第六章 位移法 视频例题及其答案

合集下载

弹塑性力学第六章

弹塑性力学第六章

26
§6-3 平面问题的基本解法
当体力为常数或体力为零时,两个平面问题 的相容方程一致
2(x+y ) = 0
(x+y )为调合函数,与弹性系数无关,不
管是平面应力(应变)问题,也不管材料如何, 只要方程一致,应力解一致,有利实验。
2019/10/28
27
§6-3 平面问题的基本解法
3.2 应力函数解法 当体力为常量或为零时,按应力法解的
第六章 弹性力学平面问题的直 坐标系解答
§6-1平面问题的分类 §6-2平面问题的基本方程和边界条件 §6-3平面问题的基本解法 §6-4多项式应力函数运用举例
2019/10/28
1
第六章 弹性力学平面问题的直 坐标系解答
在第五章讨论了弹性力学问题的基本解法: 位移法和应力法,并结合简单的三维问题, 根据问题的特点,猜想问题的应力解或位移 解,并验证猜想的解是否满足应力法或位移 法的基本方程和边界条件,满足则为问题真 解。
1.1 平面应力问题
受力和约束特点:沿厚度(x3方向)均匀分
布,体力 f3 = fz = 0 , 面力 X 板表面无面力,坐标系(x1 ,
3 x2
Z ,
0 ,在薄
x3)放在板
厚中间平面——中平面,以z(或x3)轴垂直板
面。满足上述条件的问题称为平面应力问题
2019/10/28
7
§6-1平面问题的分类
最后应力分量解为其特解加通解:
x

y2

fx x,

y

x2

fy
y,
xy


2 xy
2019/10/28
35

三根杆的位移法例题

三根杆的位移法例题

三根杆的位移法例题
摘要:
一、位移法简介
1.位移法的定义
2.位移法的基本原理
二、三根杆的位移法例题解析
1.问题描述
2.位移法解题步骤
2.1 确定基本未知量
2.2 建立位移方程
2.3 求解位移方程
2.4 计算杆件内力
3.答案与解析
正文:
位移法是一种求解杆件内力的方法,其基本原理是通过位移来建立内力与位移之间的关系。

接下来,我们将通过一个三根杆的位移法例题来详细解析位移法的解题过程。

题目描述:一个刚性三根杆件结构,其中两根杆固定,另一根杆在两端受力,求解杆件的内力分布。

位移法解题步骤如下:
1.确定基本未知量:首先需要确定一个基本未知量,通常选择一个杆件的
位移作为基本未知量。

2.建立位移方程:根据位移法原理,我们需要建立一个关于位移的方程。

这个方程通常包括两部分:刚度方程和边界条件。

刚度方程反映了杆件的弹性特性,而边界条件则反映了杆件与外部结构的连接关系。

3.求解位移方程:通过求解位移方程,我们可以得到杆件的位移分布。

这一步通常需要使用数值方法,如牛顿法或梯度下降法。

4.计算杆件内力:在得到杆件的位移分布后,我们可以通过力学平衡方程计算出杆件的内力分布。

根据以上步骤,我们可以得出三根杆的位移法例题的解答。

一级注册结构工程师《专业基础考试》复习全书【核心讲义+过关练习】(第六章)【圣才出品】

一级注册结构工程师《专业基础考试》复习全书【核心讲义+过关练习】(第六章)【圣才出品】

静定结构 反力内力的计算与内力图的
的受力分
绘制
35 35、36 46、47 35
析与特性 静定结构特性及其应用
42
广义力与广义位移
虚功原理
35
6.3
单位荷载法
39
37、38
37、38
静定结构 荷载下静定结构的位移计算
35
43
的位移计
图乘法
44

支座位移和温度变化引起的
36
36
37
位移
互等定理及其应用
内力包络图概念
24
单自由度体系周期、频率、简
谐荷载与突加荷载作用下简
6.6
47、48 47、48 46、47 48
46
单结构的动力系数、振幅与最
结构的动
大动内力
力特性与
阻尼对振动的影响
47
动力反应
多自由度体系自振频率与主
42
48
振型
2 / 196
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 6-1-4 5.瞬变体系 几何瞬变体系是几何可变体系的特殊情况。如果某一几何可变体系发生微量位移后即成 为几何不变体系,则称此体系为几何瞬变体系(此时构件有高阶微量的变形,会产生无穷大 的内力)。瞬变体系既是可变体系,又是有多余约束的体系。 6.等效作用 (1)瞬铰 ①一般情况下的虚铰 两根链杆的交叉点或其延长线的交点称为(单)瞬铰,又称虚铰,其作用与实铰相同。 平行链杆的交点在无限远处。联结两刚片的两根链杆相当于一个单铰即虚铰。 ②无穷远处的瞬铰 如果用两根平行的链杆 1、2 把刚片与基础相连接,则两根链杆的交点在无穷远处。两 根链杆所起的约束作用相当于无穷远处的瞬铰所起的约束作用。由于瞬铰在无穷远处,因此 绕虚铰的微小转动就退化为平动,即沿两根链杆的正交方向产生平动。 (2)等效刚片 一个内部几何不变的体系,可用一个刚片来代替。

结构力学(5.1.2)--位移法习题及参考答案

结构力学(5.1.2)--位移法习题及参考答案

习 题6-1 试确定图示结构位移法基本未知量的个数。

6-2~6-6作图示刚架的M 图。

(a)(f)习题6-1图(d)习题6-2图习题6-5图习题6-3图(BC 杆件为刚性杆件)习题6-4图6-6 试用位移法计算图示结构,并作内力图。

6-7 试用位移法计算图示结构,并作内力图。

6-8 试用位移法计算图示结构,并作内力图。

EI 为常数。

6-9试用位移法计算图示结构,并作弯矩图。

EI 为常数。

6-10 试用位移法计算图示结构,并作弯矩图(提示:结构对称)。

习题6-9图习题6-7图6-11作图示刚架的体系内力图。

6-12 设支座 B 下沉0.5cm B D =,试作图示刚架的M 图。

6-13如图所示连续梁,设支座C 下沉淀1cm ,试作M 图。

6-14图示等截面正方形刚架,内部温度升高+t°C ,杆截面厚度h ,温度膨胀系数为 ,试作M 图。

10 kN/m( a )( b)40 kN习题6-10图BGH习题6-11图(a )(b )q6-15试作图示有弹性支座的梁的弯矩图,332EIk l=,EI =常数。

6-16 试用弯矩分配法计算图示连续梁,并作M 图。

6-176-18 用力矩分配法计算图示结构,并作M 图。

6-19 已知图示结构的力矩分配系数1238/13,2/13,3/13,A A A m m m ===作M 图。

6-20 求图示结构的力矩分配系数和固端弯矩。

已知q=20kN/m,各杆EI 相同。

习题6-17图习题6-13图习题6-14图6-21~6-22 用力矩分配法计算图示连续梁,作M 图,并计算支座反力。

EI=常数。

6-23~6-25用力矩分配法计算图示刚架,作M 图。

EI=常数。

参考答案6.1 (a) 2 (b) 1 (c) 2 (d) 3 (e) 6 (f) 26.2 15BD M =kN·m (右侧受拉)20kN/m 40kN习题6-22图习题6-21图15kN/m习题6-23图F P =10kN 习题6-24图习题6-25图6.321112AB M ql =(上侧受拉)6.4P 0.4AD M F l =(上侧受拉)6.5150AC M =kN·m (左侧受拉)6.651.3AB M =kN·m (左侧受拉)6.780AB M =kN·m (上侧受拉)6.816.9AB M =kN·m (左侧受拉)6.9 (a) 10.43CA M =kN·m (左侧受拉) (b) 56.84CE M =kN·m (下侧受拉)6.10 (a) 8.5AB M =kN·m (上侧受拉) (b) 34.3AC M =kN·m (左侧受拉)6.11 (a) 20.794DC M ql =(右侧受拉) (b) 6.14GD M q =(右侧受拉)6.1223.68AC M =kN·m (右侧受拉)6.1359.3310BA M =ᅲkN·m (上侧受拉)6.142/M EIt h a =(外侧受拉)6.152/32BA M ql =(下侧受拉)6.1617.5CB M =kN·m (下侧受拉)6.1778.75CD M =kN·m (上侧受拉)6.1827/12AB M ql =(上侧受拉)6.191117.95A M =kN·m (上侧受拉)6.200.34AD m =,13.33AD M =kN·m 6.2142.3BA M =kN·m (上侧受拉)6.2217.35BA M =kN·m (上侧受拉)6.2357.4BA M =kN·m (上侧受拉)6.2428.5BA M =kN·m (上侧受拉)6.2573.8BD M =kN·m (左侧受拉)。

结构力学(第五版)第六章 结构位移计算

结构力学(第五版)第六章 结构位移计算

相对位移 △CD= △C+ △D
3. 计算位移的目的
(1)校核结构的刚度。 (2)结构施工的需要。 (3)为分析超静定结构打 基础。
△ 起拱高度
除荷载外,还有一些因素如温度变化、支座移动、 材料收缩、制造误差等,也会使结构产生位移。 结构力学中计算位移的一般方法是以虚功原理为 基础的。本章先介绍变形体系的虚功原理,然后讨论 静定结构的位移计算。 返4回
B
变力 W= 1 M· ϕ 2
(d )
返6回
P
(2)实功与虚功 实功: 力本身引起的位移上所作的功。 例如: W=
A 力在其它 虚功: 因素引起的位移上所作 的功。力与位移是彼此无关的量,分别属于同一体系 的两种彼此无关的状态。
△2
2
A
P1
△1
1
B P2 B
例如:
W12=P1·△2
返7回
2. 变形体的虚功原理:
A RA
P
M
q B dS
q
RB N+dN Q+dQ
Q N 力状态 A
ds B dS
dWi=Ndu+QγdS+Mdϕ Wi=
(6—2)
整个结构内力的变形虚功为
虚功方程为
W=
(6—3)
dS du

γ γ
dS
位移状态
dS
9
返dx γ回
§6—3 位移计算的一般公式
k 1. 位移计算的一般公式 t1 K △K t2 c3 K ds 设平面杆系结构由 ds k R 3 K′ 于荷载、温度变化及支 k P1 座移动等因素引起位移 du、dϕ、γdS N MQ 、、 如图示。 R 1 c2 求任一指定截面K K c1 2 沿任一指定方向 k—k 实际状态-位移状态 R 虚拟状态-力状态 上的位移△K 。

_新教材高中物理课时检测6位移变化规律含解析鲁科版必修第一册

_新教材高中物理课时检测6位移变化规律含解析鲁科版必修第一册

位移变化规律1.汽车以20 m/s 的速度做匀速直线运动,某时刻关闭发动机而做匀减速直线运动,加速度大小为5 m/s 2,则它关闭发动机后通过37.5 m 所需时间为( )A .3 sB .4 sC .5 sD .6 s解析:选A 根据s =v 0t +12at 2,将v 0=20 m/s ,a =-5 m/s 2,s =37.5 m ,代入得t 1=3 s ,t 2=5 s ,但因刹车时间t 0=0-v 0a=4 s ,所以t 2=5 s 应舍去。

故只有选项A 正确。

2.一质点做匀变速直线运动,第3 s 内的位移为12 m ,第5 s 内的位移为20 m ,则该质点运动过程中( )A .初速度大小为零B .加速度大小为4 m/s 2C .前5 s 内的位移为50 mD .第4 s 内的平均速度为8 m/s解析:选B 第3 s 内的位移等于前3 s 内位移与前2 s 内位移之差,即Δs 3=s 3-s 2=12 m ,代入数据得v 0×3 s+12a ×(3 s)2-⎝ ⎛⎭⎪⎫v 0×2 s+12 a ×4 s 2=12 m ①同理可得v 0×5 s+12a ×(5 s)2-⎝ ⎛⎭⎪⎫v 0×4 s+12 a ×16 s 2=20 m②联立①②解得v 0=2 m/s ,a =4 m/s 2,故A 错误,B 正确。

前5 s 内的位移为s =v 0t 5+12at 25=60 m ,C 错误。

第4 s 内的位移为Δs 4=s 4-s 3=v 0t 4+12at 24-⎝ ⎛⎭⎪⎫v 0t 3+12at 23=16 m ,则第4 s 内的平均速度v =Δs 4t =161m/s =16 m/s ,D 错误。

3.通过测试得知,某型号的卡车在某路面上急刹车时加速度的大小是5 m/s 2。

如果要求它在这种路面上行驶时必须在10 m 内停下来,则它的行驶速度不能超过( )A .2 m/sB .5 m/sC .8 m/sD .10 m/s解析:选D 由0-v 20=2as ,代入数值解出v 0=10 m/s 。

位移法复习题

位移法复习题

位移法复习题位移法复习题位移法是力学中的一种重要方法,用于求解物体在受力作用下的运动情况。

它通过分析物体的位移来推导出物体的速度和加速度等运动参数。

在学习位移法时,我们需要掌握一些基本的概念和方法,并通过练习题来加深理解。

下面,我们将通过一些典型的位移法复习题来巩固知识。

1. 一辆汽车以20 m/s的速度匀速行驶了5秒钟,求汽车的位移。

解析:根据位移的定义,位移等于速度乘以时间。

所以汽车的位移等于20 m/s × 5 s = 100 m。

2. 一个物体以2 m/s²的加速度匀加速运动了10秒钟,求物体的位移。

解析:根据匀加速运动的位移公式,位移等于初速度乘以时间加上加速度乘以时间的平方的一半。

所以物体的位移等于0 m/s × 10 s + 2 m/s² × (10 s)² / 2 = 100 m。

3. 一个自由落体物体从静止开始下落,求物体下落5秒钟后的位移。

解析:自由落体物体的加速度等于重力加速度,即9.8 m/s²。

根据自由落体运动的位移公式,位移等于初速度乘以时间加上加速度乘以时间的平方的一半。

由于物体从静止开始下落,所以初速度为0 m/s。

所以物体的位移等于0 m/s × 5 s + 9.8 m/s² × (5 s)² / 2 = 122.5 m。

4. 一个物体以10 m/s的速度向上抛出,求物体到达最高点时的位移。

解析:当物体到达最高点时,它的速度为0 m/s。

根据物体的运动规律,物体到达最高点时的位移等于它的初速度乘以时间。

所以物体到达最高点时的位移等于10 m/s × (10 m/s / 9.8 m/s²) = 10.2 m。

5. 一个物体以5 m/s的速度向上抛出,求物体落地时的位移。

解析:当物体落地时,它的位移等于它的初速度乘以时间加上加速度乘以时间的平方的一半。

位移法例题

位移法例题
0
r21=- 24i/l 2
0
6i/l 6i/l
r12= -24i/l 2
r12
Z2=1
-12i/l 2 -12i/l 2 12i/l 2
-12i/l 2 -12i/l 2 r22=48i/l 2 12i/l 2
r22
6i/l
M 2图
FP
说明:水平杆的M图没画,并不是其M=0,而 是EI无穷大的杆能平衡任何弯矩。
R1P FP
R1P=-FP
0 0 0 0 0
FP
R2P FP MP图
R2P=-FP
0
作用在结点上的外力相当于 支座,故杆件无弯矩。 解得
3FP l 2 Z1 = 24i FP l 2 Z2 = 12i
FPl /4 FPl /4 FPl / 2
FPl / 2
M图
(4) 利用叠加法作出弯矩图
例4:用位移法计算图示结构 ,并作弯矩图.EI= 常数. 4:
l
A l
D
(同济大学,2004年考研题)
Z1 = 1
B 4i A 4i 2i l
C 2i l D
Z2 = 1
6i/l
2i/l
B
C
4i/l
M1 图
A
6i/l
D
l
M2 图
l
Z1 = −ql / ( 84i )
2
Z 2 = ql / ( 3i )
3
M 图(× ql )
2
例2: 位移法求解图示结构。
P
P /2
l A EA = B
Z1
l
l
P
l
注意: M 1图和 M P图的正确作图
例3:用位移法作图示结构的 M 图。EI=常数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

视频例题: ➢602结构简化。

➢603确定未知量。

➢604用位移法求出下列结构的弯矩图。

➢605求出下列结构的弯矩图。

<1>用位移法求下图所示梁的M图。

已知EI=常数,B支座弹簧刚度k=3EI/l3。

<2>下图所示刚架温度变化,各杆截面EI相同,矩形截面高度h=0.5m、宽b=0.3m,
线膨胀系数为α。

试求弯矩图。

➢606求出下图所示有斜杆刚架的位移法方程。

➢607求出下图所示有弹性支座结构的位移法方程。

<1>如下图所示为具有弹性支座的连续梁,kr为弹性抗扭转刚度,
k为弹簧抗侧移刚度。

试列出位移法基本方程。

➢608关于位移法的无穷刚度问题。

<1>用位移法求下图所示结构M图,并校核M图的正确性。

<2>下图所示梁,AB和DE段的抗弯刚度为EI,而BCD段的抗弯刚度为∞,
试用位移法作梁的M图。

<3>下图所示梁,AB和DE段的抗弯刚度为EI,而BCD段的抗弯刚度为∞,
试用位移法作梁的M图。

➢609排架结构或横梁刚度无穷大的刚架问题。

<1>下图所示为一个三跨排架和三跨刚架,杆的轴向变形不计。

(1)试作必要的分析或计算后,分别画出排架和刚架中柱子的弯矩图和剪力图;(2)分别定性地画出两结构在图示荷载作用下的变形图。

相关文档
最新文档