测点的采集器标识方向而言。如果同向,表示故障点方向和采集器标识的方向一样;反之,相反。对于纯电阻回路,同步点箭头,指示在电流波形的波峰或者波谷位置;对于有分布电容的回路,指示在电流波形的波峰和波谷之间。

故障电流频谱分析画面如下:

故障电流频谱分析由两幅画面组成,上图中左图为故障电流频谱原始电流波形图,右图为经FFT变换后的频谱图。

该功能先将原始电流信号以波形显示出来,然后进行快速FFT变换,再将该故障电流的频谱图显示出来,并计算出最大电流幅值的频点及故障电流幅值。

直流电流测试画面如下:

在该界面下按“测试”键可对当前测试电流进行清零操作。

“电流测量”功能只适合使用D型采集器,如果使用A型采集器,界面会提示“请接直流钳表”,即需将A型采集器更换成D型采集器后进行电流测量操作。

六、注意事项

(1)由于装置是精密仪器,在运输、使用和存放时要小心轻放,各部件要防止摔、跌等强烈震动,保证使用的高精度。

(2)每次开启探测仪后进行检测前,探测仪与分析仪之间要进行一次数据的同步,同步时需保持探测仪与分析仪之间在5米以的距离,数据同步完成之后,探测仪可以远离分析仪,但使用时,在数据同步后请保持探测仪开启状态。

(3)每次使用完成后,需将探测仪的电池从电池仓中拔出,充满电后以供下次使用,探测仪电量不足时,应立即更换电池以保证检测的顺利进行。

(4)分析仪一定要接在被检测支路之前(按电流流向),正、负、

直流电机测试方法和常见不良问题的分析

测试方法和常见不良问题的分析 一、测试方法 1.电机空载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),无负载时的电机每分钟转动的圈 数 (空载转速)及此时流过端子的电流 2)测试方法:使用测速计、胶轮、直流电源,如下连接, 直流电源 电机测速计 参考测试 方法:使 用电机综 合测试仪测试(但誨定范围及电机的冲片槽数,测试 数据不准) 2.负载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),额定负载时的电机每分钟转动的 圈数(负载转速)及此时流过端子的电流(负载电 流) 2)测试方法:见上图,一般选择胶轮的直径为20mm,如 果负载为M gem,则所挂舷码的重量则为M g,同时胶 轮上的圈数取决于绳子A处必须松动才行(即祛码的重 量必须全部加到轮子上才行) 3.堵转力矩和堵转电流的测试

1); “ 定义:使电机正好停止转动时的负载力矩Ts即为堵转力

矩,此时的电流即为堵转电流Is 3)一般采用两点法进行测试,选择两个负载T1及T2,测 试此负载下的nl> n2及II、12,使用下而的公式计算堵 转力矩和堵转电流: Ts=(n2Tl-nlT2)/(n2-nl) I S=(I2T1-I2T2)/(T1-T2)+(I1-I2)/(T1-T2)*T S 注意点:T1最好在最大效率点附近,而T2最好在最大 功率点附近 参考测试方法:可以采用测功计测试(不精确)或者使 用扭力计测试(较准) 4.窜动量的测试 1)定义:转子在电机中沿轴向可以松动的最大的间隙量 2)测试方法:使用百分表,电机轴前后最大窜动的位置在 百分表上显示的位置分别是A和B,则电机窜动量为B-A 电机 5.电流波形 1)定义:电机在额定电压下旋转时,流过电机两端子间的电 流的变化的波形,可以用示波器进行显示 2)测试方法:如图连接,示波器上显示的波形即为电机的电 流波形,电容一般为qf的电解电容,如果槽数为n 个,则 电机转动一周的完整的波形数为2n个

电力变压器固体绝缘故障的诊断

电力变压器固体绝缘故障的诊断 发表时间:2008-12-11T13:50:28.780Z 来源:《中小企业管理与科技》供稿作者:南俊彪[导读] 摘要:通过对故障涉及固体绝缘时其它特征气体组分与CO、CO2间的伴生增长情况研究,提出了一种动态分析变压器绝缘故障的方法,着手建立故障气体的增长模式,为预测故障的发展提供新的判据。关键词:固体绝缘变压器绝缘故障故障气体摘要:通过对故障涉及固体绝缘时其它特征气体组分与CO、CO2间的伴生增长情况研究,提出了一种动态分析变压器绝缘故障的方法,着手建立故障气体的增长模式,为预测故障的发展提供新的判据。 关键词:固体绝缘变压器绝缘故障故障气体中图分类号:TM4 文献标识码:B 文章编号:1673-1069(2008)10-0000-00 引言 为了使设备的外形尺寸保持在可接受的水平,现代变压器的设计采用了更为紧凑的绝缘方式。这就要求显著升高其运行中内部各组件间的绝缘所承受的热和电应力水平。110kV及以上等级的大型电力变压器主要采用油纸绝缘结构,其主要绝缘材料是绝缘油和绝缘纸、纸板。当变压器内部故障涉及固体绝缘时,无论故障的性质如何,通常认为是相当严重的。因为,一旦固体材料的绝缘性能受到破坏,很可能进一步发展成主绝缘或纵绝缘的击穿事故,所以,纤维材料劣化引起的影响在故障诊断中格外受重视。但是,如能确定变压器发生异常或故障时是否涉及固体绝缘,也就初步确定了故障的部位,对设备检修工作很有帮助。 1 判断固体绝缘故障的常规方法CO、CO2是纤维材料的老化产物。一般,在非故障情况下也有大量积累,往往很难判断经分析所得的CO、CO2含量是因纤维材料正常老化产生的,还是故障的分解产物。月岗淑郎研究了使用变压器单位质量纸分解并溶于油中碳的氧化物总量,即以(CO+CO2)mL/g(纸)来诊断固体绝缘故障。但是,已投运的变压器的绝缘结构、选用材料和油纸比例,随电压等级、容量、型号及生产工艺的不同而差别很大,不可能逐一计算每台变压器中绝缘纸的合计质量。该方法因实际操作困难而难以应用;并且,在分析整体老化时,考虑全部纸质量是较合理的。但是,在故障点仅涉及固体绝缘很小一部分时,比单独考虑CO、CO2含量相比,用这种方法很难更有效。IEC599推荐以CO/CO2的比值作为判据,来确定故障与固体绝缘间的关系。认为CO/CO2>0.33或<0.09时表示可能有纤维绝缘分解故障。在实践中,这种方法也有相当大的局限性。作者对59例过热性故障和69例放电性故障进行了统计。结果表明,应用CO/CO2比例的方法正判率仅为49.2%,这种方法对悬浮放电故障的识别正确率较高,可达74.5%;但对围屏放电的正判率仅为23.1%。 2 固体绝缘故障的动态分析方法新的预防性试验规程规定,运行中330kV及以上等级变压器每3个月进行一次油中溶解气体分析。但目前很多电业局为保证这些重要设备的安全,有的已将该时间间隔缩短为1个月,也有部分电业局已开展了油色谱在线监测的尝试。这为实现故障的连续追踪,提供了良好的技术基础。 电力变压器内部,涉及固体绝缘的故障包括:围屏放电、匝间短路、过负荷或冷却不良引起的绕组过热、绝缘浸渍不良等引起的局部放电等。无论是电性故障或过热故障,当故障点涉及固体绝缘时,在故障点释放能量作用下,油纸绝缘将发生裂解,释放出CO和CO2,但它们的产生不是孤立的,必然因绝缘油的分解产生各种低分子烃和氢气,并能通过各特征气体与CO和CO2间的伴生增长情况分析来判断故障原因。 判断故障的各特征气体与CO和CO2含量间是否是伴随增长的,需要一个定量标准。本文通过对变压器连续色谱监测结果的相关性分析,来获得对这一标准的统计性描述。这样可以克服溶解气体累积效应的影响,消除测量的随机误差干扰。本文采用Pearson积矩相关来衡量变量间的关联程度,被测变量序列对(xi,yi),i=1,…,相关系数γ的显著性选择两种检验水平:以α=1%作为变量是否显著相关的标准,而以α=5%作为变量间是否具有相关性的标准。即:当相关系数γ>γ0.01时,认为变量间是显著相关的;γ<γ0.05时,二者没有明确的关联。γ0.01、γ0.05的取值与抽样个数N有关,可通过查相关系数检验表获得。由于CO为纤维素劣化的中间产物,更能反映故障的发展过程,故通过对故障的主要特征气体与CO的连续监测值进行相关性分析可进一步判断故障是否涉及固体绝缘。当通过其它分析方法确定设备内部存在放电性故障时,可以CO与H2的相关程度作为判断电性故障是否与固体绝缘有关的标准;而过热性故障则以CO与CH4的相关性作为判断标准。通过对59例过热性故障和69例放电性故障实例的分析,表明该方法在一定程度上可以反映故障的严重程度。在过热性故障情况下,如果CO不仅与CH4有较强的相关性,还与C2H4相关,表明故障点的温度较高;而在发生放电性故障时,如果CO与H2和C2H2都有较强的相关性,说明故障的性质可能是火花放电或电弧放电。 3 故障的发展趋势确认故障类型后,如能进一步了解故障的发展趋势,将有助于维修计划的合理安排。而产气速率作为判断充油设备中产气性故障危害程度的重要参数,对分析故障性质和发展程度(包括故障源的功率、温度和面积等)都很有价值。通过回归分析,可将这3种典型模式归纳整理。 3.1 正二次型总烃随时间的变化规律大致为Ci=a.t2+b.t+c(a>0),即产气速率γ=a.t+b不断增大,与时间成正比。这常与突发性故障相对应,故障功率及所涉及的面积不断变大,这种故障增长模式往往非常危险。 3.2 负二次型总烃和产气速率的变化规律与(a)相同,只是a<0,即总烃Ci增高到一定程度后,在该值附近波动而不再发生显著变化。多与逐渐减弱的或暂时性的故障形式相对应,如在系统短路情况下的绕组过热及系统过电压情况下发生的局部放电等。 3.3 一次型即线性增长模型,是一种与稳定存在的故障点相对应的产气形式。总烃的变化规律为Ci=k.t+j,产气速率为固定的常数k,通常只有当故障产气率k或总烃Ci大于注意值时才认为故障严重。 4 实例分析

控制器故障诊断

FANUC-Robot控制器故障诊断 错误分类概述 * 错误分类的目的是为了更容易地进行故障诊断。 * 每一次故障诊断前都要进行错误分类。 * 识别错误以及症状的类别,要先于故障诊断。 * 每一类错误在机器人操作中都同等严重。 * 错误类型分为: ?第一类错误 ?第二类错误 ?第三类错误 ?第四类错误 第一类错误慨述 * 症状 ?控制器死机 ?示教盒屏幕空白 * 潜在的原因 ?控制器AC 电源存在问题 ?断开器的问题 ?变压器的问题 ?控制器DC 电源线路的问题 ?电缆线问题 ?示教盒/缆线问题 ?电源供给单元损坏 ?电源供给单元保险丝熔断 ?开/关电路的问题 ?面板电路板保险丝 第二类错误概述 * 症状 ?示教盒锁死,没反应 * 潜在的原因 ?软件故障 ?主板的问题 @ CPU 模块,连同DRAM

@ FROM/SRAM 模块 ?示教盒/缆线/ISB 单元的问题 ?PSU 或者底板(激活信号)的问题 ?辅助轴控制卡的问题 第三类错误概述 * 症状 ?错误指示灯亮 ? KM1和KM2 关闭,因此伺服没有电源 ?屏幕上显示诊断信息 * 潜在的原因 ?伺服放大器的问题 ?马达/SPC 的问题 ?编码器/制动模块的问题 ?紧急停止线路的问题 ?紧急停止线路板的问题 ?紧急停止单元,连带KM1 和KM2 的问题 ?面板电路板的问题 ?缆线问题 第四类错误概述 * 症状 ?机器人只能在手动模式下工作 ?能够从示教盒运行程序 * 可能的原因 ?通讯或输入/输出的问题 @ 与PLC 之间没有通信 @ 行程开关等损坏 ?不正确的当地/远程开关设置,软件控制的。六控制器维修 1 无法开机

直流电机常见故障及排除方法(正式)

编订:__________________ 审核:__________________ 单位:__________________ 直流电机常见故障及排除 方法(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9217-56 直流电机常见故障及排除方法(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、前言 直流电机的故障多种多样,产生的原因较为复杂,并且相互影响,电机运行中由于制造、安装、使用、维护不当,都可引起故障。 2、直流发电机常风故障及排除方法 2.1并励直流发电机建立电压的条件 (1)条件:A、主磁极必须有剩磁;B、并励绕组并联到电机绕组上时,接线极性必须正确;C、励磁回路中总电阻值必须小于临界电阻。 (2)排除并励直流电机不能建立稳定电压的故障方法 A、新安装的原因是电机控制柜内接线松脱或电机碳刷接触不良所致。认真检查,调整碳刷压力即可。

对于长期使用后的由于主磁极剩磁消失或严重减少,可先将并励绕组与电柜绕组联接线断开,用直流电源加于并励绕组使其磁化,如发电机仍不能发电,可改变极性重新磁化。 B、在发电机旋转方向正确的情况下,有时由于电机外部或内部并激绕组与电柜绕组联接不正确导致励磁磁通与主磁极的剩磁磁通极性相反,使剩磁进一步减小不能自励,这时只要调换一下励磁绕组接线的极性就可以了。 C、为调整输出电压,励磁回路通常串联附加电阻,有时电阻断线、接头松脱使励磁回路总电阻大于发电机临界电阻,不能建立电压可将电阻值调小或短接一下,待发电机建立电压后,再调节电阻,使电压达到额定值。 2.2空载电压正常,加载后显著下降 (1)串励绕组的极性接反,检查接线可将串励绕组的2个接头互换位置试验,观察电压,若回升………..

电气控制系统故障分析诊断及维修技巧

电气控制系统故障分析诊断及维修技巧 发表时间:2016-11-07T14:10:38.820Z 来源:《电力设备》2016年第16期作者:刘庚 [导读] 所以我们必须加大电气控制系统故障分析和维护力度,以此使其使用更加安全,运行更加可靠,进而提高控制效果与水平。 (福建晋江天然气发电有限公司福建省晋江市 362251) 摘要:随着科学技术的不断发展,各种自动控制设备也随着不断的发展和完善,这些设备离不开最基本的电气控制线路,也逐渐的被人们所熟悉掌握。和发达国家相比,我国对电气控制线路控制技术的研究较晚,发展速度也比较慢。近年来通过引进、吸收、消化,明显的提高了电气控制线路技术发展速度。由于电气的控制系统线路较多,线路发生的故障点比较隐蔽,所以影响了电气控制线路的稳定发展。文章分析了电气控制系统的常见故障及其危害,探讨了电气控制系统故障分析诊断及维修技巧。 关键词:电气控制系统;故障诊断;维修技巧 引言 众所周知,电气控制系统在确保电气设备有序运行、高效工作中发挥了不容忽视的重要作用,这一点不可否认,然而在具体应用中,电气控制系统不可避免的会出现各类故障,从而对系统自身、相关设备以及非故障设备构成威胁。所以我们必须加大电气控制系统故障分析和维护力度,以此使其使用更加安全,运行更加可靠,进而提高控制效果与水平。 一、电气控制系统常见故障及其危害 1、电气控制系统常见故障分析 有一些典型的电气控制系统故障可以为我们带来启示,从中获取故障检修经验,避免系统因故障更产生严重后果。引发电气控制系统故障的原因有许多,绝大多数体现在设计上的错误,以及设备安装质量低、设备自身缺陷等,常见的几种系统故障为:(1)过负载。过负载故障体现为电气控制系统中的电机电流超过了额定电流,引发电机过负载故障诱因有很多,例如负载、电压骤然大幅度增高、电机缺相运行等。(2)形式不同的短路。短路故障包括两相短路、三相短路、一相接地短路以及电机或变压器一相绕组中的匝间短路等。(3)过电流。过电流指的是电器元件或电动机超过了限定电流的运行状态,通常比短路电流要小,很少超过6In,过电流故障的原因多来源于错误的起动及负载转矩过高等。(4)电源缺相。交流异步电动机在常规工作当中,因为三相电源包含的一相熔断器熔断所引发的电动机缺相运行。 2、故障的危害 想要真正了解电气控制系统故障,其发生后的危害也有必要了解。(1)电气控制系统在正常运行中,绝缘破损或者接线错误及负载短路后,短路时形成瞬时故障电流可激增到额定电流的数十倍以上,使配电线路或电气设备因过流所生成的电动力而遭到损毁,甚至造成火灾。(2)电流过大不仅会中止电器控制系统,还可能让电气设备遭到损坏,进而引起电动机转矩过大,让机械转动部件破损。(3)交流异步电动机在缺相电源低速运行或堵转时,其产生的定子电流十分强劲,遇到故障会让电动机绕组烧毁。(4)电气控制系统发生故障还可能导致电网电压降低,直接波及到其他设备或用户,让正常工作与生产遭到破坏,严重时会使配电系统彻底瘫痪。 二、电气控制系统故障诊断分析性 1、调查研究法 对电气控制线路的故障诊断调查研究法可以让故障检测人员有效而且快速的对故障性质、范围以及类型进行判断掌握,使工作人员可以迅速的做出故障准确诊断,把在检修诊断过程中的盲目性降低。调查研究法的主要方式是:第一点是问,故障诊断人员向操作电气设备的人员询问在故障发生之前、发生中和发生后的电气线路状况,问的内容应该是在电气控制线路发生事故前有没有冒烟、冒火、有无响声、发生频率、在事故发生之前有没有停机、过载或者高频率启动现象,有没有更换过原件、是否私下维修等等问题,从这些问题中可以知道,调查研究法的最主要的判断故障方式就是问,通过问就可以大致的判断出故障发生的部位以及发生故障原因等。第二点是望,望就是要对发生故障的设备部位进行观察,看的主要部分就电气设备的外观,看电气设备是否有可能会有故障发生的预兆,比如短路、接地、线路松动、断线等状况。第三点是闻,电气线路中如果出现烧坏等现象,维修人员就可以通过闻的方式进行判断,从而准确的判断线路故障发生的性质和部位。第四点是摸,在摸的时候,必须要保证电流已经切断,触摸线路是否发热,确定该条线路是否在正常运营。 2.2原理图、逻辑分析法 运用逻辑分析法的根据是控制线路中工作原理的关系和环节,并且根据线路故障的现象进行具体的分析,把检查的范围迅速缩小,从而确定故障的发生部位。运用逻辑分析法的主要前提是要根据系统电路原理图分析,准确判断故障所在的位置,使用逻辑分析法的目的是比较快捷方便,因此逻辑分析法比较适用于有复杂线路的故障检查中。由于复杂的线路中经常会有许多电气零件以及接线,如果检查维修人员逐一检查,不仅工作量大、时间长,且容易出现差错。 检查维修人员在使用逻辑分析法进行线路检查时,应该按照相应管理图纸对线路故障进行具体分析,准确的找到故障所在的位置。逻辑分析法可以帮助维修人员快速的把复杂问题进行分析,把一些比较专业复杂的问题变得简单化,避免检查人员莽撞的检查,使尽快的排除故障。 2.3实验法 实验法就是需要对电气控制线路进一步检查时,或是使用常规检查无法判断故障的时候,可以对电气控制线路的故障进行通电实验检查。但是实验法使用前提是不能把电气设备和机械设备损坏,不能把事故的范围进行扩大化。 在进行实验之前,应该尽量的把传动机与电动机分开,调节器里的相关开关在零位,把开关还原的最初的位置。如果传动机和电动机无法彻底分开,可以把主线路切断,根据检查中的实际需要把其它部位的线路也切除掉,把检查的范围进一步的缩小,同时也是为了避免故障进一步的扩大,避免意外情况的发生。如果要把电气设备打开,应该在操作设备的人员的配合下打开。 三、电气控制系统故障维修技巧探讨 1、通过有效充分利用排查的方式进行维修 利用排查法进行维修是最基本的方法,它的主要内容涉及故障代码的研究和分析、系统的自排查过程、万能表排查和短路排查四种方法。由于上述已经涉及相关内容的探讨,在这里不再多加赘述。

浅谈直流电机的故障诊断及维护

浅谈直流电机的故障诊断及维护 摘要】直流电机系统的维护决定其正常运行;直流电机结构的特殊性决定其故 障的多样性和故障诊断的复杂性。只有正确维护,准确诊断,才能实现高效稳定 地运行。本文阐述了直流电机故障诊断、直流电机的检查维护、直流电机控制部 分的维护与检修以及直流电机的日常管理,旨在提高直流电机的工作效率以及企 业的经济效益。 【关键词】直流电机故障诊断检查维护日常管理 有关直流电机最早的历史可以追溯到十九世纪二十年代,那时候有关电机的 相关理论已经开始普遍流传,人们将直流电机不断地改造以适应时代的需求。直 流电机过载能力较强,热动和制动转矩较大,调速性能优越,易平滑调速,而且 控制系统简单,电控系统造价低,这个是交流电机无法取代的。因此在钻井中, 直流电机仍在广泛应用着。 一、直流电机故障诊断 直流电机的复杂结构决定了其故障的多样性原因的多样性。主要分为机械性 故障和电气性故障。 1、机械故障。机械性故障包括安装不良松动、轴承不良、润滑脂泄漏等问题,判断机械故障先看电机是否有异响、振动是否过大,两电机电流是否相差过大,解决方法主要通过重新校正平衡以及更换相应设备等措施进行故障排查。机 械故障是难以避免的,而且往往在现场无法解决,这需要我们提前发现处理,防 止事故扩大化。 2、电气故障。直流电机运行的电气故障主要表现在以下几个方面:(1)运 行过程中电机温度升高;(2)电刷下火花强烈引起换向片烧黑;(3)绝缘老化 速度加快等。电气故障可通过电流的波动来判断。运行中的温度升高主要由电机 过载、风机工作不正常、电枢线圈短路等原因所致。处理过程中要找准引起温度 上升的原因,并对相应部位进行检修维护。电刷打火主要是因为碳刷磨损过大或 电刷弹簧老化引起的,应及时更换。换向片应视灼烧情况处理,对于轻微的灼烧 可以拿砂纸打磨凹凸面,严重的应考虑返厂更换了。电机绝缘性能下降最直观的 表现是电控柜直流接地灯亮,电机启动后电压很低,但电流很大。应用兆欧表测 量电枢的绝缘电阻,最低不能低于0.7兆欧。解决方法可以先用热风机或大灯泡 烘烤线圈,若结果不理想,应及时返厂做绝缘处理。 二、直流电机的检查维护 虽然直流电机的故障有很多,但主要集中在碳刷、换向器、轴承等元件,同 时亦是故障的多发区。钻井直流电机主要使用T900的碳刷,而且分直、斜两种。 1、电刷的维护。电刷的质量对换向有很大的影响,合理的选择电刷可以改 善换向。而电刷的维护需要从以下几个方面进行:(1)确认电刷辫螺丝是紧固的,刷辫不影响电刷的自由运动。(2)确保电刷辫不接触到电机内部非绝缘部分。(3)检查电刷能否在刷握内自由移动,弹簧的位置必须正确,功能正常。(4)刷握离换向器表面的距离应一致。 2、换向器的维护。换向器工作状况好坏直接关系直流电机的工作状况,因 此必须加强对换向器的维护。而直流电机换向故障主要标志是换向火花,换向火 花实际上是电刷的换向片脱离接触时,释放的电磁能量。换向器的维护和电刷的 维护与质量直接挂钩,正确的进行电刷质量选择和合理维护电刷运行时换向器维

直流电机的认识与检测维修方法

直流电机的认识与检测维修方法 直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。陕西西玛金都机电生产部李工程师说:起动机使用的直流电动机为短时额定工作的串激式直流电动机,它起动柴油机时的导线较粗,产生的转矩也很大。 直流电动机主要由电枢、换向器、磁极、激磁绕组和电刷等组成。壳体内部电枢绕组和激磁绕组串联在一起,当蓄电池供电时,激磁绕组和铁心形成磁极而产生磁场,同样,电枢绕组也产生磁场。两个磁场相互作用而产生很大的转矩,然后通过起动机驱动齿轮输出动力。 1.直流电动机的修理。 (1)检修电刷和电刷架,电刷总成的安装位置如图02所示。图02 ST614型起动机的构造。在正常情况下.电刷的高度一般在20mm左右。若在检修中发现磨损到小于原高度1/2时,应换用同型号的新电刷。更换后的电刷,应保证工作面与换向器接触面积在75%以上。若接触面不符合要求时,可用"0"号细砂纸垫在换向器表面上.将电刷工作面研磨成圆弧状的接触面。电刷弹簧的压力一般为13土2N,否则,应更换或调整电刷弹簧。 (2)看图检修电枢 ①电枢的实物外形如图03所示。图03 电枢的实物外形 电枢线圈在使用中出现短路、断路和搭铁现象时,可用万用表电阻挡进行检测。 ②换向器表面应无烧损、划伤、凹坑和云母片凸起等缺陷。换向器表面上的污物,应用汽油将其清洗干净。对于松脱的接头要用锡焊重新牌。换向器表面出现较严重的烧损、磨损和划.并造成表面不光滑或失圆时,可根据具体情况进行修复或更换。 ③电枢两端轴颈与轴承衬套的配合间隙应控制在o. 04 ~ o. 15mm范围内。若测量出的问隙值超过o. 15mm时,应换用新衬套。 (3)看图检修磁场线圈 ①磁场线圈的实物外形如图04所示。图04 磁场线圈的实物外形。 磁场线圈损坏后,可用万用表电阻挡检测磁场线圈的工作情况。 ②磁极铁,心松动、线圈出现松动或其他原因造成损坏后,可将旧绝缘稍加处理后,用布带重新包好,再进行绝缘处理。 ③检修中发现有断路或短路的线圈时,一般应换用新线圈或重新绕制 (4)看图检修后端盖 后端盖的实物外形如图05所示。 图05 后端盖的实物外形 ①在后端盖的4个电刷架中有2个与盖体绝缘,另外2个与盖体搭铁。 ②相邻2个电届IJ架之间的绝缘电阻应大于0.5Mn。若绝缘电阻过小,应查明原因后修复. 电枢绕组接地故障 这是直流电动机绕组最常见的故障。电枢绕组接地故障一般常发生在槽口处和槽内底部,对其的判定可采用绝缘电阻表法或校验灯法,用绝缘电阻表测量电枢绕组对机座的绝缘电阻时,如阻值为零则说明电枢绕组接地;或者用图所示的毫伏表法进行判定,将36V低压电源通过额定电压为36V的低压照明灯后,连接到换向器片上及转轴一端,若灯泡发亮,则说明电枢绕组存在接地故障。具体到是哪个糟的绕组元件接地,则可用图所示的毫伏表法进

控制系统故障诊断技术

Harbin Institute of Technology 控制系统故障诊断技术 课程报告 专业:控制科学与工程 学号:15S004001 姓名: 日期:2016.4.12 控制系统故障诊断技术(FDD),在核心上属于模式识别范畴,通过冗余控制及自诊断等

思想处理系统故障,提高系统性能与可靠性。主要环节内容包括特征提取(如量值描述、模糊描述、模型与数据结合描述等),故障分离估计及评价决策。其中系统的表征包括输入输出状态,参数特征,逻辑经验,通过状态观测可以判定失效的观测器。 控制系统故障诊断主要思想在于特征分析,包括信号处理,通过控制领域方法,进行诊断与容错处理。本质上,是控制学科的一门下属学科,建立的体系要基于控制系统理论基础,系统四个部分分别是:被控对象、控制器、执行器、传感器。重点在于传感器的故障诊断。 故障诊断本身又可以分为故障检测,只判断有无故障;与故障分离,即可以定位具体故障。 诊断方法类型包括基于数学模型及基于专家(模糊)知识两种。体现在发展历程上,即2000年以前诊断方法主要是阈值方法,而2000年之后才逐渐引入智能化。 这一技术的目的包括提高系统鲁棒性,这种鲁棒性,并非简单的对参数变化具有的不敏感性,还包括系统自身对结构变化的自适应性;此外,另一个目的是容错性,即再系统局部发生故障时,可以有冗余部件替换掉有问题部件。 控制系统容错技术在方法上,包括 1、并行冗余,主要处理控制器故障,包括串并联结构,冷热备份等等; 2、鲁棒控制,需要考虑系统局部关系的完整性设计,具有多模型自适应能力; 3、系统重构,指的是余度系统故障时,使系统转入新工作结构而采用的余度管理措施,称为重构。系统重构技术充分利用系统的信号和资源,可以使系统获得更高的可靠性和生存性。在系统发生故障时可以迅速反应,重新构建控制器,通常采用FPGA实现,达到不同阶段完成不同功能。 4、人工智能,是近来发展迅速的智能化方法,包括神经网络、模糊专家控制等。 如上图为神经网络控制器的示意图。作为一种黑箱结构,神经网络的优势在于只要有一层隐含层就可以做到任意的非线性拟合。 控制系统故障诊断实现途径包括:提高元部件可靠性及整体可靠性设计,如冗余设计、简化设计等。故障诊断的观测器通常采用基于李雅普诺夫原理的自适应观测器与奉献观测器的结合。通过可观自由度、传感器数量对故障定位,通过解耦控制器,容错控制,使血糖具有冗余能力。在实际应用中观测器速度一定大于控制器,及观测器极点相比于控制器一定更远。当系统干扰较大时,可将观测器换成卡尔曼滤波器。闭环故障诊断的难点在于故障可能由于闭环本身产生。 以上内容完全来自课堂笔记与个人观点,下面是我查阅到的控制系统故障诊断的一些基本内容: 容错控制是 20 世纪末期发展起来的一种提高控制系统可靠性的技术 . 容错控制系统设计主要包括 故障诊断和容错控制系统的设计, 这两个方面现都成为控制理论领域的研究热点. 控制系统是由被控对象、控制器、传感器和执行器组成的复杂系统, 其各个基本环节

基于DGA的变压器绝缘故障判断

基于DGA的变压器绝缘故障判断 摘要油中溶解气体分析(DGA)是一种有效的充油电力设备异常检测的方法,广泛应用于油浸变压器故障的检测和判断。本文介绍了油中溶解气体分析的原理以及实操程序,以及如何应用分析结果通过三比值法判断变压器故障类型。 关键词DGA;变压器;故障 0 引言 电力变压器作为电力系统中的重要组成部分,其安全稳定的工作是保障电力系统安全运行的基础。随着运行时间的增加,有机固体绝缘材料和绝缘油会因为电压以及温度的作用逐渐的分解化合从而产生微量气体溶解于油中。当变压器内部发生故障如局部放电或匝间短路时,油中溶解气体含量则会发生剧烈变化。这是由于变绝缘油或有机固体绝缘材料被放电部位产生的电弧分解而产生大量气体,当产生的气体无法完全溶解于油中时成游离为气态形成气泡散布在变压器油箱内部。 经过长期的变压器运行维护实践和大量的故障调查分析,我们发现变压器如果存在潜在故障或者在故障形成的初步阶段时,变压器油中溶解的各种气体就会反映出早期征兆。油中溶解气体分析(Dissolved Gas Analysis,简称DGA)正是为检测这些故障特征气体组分及含量,以便于分析判断变压器运行状况和故障隐患。 1 油中溶解气体的成分及来源 1.1 变压器油的分解 变压器绝缘油是矿物油的一种,主要成分为含有碳碳双键或三键的不饱和烃和其他碳氢化合物。变压器内部放电故障或发热故障中会使一些油分子中某些碳氢键或碳碳键断裂,从而产生微量的活泼氢原子和碳氢化合物自由基,这些游离的氢原子和自由基又通过化学反应再次化合,最终可以形成H2、CH4、C2H6、C2H4、C2H2等烃类气体化合物。 1.2 有机固体绝缘材料的分解 有机固体绝缘材料如绝缘纸、木质绝缘件则含有大量的碳氧双键,其热稳定性比碳氢键要弱,在热环境下裂解并新化合生成水同时又生成大量CO、CO2 ,绝缘油也会被氧化导致油质劣化。 1.3 其他来源 另外在某些情况下也会导致油中溶解气体含量变化,如变压器呼吸器损坏或采用非真空注油方式使绝缘油与空气接触,油中溶解气体中氧气和氮气含量可能增高,又如变压器有载调压开关行进切换动作也会产生某些与变压器本体内部低能量放电故障相似的烃类气体化合物。 2 故障特征气体种类和与其关联的故障类型 不同的故障类型及程度导致变压器油所产生的气体成分及含量不同,因此这些气体又被称为故障特征气体。根据中华人民共和国国家标准《变压器油中溶解气体分析和判断导则》GB/T 7252-2001规定,定义一氧化碳(CO)、二氧化碳(CO2)、氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)这7种气体为判别充油变压器设备的内部故障的特征气体。 大量实践研究发现,不同的故障类型与故障特征气体是有关联的。根据取样试品中溶解气体组分不同,并结合其他判断依据可以初步判断出故障程度,如下

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

论分解法在变压器绝缘故障诊断中的应用_龙立

SCI -TECH INNOVATION &PRODUCTIVITY No.12Dec.2012,Total No.227 分解法是指站在逻辑的角度上进行具体事物的分析,分解法的客观基础其实就是客观事物整体和部分之间的关系。也可以说成是分析整体到局部的一种方法,它主要是将重点放在事物的内部结构上,把一个整体事物分解为多个有机组成部分,然后在针对分解之后的每一部分进行分析和研究,这样一来,就可以全面地掌握事物的发展变化。在对电力设备进行故障诊断时,一旦发现其中出现故障,但是又不知道发生故障的具体部位的时候,“分解法”在这种情况下就能够发挥作用,逐一检查每一个部分,在最短的时间内找出故障,诊断效率也因此得到了很大地提升,人力物力在一定程度上也得到了节约。 1影响变压器绝缘故障的主要因素1.1 突发短路 短路是变压器出现绝缘故障比较常见的一种原因,当变压器的外部出口处发生短路现象时,电动力出现在铁心、绕组、引线、套管上的压力要比正常情况下大很多,如果变压器的承受力不够充分,就会出现变压器绕组的变形现象,或者引线移位的现象,在这种情况下,本身的绝缘距离也会出现相应的变化,绝缘的发热现象也会出现,同时,会加快变压器的老化速度,放电、拉弧以及短路故障的出现是必然的。1.2 温度的影响 油纸绝缘是电力变压器中的主要结构,而在变压器中,纸是主要的绝缘材质。如果温度不同,含 水量在油和纸中都存在着不同的关系。通常情况下,温度不断升高,纸中本身含有的水分会逐渐在油的作用下被析出,因此,在高温度的情况下,变压器的含水量在油中较多,相反则没有足够的含水量[1]。 变压器在运行的过程中,最容易出现老化的现象。例如,当油浸变压器规定一定负载的时候,绕组的平均温度会达到65℃,当温度达到极点的时 候,会有78℃的高温出现,如果环境温度平均达到20℃,温度的最高值将达到98℃;在这样的温度前提下,变压器运行20~30a 是完全有可能的,如果变压器的运行一直都处于超载的状态,其温度必然会升高,那么寿命一定不会很长。 国际电工委员会对A 级绝缘变压器的温度规定,不应超过80℃~1400℃的范围,每当温度增加6℃,变压器绝缘的寿命就会出现一定的降低,6℃法则就是通过这样的验证得到的,这样一来,热的限制范围要比之前的8℃法则更加严格。1.3 湿度的影响 纤维素会在水分的影响下出现降解的现象。因此,CO 和CO 2的产生也在很大程度上取决于纤维材料的含水量。当湿度达到一定程度,含水量就会越高,这样的话,CO 2就会获得更多地分解。相反的话,含水量不是很高,CO 就会获得更多地分解。 绝缘油中如果没有很多的水分,绝缘介质的电气特性和理化性也有可能受到严重影响和损害,因为绝缘油会因为一定水分的存在,使火花放电电压 文章编号:1674-9146(2012)12-0084-03 论分解法在变压器绝缘故障诊断中的应用 龙 立,袁 志 摘要:针对变压器结构的复杂性及发生的故障,运用分解法及时准确地找出故障发生的原因和具体部位,并提出相应的解决对策和方法。 关键词:分解法;变压器;绝缘故障诊断中图分类号:TM 407 文献标志码:A DOI:10.3969/j.issn.1674-9146.2012.12.084 收稿日期:2012-10-17;修回日期:2012-11-17 作者简介:龙立(1974-),男,湖南长沙人,经济师,主要从事变压器检修与维护研究,E-mail:31838116@qq .com 。 (湖南省电力公司检修公司检修基地,湖南 长沙 410015) 应用技术 AppliedTechnology -084-

变压器故障分类

变压器故障种类 ●故障种类: ?内部故障 ◆相间短路 ◆匝间短路 ◆绕组或出线接地 ?外部故障 ◆绝缘套管闪络、破碎发生接地 ◆出线之间相间故障 ●故障种类(性质划分) ?热故障 ◆轻度过热(低于50℃) ◆低温过热(150-300℃) ◆中温过热(300-700℃) ◆高温过热(高于700℃) ?电故障 ◆局部放电 ●油中存在气泡,绝缘材料中存在空腔 ●制造质量不良,某些部位有毛刺漆瘤 ●金属部件接触不良 ◆火花放电 ●悬浮电位引起电火花放电 ●油中杂质引起火花放电 ◆高能电弧放电 ●故障种类(回路划分) ?电路故障 ?磁路故障 ?油路故障 ●故障种类(结构划分) ?绕组故障 ?铁芯故障 ?油质故障 ?附件故障 ●故障种类(易发位置) ?绝缘故障 ?铁芯故障 ?分接开关故障 ◆密封不严,雨水侵入绝缘降低 ◆分接开关滚轮卡死,切换时不到位造成相间短路 ◆分接开关缺油,显示假油位 ◆分接开关误动 ●出口短路故障: ?三相短路(短路电流最大) ?两相短路

?单相接地短路 ?两相接地短路 ●短路故障危害 ?短路电流引起绝缘过热 ?短路点动力引起绕组变形故障 ●放电对绝缘的影响 ?直接击穿绝缘 ?产生的化学物质腐蚀绝缘 ●气体继电器误动分析 ?呼吸器不畅通 ?冷却系统漏气 ?冷却器入口阀门关闭造成堵塞,引起气体继电器动作频繁 ?散热器上部进油阀门关闭,引起气体继电器动作频繁 ?潜油泵烧坏使本体油热分解产生大量气体 ?密封不严,变压器进气 ?变压器出线负压区 ?油枕油腔中有气体 ?净油器的气体进入变压器 ?忽视气体继电器防雨 ●变压器故障时产生气体 ?H2:电晕放电、油和固体绝缘热分解、水分 ?CO:固体绝缘受热及热分解 ?CO2:固体绝缘受热及热分解 ?CH4:油和固体绝缘热分解、放电 ?C2H6:固体绝缘热分解、放电 ?C2H4:高温热点下油和固体绝缘热分解、放电 ?C2H2:强弧光放电、油和固体绝缘热分解

直流电机常见故障及排除方法(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 直流电机常见故障及排除方法 (新版) Safety management is an important part of production management. Safety and production are in the implementation process

直流电机常见故障及排除方法(新版) 1、前言 直流电机的故障多种多样,产生的原因较为复杂,并且相互影响,电机运行中由于制造、安装、使用、维护不当,都可引起故障。 2、直流发电机常风故障及排除方法 2.1并励直流发电机建立电压的条件 (1)条件:A、主磁极必须有剩磁;B、并励绕组并联到电机绕组上时,接线极性必须正确;C、励磁回路中总电阻值必须小于临界电阻。 (2)排除并励直流电机不能建立稳定电压的故障方法 A、新安装的原因是电机控制柜内接线松脱或电机碳刷接触不良所致。认真检查,调整碳刷压力即可。对于长期使用后的由于主磁极剩磁消失或严重减少,可先将并励绕组与电柜绕组联接线断开,用直流电源加于并励绕组使其磁化,如发电机仍不能发电,可改变

极性重新磁化。 B、在发电机旋转方向正确的情况下,有时由于电机外部或内部并激绕组与电柜绕组联接不正确导致励磁磁通与主磁极的剩磁磁通极性相反,使剩磁进一步减小不能自励,这时只要调换一下励磁绕组接线的极性就可以了。 C、为调整输出电压,励磁回路通常串联附加电阻,有时电阻断线、接头松脱使励磁回路总电阻大于发电机临界电阻,不能建立电压可将电阻值调小或短接一下,待发电机建立电压后,再调节电阻,使电压达到额定值。 2.2空载电压正常,加载后显著下降 (1)串励绕组的极性接反,检查接线可将串励绕组的2个接头互换位置试验,观察电压,若回升……….. (2)换向极绕组接反。此情况会使换向严重恶化,可看到电刷下火花随负载增加而更加明显,发现这种情况,先检查换向极性是否正确,可将换向极绕组的接头互换位置,进行试验以观察效果。 (3)电刷偏离中性线过多,严重时不发电空载下电刷有火花,

电力变压器绝缘在线监测研究状况

电力变压器绝缘在线监测研究状况 【摘要】在现代电力设备的运行和维护中,电力变压器是不仅属于电力系统中最重要的和最昂贵的设备之列,而且是故障多发设备。这就要求研制出可靠的智能的变压器在线检测装置。目前,变压器油中溶解气体分析是诊断变压器故障的重要方法之一,而离线的变压器油中溶解气体分析(DGA),由于操作复杂、试验周期长、人为影响的误差大,所以无法做到实时地了解变压器的内部绝缘状况。而在线监测可以克服传统方法的不足,实现真正的在线检测、分析和诊断一体化。由于变压器发生故障时,其油中含有气体的成分及含量与变压器的故障类型和严重程度密切相关,因此在线监测变压器油中气体变化及其发展趋势,是在线发现变压器故障的最常用方法。 【关键词】电力变压器;在线监测;油中气体分析 1 绪论 1.1变压器绝缘在线诊断技术的目的和意义 目前全国跨区联网日益紧密,局部故障有可能引发大范围的电网事故,变压器、断路器等电气主设备的故障将会严重影响到电力系统的安全运行。对变压器故障的在线监测,可以及时地掌握变压器设备内部绝缘的真实状况,尽早地发现变压器内部存在的故障隐患,将故障消灭于萌芽状态。 1.2国内外变压器在线监测技术研究状况 1.2.1 变压器在线监测技术的发展阶段 变压器在线监测技术的发展,大体经历了以下三个阶段: (1)带电测量阶段。这一阶段起始于二十世纪70 年代左右,当时人们仅仅是为了不停电而对设备的某些绝缘参数如变压器泄露电流、介损等进行直接测量,所采用的仪器多为机械式和模拟式的设备。 (2)80 年代至90 年代初,出现了各种专用的测试仪器,使在线监测技术开始从传统的模拟式设备转变为微机式的数字测量仪器,自动化程度有所提高。 (3)从90 年代开始,随着传感器技术、电子计算机技术、数字信号处理以及光纤技术的发展,在线监测、分析和诊断一体化的在线监测技术也得到了迅速地提高。 2 油浸式变压器在线监测方法 2.1 电力变压器的故障类型

电力变压器典型故障分析及处理

配电变压器故障的判断分析及处理 摘要:电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。在运行中,配电变压器经常发生故障。本文针对配电变压器故障率高这一实际情况,着重分析了配电变压器常见的故障和异常现象及主要原因,并针对这些故障进行了分析,同时提出了一些具体的防范解决措施,为防止和减少配电变压故障的发生。 关键词:变压器故障;短路故障;绝缘故障;故障处理。 一、变压器发生故障的原因 、制造工艺存在缺陷。如设计不合理、材料质量低劣以及加工不精细等。 、缺乏良好的管理及维护。如检修后干燥处理不充分,安装不细心,以及由于检测能力有限导致某些故障未能及时发现而继续发展或故障设备修复不彻底等。 、绝缘老化。变压器在正常运行中,由于长期受到热、电、机械应力以及环境因素的影响,会发生一些不可逆的变化过程,使绝缘老化,通常这一过程非常缓慢,但当设备发生某些异常情况时,则会加速绝缘老化过程,迅速形成故障。 、恶劣的环境和苛刻的运行条件,以及长期超过技术规定允许的范围运行,往往是直接导致故障的起因。 二、变压器故障按严酷程度分类 、类灾难性:变压器爆炸或完全损坏;

、类致命性:变压器性能严重下降或严重受损,必须立即停运; 、类临界性:变压器性能轻度下降或轻度受损; 、类轻度性:不甚影响变压器运行但要进行非计划检修。 三、变压器故障按部位分类分析 变压器故障按部位通常可分为绕组、铁心、绝缘、引线、分接开关、套管、密封等七类故障。如下图所示。 、绕组故障分析 变压器绕组是变压器的心脏,构成变压器输入,输出电能的电气回路,其故障模式可分为:绕组短路、绕组断路、绕组松动、变形、位移、绕组烧损。其中绕组短路又可分为:层间短路、匝间短路、股间短路等。 变压器绕组故障除外在因素外,大部分是由于绕组本身结构及绝缘不合理所引起,以绕组短路出现率最高,它不仅影响到绕组本身,而且对铁心、引线、绝缘层等都有极大的影响。这种故障属致命性的,此时变压器内部可能出现局部高温或局部高能量放电现象,如不及时处理会导致变压器绕组完全损坏,严重时其油温声速升高,体积膨胀,甚至导致变压器爆炸,升级为灾害性故障。

相关文档
最新文档