六年级奥数行程走停、变速问题
六奥数行程走停变速问题

_________ 个性化辅导讲义⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用•这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.【例题精讲】走停问题例题1 一辆汽车原计划6小时从A城到B城。
汽车行驶了一半路程后,因故在途中停留了30分钟。
如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B 两城相距多少千米?练习:一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达•但汽车行驶到路程的3/ 5时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?例题2甲每分钟走80千米,乙每分钟走60千米.两人在A , B两地同时出发相向而行在E相遇, 如果甲在途中休息7分钟,则两人在F地相遇,已知为C为AB中点,而EC=FC那么AB两地相距多少千米?练习:一辆大轿车与一辆小轿车都从甲地驶往乙地,大轿车的速度是小轿车速度的0.8倍•已知大轿车比小轿车早出发17分钟,它在两地中点停了5分钟后,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车却比大轿车早4分钟到达乙地.又知大轿车是上午10 时从甲地出发•求小轿车追上大轿车的时间。
例题3甲、乙两人分别从相距35.8千米的两地出发,相向而行.甲每小时行4千米,但每行30 分钟就休息5分钟;乙每小时行12千米,则经过几小时几分的时候两人相遇.练习:甲乙两人同时从A地出发,以相同的速度向B地前进。
甲每行5分钟休息2分钟;乙每行210米休息3分钟。
甲出发后50分钟到达B地,乙到达B地比甲迟了10分钟。
已知两人最后一次的休息地点相距70米,两人的速度是每分钟行多少米?例题4甲乙二人从A B两地同时出发相向而行,甲每分钟行80米,乙每分钟行60 米.出发一段时间后,二人在距离中点120米处相遇.如果甲出发后在途中某地停留了一会儿,二人还将在距中点120米处相遇.问:甲在途中停留了多少分钟?练习:甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D 处相遇,且中点距C、D距离相等,问A、B两点相距多少米?例题5某公共汽车线路中间有10个站。
小学奥数走走停停问题及答案

小学奥数走走停停问题及答案
小学奥数走走停停问题及答案
小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的`距离是多少千米?
解:先计算,从学校开出,到面包车到达城门用了多少时间.
此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1.5(小时).
小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是54-6=48(千米/小时).
城门离学校的距离是48×1.5=72(千米).
答:学校到城门的距离是72千米.。
六年级奥数行程问题专题:走走停停的要点及解题技巧

六年级奥数行程问题专题:走走停停的要点及解题技巧一、行程问题里走走停停的题目应该怎么做1。
画出速度和路程的图。
2。
要学会读图。
3。
每一个加速减速、匀速要分清楚,这有利于你的解题思路。
4。
要注意每一个行程之间的联系。
二、学好行程问题的要诀行程问题可以说是难度最大的奥数专题。
类型多:行程分类细,变化多,工程抓住工作效率和比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓题目难:理解题目、动态演绎推理——静态知识容易学,动态分析需要较高的理解能力、逻辑分析和概括能力跨度大:从三年级到六年级都要学行程——四年的跨度,需要不断的复习巩固来加深理解、夯实基础那么想要学好行程问题,需要掌握哪些要诀呢?要诀一:大部分题目有规律可依,要诀是"学透"基本公式要诀二:无规律的题目有"攻略",一画(画图法)二抓(比例法、方程法)竞赛考试中的行程题涉及到很多中数学方法和思想(比如:假设法、比例、方程)等的熟练运用,而这些方法和思想,都是小学奥数中最为经典并能考察孩子思维的专项。
奥数行程:走走停停的例题及答案(一)例1。
甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?【解答】这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。
很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。
其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。
由此首先考虑休息800÷200-1=3分钟的情况。
甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好是在休息点追上的满足条件。
行5200米要休息5200÷200-1=25分钟。
小学奥数行程问题(走走停停)

小学奥数行程问题(走走停停)------------------------------------------作者xxxx------------------------------------------日期xxxx小学奥数行程问题---走走停停先出一道比较简单的:在200米环形跑道上,甲、乙两人从同一个点出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙一圈需要多少秒?提高一些难度:第二题在200米环形跑道上,甲、乙两人从同一个点出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,甲每跑100米停5秒.乙每跑30米停10秒.那么,甲追上乙一圈需要多少秒?两者都在途中时,追上,可以套用这个方法,进行简单计算可得,结果为165秒。
计算过程如下:但是不适用乙在休息的时候被追上。
这时,甲比乙多休息的时间为5~10秒。
而并非10秒整!现在,我们假设在同一个地点,甲比乙晚出发200/7+5=235/7至200/7+10=270/7秒的之间,在追赶中,甲就要比乙少用这么多时间,由于甲走100米比乙少用100/5-100/7=40/7秒。
因为270/7÷40/7除不断,即第一次追上不是在乙休息结束的时候追上的。
因为在这个范围内有240/7÷40/7=6是整数,说明在乙休息中追上的。
甲共走了6×100+200=800米,休息了7次,计算出时间就是800/7+7×5=149又2/7秒。
明显这个数据比165秒要提前很多。
165秒实际上是第二次被追上走走停停行程问题在有些行程问题中,既有路程上的前后调头,又有时间上的走走停停,同时又有速度上的前后变化。
遇到此类问题,我们应分析其中的运动规律,把整个运动过程分成几段,再仔细分析每一段中的情况,然后再类推到其它各段中去。
这样既可使运动关系明确、简化,又可减少复杂重复的推理及计算。
例:甲、乙两名运动员在周长400米的环形跑道上进行10000米长跑比赛,两人从同一起跑线同时起跑,甲每分钟跑400米,乙每分钟跑360米,当甲比乙领先整整一圈时,两人同时加速,乙的速度比原来快,甲每分比原来多跑18米,并且都以这样的速度保持到终点。
小学奥数 典型行程问题 变速问题.题库版

变速问题教学目标1、能够利用以前学习的知识理清变速变道问题的关键点2、能够利用线段图、算术、方程方法解决变速变道等综合行程题。
3、变速变道问题的关键是如何处理“变”知识精讲变速变道问题属于行程中的综合题,用到了比例、分步、分段处理等多种处理问题等解题方法。
对于这种分段变速问题,利用算术方法、折线图法和方程方法解题各有特点。
算术方法对于运动过程的把握非常细致,但必须一步一步来;折线图则显得非常直观,每一次相遇点的位置也易于确定;方程的优点在于无需考虑得非常仔细,只需要知道变速点就可以列出等量关系式,把大量的推理过程转化成了计算.行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.【例1】小红和小强同时从家里出发相向而行。
小红每分走52米,小强每分走70米,二人在途中的A 处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。
小红和小强两人的家相距多少米?【考点】行程问题之变速问题【难度】3星【题型】解答【解析】因为小红的速度不变,相遇的地点不变,所以小红两次从出发到相遇行走的时间不变,也就是说,小强第二次走的时间比第一次少4分钟。
六年级奥数.行程.走停,变速问答(ABC级).学生版

走停与变速问题知识总结变速变道问题属于行程中的综合题,用到了比例、分步、分段处理等多种处理问题等解题方法。
对于这种分段变速问题,利用算术方法、折线图法和方程方法解题各有特点。
算术方法对于运动过程的把握非常细致,但必须一步一步来;折线图则显得非常直观,每一次相遇点的位置也易于确定;方程的优点在于无需考虑得非常仔细,只需要知道变速点就可以列出等量关系式,把大量的推理过程转化成了计算.行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.重点难点学会画线段图解决行程中的走停问题能够运用等式或比例解决较难的行程题能够利用以前学习的知识理清变速变道问题的关键点能够利用线段图、算术、方程方法解决变速变道等综合行程题。
例题精讲一、走停问题【例 1】一辆汽车原计划6小时从A城到B城。
汽车行驶了一半路程后,因故在途中停留了30分钟。
如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B两城相距多少千米?【巩固】一辆汽车从甲地开往乙地,每分钟行750 米,预计50 分钟到达.但汽车行驶到路程的3/5时,出了故障,用5 分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?【例 2】甲每分钟走80千米,乙每分钟走60千米.两人在A , B两地同时出发相向而行在E相遇,如果甲在途中休息7分钟,则两人在F地相遇,已知为C为AB中点,而EC=FC,那么AB两地相距多少千米?【巩固】一辆大轿车与一辆小轿车都从甲地驶往乙地,大轿车的速度是小轿车速度的0.8倍.已知大轿车比小轿车早出发17分钟,它在两地中点停了5分钟后,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车却比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发.求小轿车追上大轿车的时间.【例 3】甲、乙两人分别从相距35.8千米的两地出发,相向而行.甲每小时行4 千米,但每行30 分钟就休息5 分钟;乙每小时行12 千米,则经过________小时________分的时候两人相遇.【巩固】甲乙两人同时从A地出发,以相同的速度向B地前进。
小学奥数-行程问题之变速问题-完整版例题+课后作业

行程板块之变速问题变速变道问题属于行程中的综合题,用到了比例、分步、分段处理等多种处理问题等解题方法。
例题精讲:【例1】小红和小强同时从家里出发相向而行。
小红每分走52米,小强每分走70米,二人在途中的A处相遇。
若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。
小红和小强两人的家相距多少米?【例2】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用25秒同时回到原地。
求甲原来的速度。
[例3]甲、乙两车分别从A,B两地同时出发相向而行,6小时后相遇在C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车速度每小时多行5千米,则相遇地点距C点16千米.甲车原来每小时行多少千米?[例4]甲、乙两车从A、B两地同时出发相向而行,5小时相遇;如果乙车提前1小时出发,则差13千米到中点时与甲车相遇,如果甲车提前1小时出发,则过中点37千米后与乙车相遇,那么甲车与乙车的速度差等于多少千米/小时?【例5】如图,甲、乙分别从A、C两地同时出发,匀速相向而行,他们的速度之比为5:4,相遇于B地后,甲继续以原来的速度向C地前进,而乙则立即调头返回,并且乙的速度比相遇前降低1/5,这样当乙回到C地时,甲恰好到达离C地18千米的D处,那么A、C两地之间的距离是千米。
A B CD[例6]一列火车出发1小时后因故停车0.5小时,然后以原速的3/4前进,最终到达目的地晚1.5小时.若出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的3/4前进,则到达目的地仅晚1小时,那么整个路程为多少公里?【例7】甲、乙两车分别从A、B两地同时出发,相向而行.出发时,甲,乙的速度之比是5:4,相遇后甲的速度减少20%,乙的速度增加20%.这样当甲到达B地时,乙离开A地还有10千米.那么A、B两地相距多少千米?【例8】王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高1/6,于是提前1小时40分到达北京.北京、上海两市间的路程是多少千米?【例9】、一个极地探险家乘10只狗拉雪橇从甲营地赶往乙营地.出发4小时发生意外,由3只狗受伤,由7只狗继续拉雪橇前进速度为原来的十分之七,结果探险家比预定迟到2小时,如果受伤的3只狗能再拉雪橇21千米那么就可以比预定迟到1小时,求甲乙两营地的距离?【例10】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快。
六(下)奥数第3讲~变速行程问题

六年级下册奥数第3讲~变速行程问题知识点二:设数法解变速行程举例:下图是一个正六边形,已知一个蚂蚁在每边上的爬行速度,求绕一圈的平均速度。
例2、一只虫子沿正方形ABCD的四条边爬行,已知其在AB上的速度是每分钟90厘米,BC上的速度是每分钟120厘米,CD上的速度是每分钟60厘米,DA上的速度是每分钟80厘米。
蚂蚁由A点开始,如果顺时针爬行一周,平均速度是多少?如果顺时针爬行了一周半,平均速度又是多少?练2、一只虫子沿正方形ABCD爬行,已知其在AB上的速度是每分钟90厘米,BC上的速度是每分钟120厘米,CD上的速度是每分钟60厘米,DA上的速度是每分钟80厘米。
蚂蚁由A点开始,逆时针爬行2周半,平均速度是多少?知识点三:设分段法解变速行程当题目中没有告诉我们路程时,我们只要通过设数的形式进行解题就可以了,当然设数法求平均速度的问题还有另外一种类型,1、张老师开车回家,此时距离家有120千米,前半程用速30千米/时速度行驶,临时家里有事需要尽快到达,要想3小时到达,那么后半段的速度是__________。
2、有甲乙两艘船在海上相向行驶,甲船单独行驶完全程需要6小时,乙船单独行驶完全程需要4小时,甲乙同时出发_______小时相遇。
例3、胖胖开车去外婆家,原计划按照60千米/时的速度行驶,行驶到路程的一半时发现之前的速度只有50千米/时,那么在后一半路程中,速度必须达到多少才能准时到外婆家?练3、李老师开车去图书馆,前一半路程车速为每小时40千米,平均速度是每小时48千米,那么他后一半路程的车速是多少?知识点四:与正反比相关的变速行程举例:小红帽去外婆家,小红帽有天按照往常的速度去2000米处的外婆家,结果在最后500米处发现了大灰狼,小红帽加快速度跑步,结果比平时提前了3分钟到达外婆家,请问,如果小红帽一开始就以跑步的速度,那么可以提前几分钟到达外婆家。
板书总结:与正反比相关的变速行程1、路程相同,速度与时间成反比;2、去相同,比不同3、找不变量,路程和相同,速度和相同,时间也相同3、乐乐和静静、赛跑,这天他们选定了跑道进行比赛,已知乐乐和静静、的速度比为5:4,乐乐比静静、早2秒到终点,乐乐跑完全程需要多久?4、客货两车同时从甲、乙两地相对开出,相遇时客货两车所行的路程比是5:4,相遇后货车每小时比相遇前每小时多走27千米,客车仍按原速前进,结果两车同时到达对方的出发站。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
走停与变速问题六年级奥数行程走停、变速问题算术方法对于运动过程的把握非常细致,但必须一步一步来;折线图则显得非常直观,每一次相遇点的位置也易于确定;方程的优点在于无需考虑得非常仔细,只需要知道变速点就可以列出等量关系式,把大量的推理过程转化成了计算.行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.学会画线段图解决行程中的走停问题能够运用等式或比例解决较难的行程题能够利用以前学习的知识理清变速变道问题的关键点能够利用线段图、算术、方程方法解决变速变道等综合行程题。
一、走停问题【例 1】一辆汽车原计划6小时从A城到B城。
汽车行驶了一半路程后,因故在途中停留了30分钟。
如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B两城相距多少千米?一辆汽车从甲地开往乙地,每分钟行 750 米,预计 50 分钟到达.但汽车行驶到路程的3/5时,出了故障,用 5 分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?【例 2】甲每分钟走80千米,乙每分钟走60千米.两人在A , B两地同时出发相向而行在E相遇,如果甲在途中休息7分钟,则两人在F地相遇,已知为C为AB中点,而EC=FC,那么AB两地相距多少千米?一辆大轿车与一辆小轿车都从甲地驶往乙地,大轿车的速度是小轿车速度的0.8倍.已知大轿车比小轿车早出发17分钟,它在两地中点停了5分钟后,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车却比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发.求小轿车追上大轿车的时间.【例 3】甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过________小时________分的时候两人相遇.甲乙两人同时从A地出发,以相同的速度向B地前进。
甲每行5分钟休息2分钟;乙每行210米休息3分钟。
甲出发后50分钟到达B地,乙到达B地比甲迟了10分钟。
已知两人最后一次的休息地点相距70米,两人的速度是每分钟行多少米?【例 4】甲乙二人从A、B两地同时出发相向而行,甲每分钟行80米,乙每分钟行60米.出发一段时间后,二人在距离中点120米处相遇.如果甲出发后在途中某地停留了一会儿,二人还将在距中点120米处相遇.问:甲在途中停留了多少分钟?甲、乙两人同时从 A、 B 两点出发,甲每分钟行 80米,乙每分钟行 60米,出发一段时间后,两人在距中点的 C 处相遇;如果甲出发后在途中某地停留了 7分钟,两人将在距中点的 D 处相遇,且中点距 C 、 D 距离相等,问 A、 B 两点相距多少米?【例 5】某公共汽车线路中间有10个站。
车有快车及慢车两种,快车车速是慢车车速的1.2倍。
慢车每站都停,快车则只停靠中间1个站,每站停留时间都是3分。
当某次慢车发出40分后,快车从同一始发站开出,两车恰好同时到达终点。
问:快车从起点到终点共用多少时间?甲、乙两地铁路线长1000公里,列车从甲行驶到乙的途中停6站(不包括甲、乙),在每站停车5分钟,不计在甲乙两站的停车时间,行驶全程共用11.5小时。
火车提速10%后,如果停靠车站及停车时间不变,行驶全程共用多少小时?【例 6】龟兔赛跑,全程6千米,兔子每小时跑15千米,乌龟每小时跑3千米,乌龟不停的跑,但兔子边跑边玩,它先跑1分钟后玩20分钟,又跑2分钟后玩20分钟,再跑3分钟后玩20分钟……问它们谁胜利了?胜利者到终点时,另一个距离终点还有多远?龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米.乌龟不停地跑;但兔子却边跑边玩,它先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟,…….那么先到达终点的比后到达终点的快多少分钟?二、变速问题【例 1】甲、乙二人在同一条圆形跑道上作特殊训练:他们同时从同一地出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的速度的23.甲跑第二圈的速度比第一圈提高了13,乙跑第二圈的速度提高了15,已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,问这条跑道长多少米?甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加4米/秒,乙比原来速度减少4米/秒,结果都用25秒同时回到原地.求甲原来的速度.【例 7】一辆大货车与一辆小轿车同时从甲地开往乙地,小轿车到达乙地后立即返回,返回时速度提高50%。
出发2小时后,小轿车与大货车第一次相遇,当大货车到达乙地时,小轿车刚好走到甲、乙两地的中点。
小轿车在甲、乙两地往返一次需要多少时间?甲、乙两地间平路占15,由甲地去往乙地,上山路千米数是下山路千米数的23,一辆汽车从甲地到乙地共行了10小时,已知这辆车行上山路的速度比平路慢20%,行下山路的速度比平路快20%,照这样计算,汽车从乙地回到甲地要行多长时间?【例 8】某校在400米环形跑道上进行1万米比赛,甲、乙两名运动员同时起跑后,乙的速度始终保持不变,开始时甲比乙慢,在第15分钟时甲加快速度,并保持这个速度不变,在第18分钟时甲追上乙并且开始超过乙。
在第23分钟时甲再次追上乙,而在23分50秒时甲到达终点。
那么,乙跑完全程所用的时间是多少分钟?甲、乙两人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加O.5米,直到终点.那么领先者到达终点时,另一人距终点多少米?【例 9】小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条路所用的时间一样多.已知下坡的速度是平路的1.6倍,那么上坡的速度是平路速度的多少倍?王老师每天早上晨练,他第一天跑步1000米,散步1600米,共用25分钟;第二天跑步2000米,散步800米,共用20分钟。
假设王老师跑步的速度和散步的速度均保持不变。
求:(1)王老师跑步的速度; (2)王老师散步800米所用的时间。
【例 10】甲、乙两人同时同地同向出发,沿环形跑道匀速跑步.如果出发时乙的速度是甲的2.5倍,当乙第一次追上甲时,甲的速度立即提高25%,而乙的速度立即减少20%,并且乙第一次追上甲的地点与第二次追上甲的地点相距100米,那么这条环形跑道的周长是米.如图所示,甲、乙两人从长为400米的圆形跑道的A点背向出发跑步。
跑道右半部分(粗线部分)道路比较泥泞,所以两人的速度都将减慢,在正常的跑道上甲、乙速度均为每秒8米,而在泥泞道路上两人的速度均为每秒4米。
两人一直跑下去,问:他们第99次迎面相遇的地方距A点还有米。
【例 11】丁丁和乐乐各拿了一辆玩具甲虫在400米跑道上进行比赛,丁丁的玩具甲虫每分钟跑30米,乐乐的玩具甲虫每分钟跑20米,但乐乐带了一个神秘遥控器,按第一次会使丁丁的玩具甲虫以原来速度的10%倒退1分钟,按第二次会使丁丁的玩具甲虫以原来速度的20%倒退1分钟,以此N 倒退1分钟,然后再按原来的速类推,按第N次,使丁丁的玩具甲虫以原来的速度的10%度继续前进,如果乐乐在比赛中最后获胜,他最少按次遥控器。
唐老鸭和米老鼠进行5000米赛跑.米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭有一种能使米老鼠停止或减速的遥控器,每次使用都能使米老鼠进入“麻痹”状态1分钟,1分钟后米老鼠就会恢复正常,遥控器需要1分钟恢复能量才能再使用.米老鼠对“麻痹”状态也在逐渐适应,第1次进入“麻痹”状态时,米老鼠会完全停止,米老鼠第2次进入“麻痹”状态时,就会有原速度5%的速度,而第3次就有原速度10%的速度……,第20次进入“麻痹”状态时已有原速度95%的速度了,这以后米老鼠就再也不会被唐老鸭的遥控器所控制了.唐老鸭与米老鼠同时出发,如果唐老鸭要保证不败,它最晚要在米老鼠跑了多少米的时候第一次使用遥控器?【例 12】如图所示,有A、B、C、D四个游乐景点,在连接它们的三段等长的公路AB、BC、CD 上,汽车行驶的最高时速限制分别是120千米、40千米和60千米。
一辆大巴车从A景点出发驶向D景点,到达D点后立刻返回;一辆中巴同时从D点出发,驶向B点。
两车相遇在C景点,而当中巴到达B点时,大巴又回到了C点,已知大巴和中巴在各段公路上均以其所能达到且被允许的速度尽量快地行驶,大巴自身所具有的最高时速大于60千米,中巴在与大巴相遇后自身所具有的最高时速比相遇前提高了12.5%,求大巴客车的最高时速。
DCBA从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米;在第二段上,汽车速度是每小时90千米;在第三段上,汽车速度是每小时50千米.己知第一段公路的长恰好是第三段的2倍,现有两汽车分别从甲、乙两市同时出发,相向而行,1小时20分后,在第二段从甲到乙方向的13处相遇.那么,甲、乙两市相距多少千米?EA B C D【例 2】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山。
他们两人下山的速度都是各自上山速度的2倍。
甲到山顶时,乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求从山脚到山顶的距离。
甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山。
他们两人下山的速度都是各自上山速度的2倍。
开始后1时,甲与乙在离山顶400米处相遇,当甲回到山脚时,乙刚好下到半山腰。