第5章控制系统的稳定性
控制工程基础:第五章 控制系统稳定性分析

时,系统闭环后稳定。
2
Nyquist 稳定性判据2
1、若开环传递函数在s右半平面无极点时,当从0变化
时,如果Nyquist曲线不包围临界点(-1, j0),则系统稳定。
如果Nyquist曲线包围临界点(-1, j0),则系统不稳定。
❖ 系统稳定性定义:
❖
控制系统处于某一平衡状态下受到扰动作用而偏离了 原来的平衡状态,在干扰消失后系统又能够回到原来的平衡 状态或者回到原平衡点附近,则称该系统是稳定的,否则, 该系统就是不稳定的。
❖
稳定性是系统的一种固有特性,它只取决于系统本身的 结构和参数,而与初始状态和外作用无关。
m
F
F
单摆系统稳定
p(s)
p(s) DK (s)
系统稳定的充要条件:特征方程的根全部具有负实部
(闭环极点均在s平面的左半平面)。
即系统稳定的充要条件为:F(s)的零点都位于s平面 的左半平面。
GB(s)
F(s)
Gk(s)
零点
极点
零点
极点
极点
零点
1、若开环极点均在s平面左半面,则根据米哈伊洛夫定理推论:
arg[
DK
两种特殊情况
1、劳斯阵列表某一行中的第一列元素等于零,但其余各项不 等于零或不全为零 处理方法:
用一个很小的正数 代替该行第一列的零,并据此计算出
阵列中的其余各项。然后令 0 ,按第一列系数进行
判别。
如果零上下两项的符号相同,则系统存在一对虚根,处于临 界稳定状态:如果零上下两项的符号不同,则表明有一个符 号变化,系统不稳定。
0
1
c1
1
b1
a1 b1
a3 110 (7)5 6.43
第五章系统的稳定性-机械工程控制基础-教案

Chp.5系统稳定性基本要求1.了解系统稳定性的定义、系统稳定的条件;2.掌握Routh判据的必要条件和充要条件,学会应用Routh判据判定系统是否稳定,对于不稳定系统,能够指出系统包含不稳定的特征根的个数;3.掌握Nyquist 判据;4.理解Nyquist 图和Bode 图之间的关系;5.掌握Bode 判据;6.理解系统相对稳定性的概念,会求相位裕度和幅值裕度,并能够在Nyquist 图和Bode 图上加以表示。
重点与难点本章重点1.Routh 判据、Nyquist 判据和Bode 判据的应用;2.系统相对稳定性;相位裕度和幅值裕度求法及其在Nyquist图和Bode 图的表示法。
本章难点Nyquist 判据及其应用。
§1 概念示例:振摆1、稳定性定义:若系统在初始条件影响下,其过渡过程随时间的推移逐渐衰减并趋于0,则系统稳定;反之,系统过渡过程随时间的推移而发散,则系统不稳定。
(图5.1.2)讨论:①线性系统稳定性只取决于系统内部结构和参数,是一种自身恢复能力。
与输入量种类、性质无关。
②系统不稳定必伴有反馈作用。
(图5.1.3)若x0(t)收敛,系统稳定;若x0(t)发散,则系统不稳定。
将X0(s)反馈到输入端,若反馈削弱E(s) →稳定若反馈加强E(s) →不稳定③稳定性是自由振荡下的定义。
即x i(t)=0时,仅存在x i(0-)或x i(0+)在x i(t)作用下的强迫运动而系统是否稳定不属于讨论范围。
2、系统稳定的条件:对[a n p n+a n-1p n-1+…a1p+a0]x0(t)=[b m p m+b m-1p m-1+…b1p+b0]x i(t)令B(s)= a n p n+a n-1p n-1+…a1p+a0 A(s)= b m p m+b m-1p m-1+…b1p+b0初始条件:B0(s) A0(s)则B(s)X0(s)- B0(s)= A(s)X i(s)- B0(s)X i(s)=0,由初始条件引起的输出:L-1变换根据稳定性定义,若系统稳定须满足,即z i为负值。
第五章 控制系统的稳定性分析

arctan
b a
2
arctan
j
b a
jw
1
s1 tan1 b
b
a
a Re
22
若上式b为负值,则角增量为
2
2
arctan
b a
如图:
j
jw
a
2
Re
tan1 b
s2
a b
23
若根在右半平面,其角增量如图所示,
j jw
tan1 b
3
b
a
a
Re
为
2
2
arctan
b a
24
现考虑n次多项式 Ds,且在原点有q个零点,可表示为
代入D(s)并命w从0增大到 时,复数D(s)的角连续增
大 ng
2
二 乃奎斯特稳定判据
1 反馈系统开环和闭环的特征方程式
Xi s
X0 s
27
该单位反馈系统的开环传递函数为
G
s
MK s DK S
闭环传递函数为
s
Gs 1Gs
DK
MK s s Mk
s
MK s Db s
令:F
s
1
G
s
1
MK DK
s s
arg1 G( j。w) 90o
列 系统的开环传递函数为
Go
(s)
(T1s
K 1)(T2s 1)(T3s
1)
讨论开环增益K的大小对系 统稳定性的影响
解:这是一个三阶系统,没有开环零点,且开环极点全部 位于左半s平面,因此是最小相位系统。 作极坐标草图,先计算极限值:
32
=0时,有
A(0) K
《自动控制原理》第五章:系统稳定性

5.2 稳定的条件
当σi和λi均为负数,即特征根的 σi和λi均为负数, 均为负数 实部为负数,系统是稳定的; 实部为负数,系统是稳定的; 或极点均在左平面。 或极点均在左平面。
5.3 代数稳定性判据
定常线性系统稳定的充要条件 定常线性系统稳定的充要条件是特征方程的根具有负 充要条件是特征方程的根具有负 实部。因此,判别其稳定性,要解系统特征方程的根。为 实部。因此,判别其稳定性,要解系统特征方程的根。 避开对特征方程的直接求解,可讨论特征根的分布, 避开对特征方程的直接求解,可讨论特征根的分布,看其 是否全部具有负实部,并以此来判别系统的稳定性,这样 是否全部具有负实部,并以此来判别系统的稳定性, 也就产生了一系列稳定性判据。 也就产生了一系列稳定性判据。 其中最主要是E.J.Routh(1877 )h和Hurwitz( 其中最主要是E.J.Routh(1877年)h和Hurwitz(1895 E.J.Routh(1877年 年)分别提出的代数判据。 分别提出的代数判据 代数判据。
习题讲解: 习题讲解:
µ
G1
Q21
G1
h2
k1 k1 G1 ( s ) = , G1 ( s ) = (T1s + 1) (T1s + 1) k1k 2 G0 ( s ) = (T1s + 1)(T2 s + 1)
kp
G0 ( s ) G(s) = 1 + G0 ( s ) K p
5.4 Nyquist稳定性判据 Nyquist稳定性判据
系统稳定的条件? 系统稳定的条件?
5.2 稳定的条件
d n y (t ) d ( n −1) y (t ) dy (t ) 线性系统微分方程: 线性系统微分方程: n a + an −1 + L + a1 + a0 y (t ) n ( n −1) dt dt dt d m x(t ) d ( m −1) x(t ) dx(t ) = bm + bm−1 + L + b1 + b0 x(t ) m ( m −1) dt dt dt d n y (t ) d ( n −1) y (t ) dy (t ) + a( n −1) + L + a1 + a0 y (t ) = 0 齐次微分方程: 齐次微分方程: an n ( n −1) dt dt dt an s n + an −1s n −1 + L + a1s + a0 = 0 设系统k 设系统k个实根
机械工程控制基础(第5章_系统的稳定性)

(5.2.3)
武科大城市学院
机电学部
比较式(5.2.2)与式(5.2.3)可看出根与系数有如下的关系:
n an1 si an i 1
n a n2 si s j an i j
i 1, j 2
an3 an
i jk
s s s
i
n
j k
(5.2.4)
i 1, j 2 , k 3
n a0 n 1 si i 1 an
武科大城市学院
机电学部
从式(5.2.4)可知,要使全部特征根 s1 , s2 , , sn 均具有负实部,就必 须满足以下两个条件,即系统稳定的必要条件: (1)特征方程的各项系数 ai (i 0,1, 2,, n 1, n) 都不等于零,因为若有一 系数为零,则必出现实部为零的特征根或实部有正有负的特征根,才 能满足式(5.2.4)中各式。 (2)特征方程的各项系数 ai的符号都相同,这样才能满足式(5.2.4)中各式。 按习惯,一般取 ai 为正值,因此,上述两个条件可归结为系统稳定 的一个必要条件,即
E 来越小,系统最终趋于稳定; ( s )
若反馈的结果,加强了E(s)的作用(即正反馈),则使 Xo(s) 越来越 大,此时,此闭环系统是否稳定,则视 Xo( s ) 是收敛还是发散而定。
武科大城市学院
机电学部
第三,控制理论中所讨论的稳定性其实都是指自由振荡下的稳定性。
即讨论输入为零,系统仅存在有初始状态不为零时的稳定性,即
武科大城市学院
机电学部
5.2.2 系统稳定的充要条件
1. Routh表
(1)将系统的特征方程式(5.2.1)的系数按下列形式排成两行:
an
an1ห้องสมุดไป่ตู้
第5章现代控制理论之系统运动的稳定性分析

由稳定性定义知,球域S(δ) 限制着初始状态x0的取值,球域
S(ε)规定了系统自由运动响应 xt xt; x0的, t0边 界。
简单地说:1.如果 x t; x0, t0 有界,则称 xe 稳定;
2.如果 x t; x0, t0 不仅有界,而且当t→∞时收敛于原点,则
5.1.1 平衡状态
李雅普诺夫关于稳定性的研究均针对平衡状态而言。
1. 平衡状态的定义
设系统状态方程为: x f x,t , x Rn
若对所有t ,状态 x 满足 x 0 ,则称该状态x为平衡状
态,记为xe。故有下式成立:f xe ,t 0
由平衡状态在状态空间中所确定的点,称为平衡点。
2.平衡状态的求法
由定义,平衡状态将包含在 f x,t 这样0 一个代数方程组
中。
对于线性定常系统 x A,x其平衡状态为 xe 应满足代数
方程 。Ax 0
只有坐标原点处是线性系统的平衡状态点。
对于非线性系统,方程 方程而定。
如:
x1 x2
x1 x1
x2
x
3 2
f x的,t 解 可0 能有多个,视系统
稳定性是系统的重要特性,是系统正常工作的必要条件。
稳定性是指系统在平衡状态下受到扰动后,系统自由运动 的性质。因此,系统的稳定性是相对于系统的平衡状态而 言的。它描述初始条件下系统方程是否具有收敛性,而不 考虑输入作用。
1. 线性系统的稳定性只取决于系统的结构和参数,与系统 初始条件及外作用无关; 2. 非线性系统的稳定性既取决于系统的结构和参数,也与 系统初始条件及外作用有关;
当稳定性与 t0 的选择无关时,称一致全局渐近稳定。
第五章 控制系统的稳定性

例 5 - 2. 设有下列特征方程 s 4 + 2s 3 + 3s 2 + 4s + 5 = 0
试用Routh判据判别该特征方程正实部根的个数。 判据判别该特征方程正实部根的个数。 试用 判据判别该特征方程正实部根的个数
解 : 列写 劳斯 阵列 : s4 s3 s2 s s
1 0
1 2
2× 3 - 4 2
s3 s2 s s0
1 0≈ε
- 3ε - 2
-3 2 0
改变一次
ε
2
改变一次
∴ 有两实部为正的根。
b.劳斯表某行全为零 说明特征方程中存在一些大小相等,但方向相反的 根。 可用全零行的前一行数值组成辅助方程 A' ( s ),并用 dA' ( s ) / ds 的系数代替全零行的各项,完成劳斯表 ,利用 的系数代替全零行的各项,完成劳斯表, 可解得那些对称根。 辅助方程 A' ( s )可解得那些对称根。
一幅 原 . 角 理 设 (S)是 变 的 项 之 ,除 S平 的 限 奇 复 量 多 式 比 在 面 有 个 F 点 ,为 值 续 则 数又 P为 (S)极 数 , Z为 (S) 外 单 连 正 函 . 设 F 点 目 F 的 点 目 其 包 重 点 重 点 目 以 F(S)的 零 数 , 中 括 极 与 零 数 , 及 全 部 点 零 均 布 S平 的 闭 线 S内 而 S不 过 极 与 点 分 在 面 封 轨 Γ , Γ 通 F(S)的 何 点 零 . 在 种 况 , 当 S以 时 方 任 极 与 点 这 情 下 点 顺 针 向 沿 S 运 , ΓS在 F(S)]平 上 映 ΓF按 时 方 包 原 Γ 动 [ 面 的 射 顺 针 向 围 点 次 的 数 N = Z- P N>0 N<0 N =0 表 ΓF顺 针 围 点 次 示 时 包 原 N 表 ΓF逆 针 围 点 次 示 时 包 原 N 表 ΓF不 围 点 示 包 原
[工学]控制工程基础第五章系统的稳定性
![[工学]控制工程基础第五章系统的稳定性](https://img.taocdn.com/s3/m/063b2600cfc789eb172dc863.png)
基本要求 1.了解系统稳定性的定义、系统稳定的条件。 2.掌握系统稳定性代数判据的必要条件和充要条件,学会应用代数判 据判定系统是否稳定。 3.掌握Nyquist判据。 4.掌握Bode判据。 5.理解系统相对稳定性概念,能够在Nyquist图和Bode图上加以应用。 本章重点 1.代数判剧、Nyquist判剧和Bode判剧的应用。 2.系统相对稳定性;相位裕度和幅值裕度在 Nyquist图和Bode图上的表 示法。 本章难点 Nyquist判剧及其应用。
劳斯阵列的计算顺序是由上两行组成新的一行。每行计算 到出现零元素为止。一般情况下可以得到一个n+1行的劳 斯阵列。而最后两行每行只有一个元素。
sn s n-1 s n-2 s n -3 s1 s0
an an -1 b1 c1 d1 e1
an - 2 a n -3 b2 c2
an - 4 a n -5 b3
Ck k nk Bk
dk
e k nkt sin dk t
从式可以看出,如果所有闭环极点都在s平面的左半面内, 即系统的特征方程式根的实部都为负,那么随着时间t的增 大,式中的指数项和阻尼指数项将趋近于零。即系统是稳 定的。
y (t ) A j e
j 1
q
p jt
Bk e k nkt cos dk t
k 1
r
k 1
r
Ck k nk Bk
dk
e k nkt sin dk t
系统稳定的充要条件:是特征方程的根均具有负的实 部。或者说闭环系统特征方程式的根全部位于[s]平面 的左半平面内。一旦特征方程出现右根时,系统就不 稳定。
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果系统受到扰动后,偏离了原来的平衡状态,而 当扰动取消后,系统又能够逐渐恢复到原来的状态,则 称系统是稳定的,或具有稳定性的。否则称系统是不稳 定的,或不具有稳定性。
控制系统的稳定性也可以这样定义:若控制系 统在任何足够小的初始偏差作用下,其过渡过程随 着时间的推移,逐渐衰减并趋于零,具有恢复原来 平衡状态的性能,则称该系统为稳定;否则,称该 系统为不稳定。
则线性系统是稳定的。
设系统闭环传递函数为: 系统闭环特征方程为: 闭环特征根为: 设特征根互不相等,系统闭环传递函数可改写如下:
则系统脉冲响应的拉氏变换为:
得系统的脉冲过渡函数为(响应)
若系统稳定 (1)若 为实数 (2)若 为复数
发散
(3)若特征根为k个实根,r个复数根,
线性系统稳定的充分必要条 件是它的所有特征根都具有 负实部或都位于S平面的左半 平面,则系统稳定。
二阶系统稳定的充要条件:
,
, 勇于开始,才能找到成
三阶系统稳定的充要条件功的:路
,
,
,
例 系统特征方程为
试用劳斯判据判别系统的稳定性。 解:(1) 特征方程的所有系数均为正实数
(2)列写劳斯阵列表如下:
第一列的 系数都为 正数,系 统稳定
例 系统特征方程为
试用劳斯判据判别系统闭环特征方程根的分布情况。 解:(1)系统特征方程的系数不满足系统稳定的必要条件。
例 系统特征方程为 判别系统的稳定性。
解:(1)系统特征方程的系数满足系统稳定的必要条件。
(2)列写劳斯阵列表如下:
第一列 为零
系统不稳定 ,且有两个 根具有正实 部
练习 系统特征方程为
判别系统的稳定性。
系统不稳定 ,且有两个 根具有正实 部
若劳斯阵列表中某一行(设为第k行)的所有系数均 为零,则说明在根平面内存在一些大小相等,并且关于 原点对称的根。
如果函数f(Z)在Z0及Z0的邻域内处处可导 ,那么称f(Z)在Z0解析。
如果在区域D内每一点解析,那么称f(Z)在 D内解析或称f(Z)是D内的一个解析函数。
如果f(Z)在Z0不解析,那么称Z0为f(Z) 的奇点。
设F(s)在[s]平面上(除有限个奇点外)为单值的连 续正则函数。 设[s]平面上解析点s映射到[F(s)]平面上为点F(s) ,或为从原点指向此映射点的向量F(s) 。 在[s]平面上任意选定一封闭曲线Ls,只要此曲线不 经过F(s)的奇点,则在[F(s)]平面上必有一对应的映 射曲线LF,也是一封闭曲线。 当解析点s按顺时针方向沿Ls变化一周时,向量F(s) 将按顺时针方向旋转N周,即F(s)以原点为中心顺时 针旋转N周,这就等于曲线LF顺时针包围原点N次。
(2)列写劳斯阵列表如下:
有两个根位于s 平面的右半平面
练习 系统特征方程为
试用劳斯判据判别系统是否稳定,若不稳定,则确定 具有正实部根的个数。
答案:
系统不稳定,有两个 根具有正实部,即有 两个根位于s平面的 右半平面
劳斯判据的特殊情况
1、劳斯表中某一行第一列元素为零,其余不为零或不 全为零,这时可用一个很小的正数 来代替这个零, 然后继续劳斯阵列表的运算。若第一列元素不改变符号 ,则系统临界稳定,否则不稳定。
系统稳定
5.2 代数稳定性判据 1. 系统稳定性的初步判别(必要条件) 设系统的闭环特征方程式为如下标准形式:
2. 劳斯稳定判据
直至其余 项均为零。
按此规律一直计算到n -1行为止。
结论:
考察阵列表第一列系数的符号。假若劳斯阵列 表中第一列系数均为正数,则该系统是稳定的; 假若第一列系数有负数,则系统不稳定,并且 第一列系数符号的改变次数等于在右半平面上 根的个数。
不稳定的程度,因而不能提出改善系统性能的具体途径。 Nyquist判据特点:
① 图解法:由几何作图判定系统稳定性; ② 由开环特性判断闭环系统稳定性(开环特性由分析 法或实验法获得); ③ 可判断系统相对稳定性; ④ 可指出各环节对系统稳定性的影响。
5.3 Nyquist稳定判据
一、幅角原理(Cauchy) 对于复变函数
解辅助方程得:
例 系统特征方程为
判别系统的稳定性。若不稳定,则确定具有正实部根 的个数。
练习 系统特征方程为
设一单位反馈控制系统如图所示,求使系统稳定的k的 范围
解(1)系统的传递函数为:
(2)列劳斯阵列表
特征方程为: 系数都为正实数
(2)列劳斯阵列表
若要使系统稳定,其充要条件是 劳斯阵列表的第一列均为正数,
即 K > 0,30 - K > 0
0 < K < 30,
其稳定的临界值为30。
例11 系统特征方程式为 按稳定要求确定 T 的临界值。 解 劳斯阵列表为
即必须 T > 25 系统才能稳定。
乃奎斯特稳定性判据(预备知识
)
时域判据的弱点: 工程设计中,组成系统的各种参数尚未最后确定,时域
判据不能应用; 时域判据仅能判断系统是否稳定,不能说明系统稳定或
★★ 控制系统稳定的充分必要条件为:
系统特征方程的根全部具有负实部。系统 特征方程的根就是闭环极点,所以控制系 统稳定的充分必要条件也可以表示为:闭 环传递函数的极点全部具有负实部,或者
说闭环传递函数的极点全部位于平面的S
左半面内。
例 一个单位反馈系统的开环传递函数为 试说明系统是否稳定。
解:系统的闭环传递函数为
(1)用(k-1)行元素构成辅助方程,辅助方程的最高阶 次为(n-k+2),然后s的次数递降2。
(2)将辅助方程对s求导,其系数作为全零行的元素, 继续完成劳斯表。
(3)解辅助方程,得到所有数值相同、符号相异的根。
例 系统特征方程为 判别系统的稳定性。
解:(1) 特征方程的所有系数均为正实数 (2)列写劳斯阵列表如下:
必须指出:稳定性是系统的固有特性,它取决 于系统本身的结构和参数,而与输入无关。
控制理论中所讨论的稳定性其实都是指自由振 荡下的稳定性,即讨论输入为零,系统仅存在非零 初始偏差时的稳定性,或者讨论自由振荡是收敛的 还是发散的。
5.2 系统稳定性的充要条件 若系统初始条件为零,对系统加上理想单位脉冲信号 ,系统的输出就是线性系统的脉冲过渡函数 , 就相当于扰动信号作用下输出偏离原平衡状态的情 况。如果当 时,脉冲过渡函数 收敛于系统原平 衡工作点,即下式成立:
第5章控制系统的稳定性
2020年4月22日星期三
稳定性是控制系统最重要的问题,是系统 正常工作的首要条件。控制系统在实际运行中 ,总会受到外界和内部一些因素的扰动,例如 负载或能源的波动、环境条件的改变、系统参 数的变化等。如果系统不稳定,当它受到扰动 时,系统中各物理量就会偏离其平衡工作点, 并且越偏越远,即使扰动消失了,也不可