高中数学-圆的标准方程练习题

合集下载

高中数学例题:圆的标准方程

高中数学例题:圆的标准方程

高中数学例题:圆的标准方程例1.求满足下列条件的各圆的方程:(1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上;(3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++=【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||0CB = ,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C -∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++= 又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r =∴所求圆的方程是()()228325x y -++=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x ―a)2+(y ―b)2=r 2;(2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.举一反三:【变式1】圆心是(4,―1),且过点(5,2)的圆的标准方程是( )A .(x ―4)2+(y+1)2=10B .(x+4)2+(y ―1)2=10C .(x ―4)2+(y+1)2=100 D.22(4)(1)x y -++=【答案】A例2.求圆心在直线2x ―y ―3=0上,且过点(5,2)和(3,―2)的圆的方程.【答案】(x ―2)2+(y ―1)2=10【解析】 解法一:设所求圆的圆心为(a ,b ),半径为r ,由题意得222222230(5)(2)(3)(2)a b a b r a b r --=⎧⎪-+-=⎨⎪-+--=⎩,解方程组得a=2,b=1,r =∴所求圆的方程为(x ―2)2+(y ―1)2=10.解法二:因点(5,2)和(3,―2)在圆上,故圆心在这两点所连线段的垂直平分线上,可求得垂直平分线的方程为x+2y ―4=0.又圆心在直线2x ―y ―3=0上,故圆心为两直线的交点.由230240x y x y --=⎧⎨+-=⎩求得两直线交点为(2,1),故所求圆的方程为(x ―2)2+(y ―1)2=10.【总结升华】求圆的标准方程的关键是求圆的坐标和圆的半径,这就需要充分挖掘题目中所给的几何条件,并充分利用平面几何中的有关知识求解,如“若圆经过某两点,则圆心必在这两点连线的中垂线上”等.举一反三:【变式1】(1)过点(2,3),(2,5)A B ---且圆心在直线230x y --=上;(2)与x 轴相切,圆心在直线30x y -=上,且被直线0x y -=截得的弦长为【答案】(1)22(1)(2)10x y +++=(2)22(1)(3)9x y -+-=或22(1)(3)9x y +++=【解析】(1)设圆的方程为:()222()x a y b r -+-=,则()()()()2222222325230a b r a b r a b ⎧-+--=⎪⎪--+--=⎨⎪--=⎪⎩,解得:21,2,10a b r =-=-=所求圆的方程为:22(1)(2)10x y +++=(2)设圆的方程为:()222()x a y b r -+-=,则()222230142r b a b a b r ⎧=⎪⎪-=⎨⎪-+=⎪⎩解得:2139a b r ⎧=⎪=⎨⎪=⎩或2139a b r ⎧=-⎪=-⎨⎪=⎩ 所求圆的方程为:22(1)(3)9x y -+-=或22(1)(3)9x y +++=.。

高中数学圆的标准方程

高中数学圆的标准方程

圆的标准方程层级一 学业水平达标1.方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆D .两个半圆解析:选D 由题意,得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎪⎨⎪⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎪⎨⎪⎧(x +1)2+(y -1)2=1,x ≤-1,故原方程表示两个半圆. 2.若一圆的圆心坐标为(2,-3),一条直径的端点分别在x 轴和y 轴上,则此圆的方程是( )A .(x -2)2+(y +3)2=13B .(x +2)2+(y -3)2=13C .(x -2)2+(y +3)2=52D .(x +2)2+(y -3)2=52解析:选A 直径两端点的坐标分别为(4,0),(0,-6),可得直径长为213,则半径长为13,所以所求圆的方程是(x -2)2+(y +3)2=13.3.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A .(x +1)2+(y -3)2=29 B .(x -1)2+(y +3)2=29 C .(x +1)2+(y -3)2=116 D .(x -1)2+(y +3)2=116解析:选B 圆心为线段AB 的中点(1,-3),半径为|AB |2=12(6+4)2+(-1+5)2=29,所以所求圆的方程为(x -1)2+(y +3)2=29.故选B.4.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y +2=0C .x +y -3=0D .x -y +3=0解析:选D 圆x 2+(y -3)2=4的圆心为点(0,3).因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l 的方程是y -3=x -0,化简得x -y +3=0.故选D.5.若实数x ,y 满足(x +5)2+(y -12)2=142,则x 2+y 2的最小值为( ) A .2 B .1 C. 3D. 2解析:选B x 2+y 2表示圆上的点(x ,y )与(0,0)间距离的平方,由几何意义可知最小值为14-52+122=1.6.若点P (-1,3)在圆x 2+y 2=m 2上,则实数m =________. 解析:∵P 点在圆x 2+y 2=m 2上, ∴(-1)2+(3)2=4=m 2, ∴m =±2. 答案:±27.圆心为直线x -y +2=0与直线2x +y -8=0的交点,且过原点的圆的标准方程是__________________.解析:由⎩⎪⎨⎪⎧x -y +2=0,2x +y -8=0,可得x =2,y =4,即圆心为(2,4),从而r =(2-0)2+(4-0)2=25,故圆的标准方程为(x -2)2+(y -4)2=20.答案:(x -2)2+(y -4)2=208.与圆(x -2)2+(y +3)2=16同圆心且过点P (-1,1)的圆的方程为________________. 解析:因为已知圆的圆心为(2,-3),所以所求圆的圆心为(2,-3).又r =(2+1)2+(-3-1)2=5,所以所求圆的方程为(x -2)2+(y +3)2=25. 答案:(x -2)2+(y +3)2=259.求圆心在x 轴上,且过A (1,4),B (2,-3)两点的圆的方程. 解:设圆心为(a,0),则(a -1)2+16=(a -2)2+9,所以a =-2. 半径r =(a -1)2+16=5, 故所求圆的方程为(x +2)2+y 2=25.10.求过点A (-1,3),B (4,2),且在x 轴,y 轴上的四个截距之和是4的圆的标准方程. 解:设圆的标准方程为(x -a )2+(y -b )2=r 2.把点A ,B 的坐标代入,得⎩⎪⎨⎪⎧(-1-a )2+(3-b )2=r 2,(4-a )2+(2-b )2=r 2.消去r 2,得b =5a -5.① 令x =0,则(y -b )2=r 2-a 2,y =b ±r 2-a 2, ∴在y 轴上的截距之和是2b .令y =0,则(x -a )2=r 2-b 2,x =a ±r 2-b 2, ∴在x 轴上的截距之和是2a .∴2a +2b =4,即a +b =2.② ①代入②,得a =76,∴b =56.∴r 2=⎝⎛⎭⎫-1-762+⎝⎛⎭⎫3-562=16918. ∴圆的标准方程为⎝⎛⎭⎫x -762+⎝⎛⎭⎫y -562=16918. 层级二 应试能力达标1.点P (a,10)与圆(x -1)2+(y -1)2=2的位置关系是( ) A .在圆内 B .在圆上 C .在圆外D .不确定解析:选C ∵(a -1)2+(10-1)2=81+(a -1)2>2,∴点P 在圆外.2.若直线y =ax +b 经过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D 由题意,知(-a ,-b )为圆(x +a )2+(y +b )2=1的圆心.由直线y =ax +b 经过第一、二、四象限,得到a <0,b >0,即-a >0,-b <0,故圆心位于第四象限.3.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( )A .6B .4C .3D .2解析:选B 画出已知圆,利用数形结合的思想求解.如图,圆心M (3,-1)与定直线x =-3的最短距离为|MQ |=3-(-3)=6.因为圆的半径为2,所以所求最短距离为6-2=4.4.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( ) A .(x +1)2+y 2=1 B .x 2+y 2=1 C .x 2+(y +1)2=1D .x 2+(y -1)2=1解析:选C 由已知圆(x -1)2+y 2=1得圆心C 1(1,0),半径长r 1=1.设圆心C 1(1,0)关于直线y =-x 对称的点为(a ,b ),则⎩⎨⎧ba -1·(-1)=-1,-a +12=b2,解得⎩⎪⎨⎪⎧a =0,b =-1.所以圆C 的方程为x 2+(y +1)2=1.5.若圆C 与圆M :(x +2)2+(y -1)2=1关于原点对称,则圆C 的标准方程是________________.解析:圆(x +2)2+(y -1)2=1的圆心为M (-2,1),半径r =1,则点M 关于原点的对称点为C (2,-1),圆C 的半径也为1,则圆C 的标准方程是(x -2)2+(y +1)2=1.答案:(x -2)2+(y +1)2=16.已知圆O 的方程为(x -3)2+(y -4)2=25,则点M (2,3)到圆上的点的距离的最大值为________.解析:由题意,知点M 在圆O 内,MO 的延长线与圆O 的交点到点M (2,3)的距离最大,最大距离为(2-3)2+(3-4)2+5=5+ 2.答案:5+ 27.已知圆C 的圆心为C (x 0,x 0),且过定点P (4,2). (1)求圆C 的标准方程.(2)当x 0为何值时,圆C 的面积最小?求出此时圆C 的标准方程. 解:(1)设圆C 的标准方程为(x -x 0)2+(y -x 0)2=r 2(r ≠0). ∵圆C 过定点P (4,2), ∴(4-x 0)2+(2-x 0)2=r 2(r ≠0). ∴r 2=2x 20-12x 0+20.∴圆C 的标准方程为(x -x 0)2+(y -x 0)2=2x 20-12x 0+20.(2)∵(x -x 0)2+(y -x 0)2=2x 20-12x 0+20=2(x 0-3)2+2,∴当x 0=3时,圆C 的半径最小,即面积最小. 此时圆C 的标准方程为(x -3)2+(y -3)2=2.8.已知圆C 1:(x +3)2+(y -1)2=4,直线l :14x +8y -31=0,求圆C 1关于直线l 对称的圆C 2的方程.解:设圆C 2的圆心坐标为(m ,n ).因为直线l 的斜率k =-74,圆C 1:(x +3)2+(y -1)2=4的圆心坐标为(-3,1),半径r =2,所以,由对称性知⎩⎪⎨⎪⎧n -1m +3=47,14×-3+m 2+8×1+n2-31=0,解得⎩⎪⎨⎪⎧m =4,n =5.所以圆C 2的方程为(x -4)2+(y -5)2=4.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

高中数学必修圆的一般方程-精选文档

高中数学必修圆的一般方程-精选文档

结论:任何一个圆方程可以写成下面形式:
x2 +y 2+Dx+Ey+F=0
结论:任何一个圆方程可以写成下面形式:
x2 +y 2+Dx+Ey+F=0
问:是不是任何一个形如
x2 +y 2+Evaluation Dx+Ey+only. F=0 方程表示
ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 的曲线是圆呢? Copyright 2019-2019 Aspose Pty Ltd.
请举例
把方程:x2 +y 2+Dx+Ey+F=0 2 2 D E D E 4 F 2 2 配方可得: ( x ) ( y )= 2 2 4
(1)当D2+E2-4F>0时,表示以( 为圆心,以(
1 2 2 D E 4 F) 2
D E , 2 2

为半径的圆
Evaluation only. (2)当D2+E2-4F=0 时,方程只有一组解 X=-D/2 D 3.5 EClient Profile 5.2 ted with Aspose.Slides for .NET y=-E/2,表示一个点( 2 , 2 ) Copyright 2019-2019 Aspose Pty Ltd.
不表示任何图形。
(3)当D2+E2-4F<0时,方程(1)无实数解,所以
所以形如x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0) 可表示圆的方程
圆的一般方程:
x2 +y
2+Dx+Ey+F=0
(D2+E2-4F>0)
圆的一般方程与标准方程的关系:
1 2 2 D E 4 F (1)a=-D/2,b=-E/2 ,r= Evaluation only. 2 ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 ( 2)标准方程易于看出圆心与半径 Copyright 2019-2019 Aspose Pty Ltd. 一般方程突出形式上的特点:

高中数学圆的方程典型例题全

高中数学圆的方程典型例题全

类型七:圆中的最值问题例18:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是例19 (1)已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,求22y x d +=的最大、最小值.(2)已知圆1)2(222=++y x O :,),(y x P 为圆上任一点.求12--x y 的最大、最小值,求y x 2-的最大、最小值.分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决.解:(1)(法1)由圆的标准方程1)4()3(22=-+-y x . 可设圆的参数方程为⎩⎨⎧+=+=,sin 4,cos 3θθy x (θ是参数).则θθθθ2222sin sin 816cos cos 69+++++=+=y x d)cos(1026sin 8cos 626φθθθ-+=++=(其中34tan =φ). 所以361026max =+=d ,161026min =-=d .(法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离'1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离'1d 减去半径1.所以6143221=++=d .4143222=-+=d .所以36max =d .16min =d .(2) (法1)由1)2(22=++y x 得圆的参数方程:⎩⎨⎧=+-=,sin ,cos 2θθy x θ是参数.则3cos 2sin 12--=--θθx y .令t =--3cos 2sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ1)sin(1322≤-=+-⇒φθt t 433433+≤≤-⇒t .所以433max +=t ,433min -=t . 即12--x y 的最大值为433+,最小值为433-. 此时)cos(52sin 2cos 22φθθθ++-=-+-=-y x . 所以y x 2-的最大值为52+-,最小值为52--. (法2)设k x y =--12,则02=+--k y kx .由于),(y x P 是圆上点,当直线与圆有交点时,如图所示,两条切线的斜率分别是最大、最小值. 由11222=++--=k k k d ,得433±=k . 所以12--x y 的最大值为433+,最小值为433-. 令t y x =-2,同理两条切线在x 轴上的截距分别是最大、最小值.由152=--=m d ,得52±-=m .所以y x 2-的最大值为52+-,最小值为52--.例20:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 .解:设),(y x P ,则828)(2)2()2(222222222+=++=+-+++=+OP y x y x y x PB PA .设圆心为)4,3(C ,则325min=-=-=r OC OP ,∴22PB PA +的最小值为268322=+⨯.练习:1:已知点),(y x P 在圆1)1(22=-+y x 上运动.(1)求21--x y 的最大值与最小值;(2)求y x +2的最大值与最小值. 解:(1)设k x y =--21,则k 表示点),(y x P 与点(2,1)连线的斜率.当该直线与圆相切时,k 取得最大值与最小值.由1122=+k k ,解得33±=k ,∴21--x y 的最大值为33,最小值为33-.(2)设m y x =+2,则m 表示直线m y x =+2在y 轴上的截距. 当该直线与圆相切时,m 取得最大值与最小值.由151=-m ,解得51±=m ,∴y x +2的最大值为51+,最小值为51-.2 设点),(y x P 是圆122=+y x 是任一点,求12+-=x y u 的取值范围. 分析一:利用圆上任一点的参数坐标代替x 、y ,转化为三角问题来解决. 解法一:设圆122=+y x 上任一点)sin ,(cos θθP 则有θcos =x ,θsin =y )2,0[πθ∈ ∴1cos 2sin +-=θθu ,∴2sin cos -=+θθu u∴)2(sin cos +-=-u u θθ.即2)sin(12+=-+u u ϕθ(u =ϕtan )∴1)2()sin(2++=-u u ϕθ.又∵1)sin(≤-ϕθ∴1122≤++u u解之得:43-≤u . 分析二:12+-=x y u 的几何意义是过圆122=+y x 上一动点和定点)2,1(-的连线的斜率,利用此直线与圆122=+y x 有公共点,可确定出u 的取值范围.解法二:由12+-=x y u 得:)1(2+=-x u y ,此直线与圆122=+y x 有公共点,故点)0,0(到直线的距离1≤d .∴1122≤++u u解得:43-≤u . 另外,直线)1(2+=-x u y 与圆122=+y x 的公共点还可以这样来处理: 由⎩⎨⎧=++=-1)1(222y x x u y 消去y 后得:0)34()42()1(2222=++++++u u x u u x u ,此方程有实根,故0)34)(1(4)42(2222≥+++-+=∆u u u u u , 解之得:43-≤u . 说明:这里将圆上的点用它的参数式表示出来,从而将求变量u 的范围问题转化成三角函数的有关知识来求解.或者是利用其几何意义转化成斜率来求解,使问题变得简捷方便.3、已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,求222PC PB PA ++的最大值和最小值. 类型八:轨迹问题例21、基础训练:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程.例22、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.例23 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.解:设),(y x H ,),(''y x C ,连结AH ,CH ,则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥,所以AH OC //,OA CH //,OC OA =, 所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y又),(''y x C 满足42'2'=+y x ,所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.例24 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解.解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(by a x M ++. 由222OA AMOM=+,即22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+. 又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.①又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+. 这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q , 由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ① βαsin sin r r b y +=+, ②又由PB PA ⊥有1cos sin cos sin -=--⋅--ar br a r b r ββαα ③联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+.说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.本题给出三种解法.其中的解法一是几何方法,它充分利用了图形中隐含的数量关系.而解法二与解法三,从本质上是一样的,都可以称为参数方法.解法二涉及到了1x 、2x 、1y 、2y 四个参数,故需列出五个方程;而解法三中,由于借助了圆222r y x =+的参数方程,只涉及到两个参数α、β,故只需列出三个方程便可.上述三种解法的共同之处是,利用了图形的几何特征,借助数形结合的思想方法求解. 练习:1、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点P 的轨迹方程是 .解:设),(y x P .∵APB ∠=600,∴O P A ∠=300.∵AP OA ⊥,∴22==OA OP ,∴222=+y x ,化简得422=+y x ,∴动点P 的轨迹方程是422=+y x .练习巩固:设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.解:设动点P 的坐标为),(y x P .由)0(>=a a PBPA ,得a yc x y c x =+-++2222)()(,化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a .当1≠a 时,化简得01)1(222222=+-+++c x aa c y x ,整理得222222)12()11(-=+-+-a ac y c a a x ; 当1=a 时,化简得0=x .所以当1≠a 时,P 点的轨迹是以)0,11(22c a a -+为圆心,122-a ac 为半径的圆;当1=a 时,P 点的轨迹是y 轴.2、已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于 解:设点P 的坐标是),(y x .由PB PA 2=,得2222)1(2)2(y x y x +-=++,化简得4)2(22=+-y x ,∴点P 的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为π4.4、已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且MB AM 31=,问点M 的轨迹是什么?解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(31),(11y x y y x x --=--,∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩⎪⎪⎨⎧=-=yy x x 3413411.∵点A 在圆122=+y x 上运动,∴12121=+y x ,∴1)34()134(22=+-y x ,即169)43(22=+-y x ,∴点M 的轨迹方程是169)43(22=+-y x . 例5、已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴31==OB OA MB AM , ∴MB AM 31=.由变式1可得点M 的轨迹方程是169)43(22=+-y x . 练习巩固:已知直线1+=kx y 与圆422=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程.解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,∴点M 的坐标为)2,2(yx ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴0)12(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得1)1(22=-+y x .∴点P 的轨迹方程是1)1(22=-+y x .类型九:圆的综合应用例25、 已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ⊥,求实数m 的值.分析:设P 、Q 两点的坐标为),(11y x 、),(22y x ,则由1-=⋅O Q O P k k ,可得02121=+y y x x ,再利用一元二次方程根与系数的关系求解.或因为通过原点的直线的斜率为xy,由直线l 与圆的方程构造以xy为未知数的一元二次方程,由根与系数关系得出O Q O P k k ⋅的值,从而使问题得以解决. 解法一:设点P 、Q 的坐标为),(11y x 、),(22y x .一方面,由OQ OP ⊥,得1-=⋅O Q O P k k ,即12211-=⋅x y x y ,也即:02121=+y y x x . ① 另一方面,),(11y x 、),(22y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x 的实数解,即1x 、2x 是方程02741052=-++m x x ②的两个根.∴221-=+x x ,527421-=m x x . ③ 又P 、Q 在直线032=-+y x 上,∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=. 将③代入,得51221+=m y y . ④将③、④代入①,解得3=m ,代入方程②,检验0>∆成立, ∴3=m .解法二:由直线方程可得y x 23+=,代入圆的方程0622=+-++m y x y x ,有0)2(9)6)(2(31222=++-+++y x my x y x y x ,整理,得0)274()3(4)12(22=-+-++y m xy m x m . 由于0≠x ,故可得012)3(4))(274(2=++-+-m xym x y m .∴OP k ,OQ k 是上述方程两根.故1-=⋅O Q O P k k .得127412-=-+m m,解得3=m .经检验可知3=m 为所求.说明:求解本题时,应避免去求P 、Q 两点的坐标的具体数值.除此之外,还应对求出的m 值进行必要的检验,这是因为在求解过程中并没有确保有交点P 、Q 存在.解法一显示了一种解这类题的通法,解法二的关键在于依据直线方程构造出一个关于xy的二次齐次方程,虽有规律可循,但需一定的变形技巧,同时也可看出,这种方法给人以一种淋漓酣畅,一气呵成之感.例26、已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围.分析一:为了使不等式0≥++m y x 恒成立,即使m y x -≥+恒成立,只须使m y x -≥+min )(就行了.因此只要求出y x +的最小值,m 的范围就可求得.解法一:令y x u +=,由⎩⎨⎧=-+=+1)1(22y x u y x得:0)1(2222=++-u y u y ∵0≥∆且228)1(4u u -+=∆, ∴0)12(42≥++-u u .即0)122≤--u u ,∴2121+≤≤-u , ∴21min -=u ,即21)(min -=+y x 又0≥++m y x 恒成立即m y x -≥+恒成立.∴m y x -≥-=+21)(min 成立, ∴12-≥m .分析二:设圆上一点)sin 1,(cos θθ+P [因为这时P 点坐标满足方程1)1(22=-+y x ]问题转化为利用三解问题来解.解法二:设圆1)1(22=-+y x 上任一点)sin 1,(cos θθ+P )2,0[πθ∈ ∴θcos =x ,θsin 1+=y ∵0≥++m y x 恒成立 ∴0sin 1cos ≥+++m θθ 即)sin cos 1(θθ++-≥m 恒成立.∴只须m 不小于)sin cos 1(θθ++-的最大值. 设1)4sin(21)cos (sin -+-=-+-=πθθθu∴12max -=u 即12-≥m .说明:在这种解法中,运用了圆上的点的参数设法.一般地,把圆222)()(r b y a x =-+-上的点设为)sin ,cos (θθr b r a ++()2,0[πθ∈).采用这种设法一方面可减少参数的个数,另一方面可以灵活地运用三角公式.从代数观点来看,这种做法的实质就是三角代换.例27 有一种大型商品,A 、B 两地都有出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地的运费的3倍.已知A 、B 两地距离为10公里,顾客选择A 地或B 地购买这种商品的标准是:包括运费和价格的总费用较低.求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.分析:该题不论是问题的背景或生活实际的贴近程度上都具有深刻的实际意义和较强的应用意识,启示我们在学习中要注意联系实际,要重视数学在生产、生活以及相关学科的应用.解题时要明确题意,掌握建立数学模型的方法.解:以A 、B 所确定的直线为x 轴,AB 的中点O 为坐标原点,建立如图所示的平面直角坐标系.∵10=AB ,∴)0,5(-A ,)0,5(B .~·· 设某地P 的坐标为),(y x ,且P 地居民选择A 地购买商品便宜,并设A 地的运费为a 3元/公里,B 地的运费为a 元/公里.因为P 地居民购货总费用满足条件:价格+A 地运费≤价格+B 地的运费 即:2222)5()5(3y x a y x a +-≤++.∵0>a , ∴2222)5()5(3y x y x +-≤++ 化简整理得:222)415()425(≤++y x ∴以点)0,425(-为圆心415为半径的圆是两地购货的分界线. 圆内的居民从A 地购货便宜,圆外的居民从B 地购货便宜,圆上的居民从A 、B 两地购货的总费用相等.因此可随意从A 、B 两地之一购货.说明:实际应用题要明确题意,建议数学模型.。

高中数学 圆的方程测试题及答案

高中数学 圆的方程测试题及答案

圆的方程专项测试题一、选择题1.若直线4x-3y -2=0与圆x 2+y 2-2ax+4y +a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7B.-6<a <4C.-7<a <3D.-21<a <192.圆(x-3)2+(y -3)2=9上到直线3x+4y -11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y +3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2)C.(4,1)D.(2 +2,2-3)4.若直线x+y =r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B .1C.2D.25.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a =( B )A .21± B .22± C .2221-或 D .2221或-6.直线x-y +4=0被圆x 2+y 2+4x-4y +6=0截得的弦长等于( ) A.8B.4C.22D.427.圆9)3()3(22=-+-y x 上到直线3 x + 4y -11=0的距离等于1的点有( C ) A .1个 B .2个 C .3个 D .4个 8.圆(x-3)2+(y +4)2=2关于直线x+y =0的对称圆的标准方程是( ) A.(x+3)2+(y -4)2=2 B.(x-4)2+(y +3)2=2 C.(x+4)2+(y -3)=2 D.(x-3)2+(y -4)2=29.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( ) A.|a |<1B.|a |<51 C.|a |<121D.|a |<131 10.关于x,y 的方程Ax 2+Bx y +C y 2+Dx+E y +F=0表示一个圆的充要条件是( ) A.B=0,且A=C≠0 B.B=1且D 2+E 2-4AF >0 C.B=0且A=C≠0,D 2+E 2-4AF≥0 D.B=0且A=C≠0,D 2+E 2-4AF >0 11.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0) D.(5,-1)12.若两直线y =x+2k 与y =2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( ) A.-51<k <-1B.-51<k <1C.-31<k <1 D.-2<k <2二、填空题13.圆x 2+y 2+ax=0(a≠0)的圆心坐标和半径分别是 .14.若实数x,y 满足x 2+y 2-2x+4y =0,则x-2y 的最大值是 .15.若集合A={(x 、y )|y =-|x |-2},B={(x,y )|(x-a)2+y 2=a 2}满足A∩B=ϕ,则实数a 的取值范围是 .16.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题17.求圆心在直线2x-y -3=0上,且过点(5,2)和(3,-2)的圆的方程.18. 过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.19. 已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB . 求m 的值.20.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.21. 自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2 + y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.22. 已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由.参考答案:1.B2.C3.B4.D5.B6.C7.C8.B9.D 10.D 11.D 12.B 13.(-2a ,0), 2a 14.10 15.-2(2+1)<a <2(2+1)16.θ=arccot22 或π-arccot22, 817.(x-2)2+(y -1)2=10 10.3x+4y +1=0或4x+3y -1=0 ;18. 解:设圆(-1)2+(y -1)2=1的圆心为1O ,由题可知,以线段P 1O 为直径的圆与与圆1O 交于AB 两点,线段AB 为两圆公共弦,以P 1O 为直径的圆方程5)20()23(22=-+-y x △已知圆1O 的方程为(x-1)2+(y -1)2=1 △ △△作差得x+2y -41=0, 即为所求直线l 的方程。

高中数学必修2圆的方程练习题(基础训练)

高中数学必修2圆的方程练习题(基础训练)

专题:直线与圆1.圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ). A .相交B .外切C .内切D .相离2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条B .2条C .3条D .4条3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ). A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1D .(x +1)2+(y -2)2=14.与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ). A .x -y ±5=0 B .2x -y +5=0 C .2x -y -5=0D .2x -y ±5=05.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ). A .2B .2C .22D .426.一圆过圆x 2+y 2-2x =0与直线x +2y -3=0的交点,且圆心在y 轴上,则这个圆的方程是( ).A .x 2+y 2+4y -6=0B .x 2+y 2+4x -6=0C .x 2+y 2-2y =0D .x 2+y 2+4y +6=07.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( ). A .30B .18C .62D .528.两圆(x -a )2+(y -b )2=r 2和(x -b )2+(y -a )2=r 2相切,则( ). A .(a -b )2=r 2 B .(a -b )2=2r 2 C .(a +b )2=r 2D .(a +b )2=2r 29.若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2+y 2=10相切,则c 的值为( ). A .14或-6B .12或-8C .8或-12D .6或-1410.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM | =( ). A .453B .253 C .253 D .21311.若直线3x -4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为____________________.12.已知直线x =a 与圆(x -1)2+y 2=1相切,则a 的值是_________. 13.直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长为_________.14.若A(4,-7,1),B(6,2,z),|AB|=11,则z=_______________.15.已知P是直线3x+4y+8=0上的动点,P A,PB是圆(x-1)2+(y-1)2=1的两条切线,A,B是切点,C是圆心,则四边形P ACB面积的最小值为.三、解答题16.求下列各圆的标准方程:(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);(2)圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1).17.棱长为1的正方体ABCD-A1B1C1D1中,E是AB的中点,F是BB1的中点,G是AB1的中点,试建立适当的坐标系,并确定E,F,G三点的坐标.18.圆心在直线5x―3y―8=0上的圆与两坐标轴相切,求此圆的方程.19.已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A,B.(1)求直线P A,PB的方程;(2)求过P点的圆的切线长;(3)求直线AB的方程.20.求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为27的圆的方程.参考答案一、选择题 1.A解析:C 1的标准方程为(x +1)2+(y +4)2=52,半径r 1=5;C 2的标准方程为(x -2)2+(y +2)2=(10)2,半径r 2=10.圆心距d =224 - 2+ 1 + 2)()(=13. 因为C 2的圆心在C 1内部,且r 1=5<r 2+d ,所以两圆相交. 2.C解析:因为两圆的标准方程分别为(x -2)2+(y +1)2=4,(x +2)2+(y -2)2=9, 所以两圆的圆心距d =222 - 1 -+ 2 + 2)()(=5. 因为r 1=2,r 2=3,所以d =r 1+r 2=5,即两圆外切,故公切线有3条. 3.A解析:已知圆的圆心是(-2,1),半径是1,所求圆的方程是(x -2)2+(y +1)2=1. 4.D解析:设所求直线方程为y =2x +b ,即2x -y +b =0.圆x 2+y 2―2x ―4y +4=0的标准方程为(x -1)2+(y -2)2=1.由221+ 2 + 2 - 2 b =1解得b =±5.故所求直线的方程为2x -y ±5=0. 5.C解析:因为圆的标准方程为(x +2)2+(y -2)2=2,显然直线x -y +4=0经过圆心. 所以截得的弦长等于圆的直径长.即弦长等于22. 6.A解析:如图,设直线与已知圆交于A ,B 两点,所求圆的圆心为C . 依条件可知过已知圆的圆心与点C 的直线与已知直线垂直. 因为已知圆的标准方程为(x -1)2+y 2=1,圆心为(1,0), 所以过点(1,0)且与已知直线x +2y -3=0垂直的直线方程为y =2x -2.令x =0,得C (0,-2).联立方程x 2+y 2-2x =0与x +2y -3=0可求出交点A (1,1).故所求圆的半径r =|AC |=223 + 1=10.所以所求圆的方程为x 2+(y +2)2=10,即x 2+y 2+4y -6=0.(第6题)解析:因为圆的标准方程为(x -2)2+(y -2)2=(32)2,所以圆心为(2,2),r =32. 设圆心到直线的距离为d ,d =210>r ,所以最大距离与最小距离的差等于(d +r )-(d -r )=2r =62. 8.B解析:由于两圆半径均为|r |,故两圆的位置关系只能是外切,于是有 (b -a )2+(a -b )2=(2r )2. 化简即(a -b )2=2r 2. 9.A解析:直线y =3x +c 向右平移1个单位长度再向下平移1个单位. 平移后的直线方程为y =3(x -1)+c -1,即3x -y +c -4=0. 由直线平移后与圆x 2+y 2=10相切,得221+ 34 - + 0 - 0 c =10,即|c -4|=10,所以c =14或-6. 10.C解析:因为C (0,1,0),容易求出AB 的中点M ⎪⎭⎫ ⎝⎛3 ,23 ,2, 所以|CM |=2220 - 3 + 1 -23 + 0 - 2)()(⎪⎭⎫⎝⎛=253. 二、填空题11.x 2+y 2+4x -3y =0.解析:令y =0,得x =-4,所以直线与x 轴的交点A (-4,0). 令x =0,得y =3,所以直线与y 轴的交点B (0,3). 所以AB 的中点,即圆心为⎪⎭⎫ ⎝⎛23 2, -. 因为|AB |=223 + 4=5,所以所求圆的方程为(x +2)2+223 - ⎪⎭⎫ ⎝⎛y =425.即x 2+y 2+4x -3y =0. 12.0或2.解析:画图可知,当垂直于x 轴的直线x =a 经过点(0,0)和(2,0)时与圆相切, 所以a 的值是0或2.解析:令圆方程中x =0,所以y 2―2y ―15=0.解得y =5,或y =-3. 所以圆与直线x =0的交点为(0,5)或(0,-3).所以直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长等于5-(-3)=8. 14.7或-5.解析:由2221 - + 7 + 2 + 4 - 6)()()(z =11得(z -1)2=36.所以z =7,或-5. 15.22.解析:如图,S 四边形P ACB =2S △P AC =21|P A |·|CA |·2=|P A |,又|P A |=12-||PC ,故求|P A |最小值,只需求|PC |最小值,另|PC |最小值即C 到直线3x +4y +8=0的距离,为2243843+|++|=3.于是S 四边形P ACB 最小值为132-=22. 三、解答题16.解:(1)由已知设所求圆的方程为(x -a )2+y 2=r 2,于是依题意,得⎪⎩⎪⎨⎧.=+)(,=+)(2222 4 - 3 16 - 1r a r a 解得⎪⎩⎪⎨⎧.,-20 = 1 = 2r a 故所求圆的方程为(x +1)2+y 2=20.(2)因为圆与直线x +y -1=0切于点M (2,-1),所以圆心必在过点M (2,-1)且垂直于x +y -1=0的直线l 上. 则l 的方程为y +1=x -2,即y =x -3. 由⎪⎩⎪⎨⎧.=+,-=023 y x x y 解得⎪⎩⎪⎨⎧.- =,=2 1 y x 即圆心为O 1(1,-2),半径r =222 + 1 -+ 1 - 2)()(=2. 故所求圆的方程为(x -1)2+(y +2)2=2.17.解:以D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长为单位长,建立空间直角坐标系Dxyz ,E 点在平面xDy 中,且EA =21. 所以点E 的坐标为⎪⎭⎫⎝⎛0 ,21 ,1, (第15题)又B 和B 1点的坐标分别为(1,1,0),(1,1,1),所以点F 的坐标为⎪⎭⎫ ⎝⎛21 ,1 ,1,同理可得G 点的坐标为⎪⎭⎫ ⎝⎛21 21 1,,. 18.解:设所求圆的方程为(x -a )2+(y -b )2=r 2, 因为圆与两坐标轴相切,所以圆心满足|a |=|b |,即a -b =0,或a +b =0. 又圆心在直线5x ―3y ―8=0上,所以5a ―3b ―8=0.由方程组⎪⎩⎪⎨⎧,=-,=--00835b a b a 或⎪⎩⎪⎨⎧,=+,=--00835b a b a解得⎪⎩⎪⎨⎧,=,44b a =或⎪⎩⎪⎨⎧.=-,11=b a 所以圆心坐标为(4,4),(1,-1).故所求圆的方程为(x -4)2+(y -4)2=16,或(x -1)2+(y +1)2=1.19.解:(1)设过P 点圆的切线方程为y +1=k (x -2),即kx ―y ―2k ―1=0. 因为圆心(1,2)到直线的距离为2,1+ 3 - - 2k k =2, 解得k =7,或k =-1.故所求的切线方程为7x ―y ―15=0,或x +y -1=0.(2)在Rt △PCA 中,因为|PC |=222 - 1 -+ 1 - 2)()(=10,|CA |=2, 所以|P A |2=|PC |2-|CA |2=8.所以过点P 的圆的切线长为22.(3)容易求出k PC =-3,所以k AB =31.如图,由CA 2=CD ·PC ,可求出CD =PC CA 2=102.设直线AB 的方程为y =31x +b ,即x -3y +3b =0.由102=23 + 1 3 + 6 - 1 b 解得b =1或b =37(舍).所以直线AB 的方程为x -3y +3=0.(3)也可以用联立圆方程与直线方程的方法求解.20.解:因为圆心C 在直线3x -y =0上,设圆心坐标为(a ,3a ), 圆心(a ,3a )到直线x -y =0的距离为d =22 - a .又圆与x 轴相切,所以半径r =3|a |,(第19题)设圆的方程为(x -a )2+(y -3a )2=9a 2, 设弦AB 的中点为M ,则|AM |=7. 在Rt △AMC 中,由勾股定理,得 22 2 - ⎪⎪⎭⎫⎝⎛a +(7)2=(3|a |)2. 解得a =±1,r 2=9.故所求的圆的方程是(x -1)2+(y -3)2=9,或(x +1)2+(y +3)2=9.。

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点 A(1,4)、B(3,2)且圆心在直线 y 0上的圆的标准方程并判断点 P(2,4)与圆的关系. 分析: 欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点 P 与圆的位置关系,只须看点 心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径, 则点在圆内.解法一:(待定系数法)设圆的标准方程为 (x a)2 (y b)2 r 2 . ∵圆心在 y 0 上,故 b 0. ∴圆的方程为 (x a)2 y 2 r 2.又∵该圆过 A(1,4)、 B(3,2)两点.22(1 a)216 r 2 22(3 a)24 r 2解之得: a 1, r 2 20.所以所求圆的方程为 (x 1)2 y 2 20 . 解法二:(直接求出圆心坐标和半径)42 因为圆过 A(1,4) 、 B(3 , 2)两点,所以圆心 C 必在线段 AB 的垂直平分线 l 上,又因为 k AB 4 21AB1 3 斜率为1,又 AB 的中点为 (2,3),故 AB 的垂直平分线 l 的方程为: y 3 x 2即 x y 1 0.又知圆心在直线 y 0上,故圆心坐标为 C( 1,0) ∴半径 r AC (1 1)2 42 20 . 故所求圆的方程为 (x 1)2 y 2 20 . 又点 P(2 ,4) 到圆心 C( 1,0)的距离为d PC (2 1)2 4225 r .∴点 P 在圆外.例2 求半径为 4,与圆 x 2 y 2 4x 2y 4 0相切,且和直线 y 0相切的圆的方程. 分析: 根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆 C :(x a)2 (y b)2 r 2.圆C 与直线 y 0相切,且半径为 4,则圆心 C 的坐标为 C 1(a, 4)或C 2(a, 4). 又已知圆 x 2 y 2 4x 2y 4 0的圆心 A 的坐标为 (2 ,1) ,半径为 3.P 与圆,故 l 的52t 3tt 2 (3t 5)2 .若两圆相切,则 CA 4 3 7或 CA 4 3 1.2 2 2 2 2 2(1)当C 1(a , 4)时, (a 2)2 (4 1)2 72,或 (a 2)2 (4 1)2 12 (无解),故可得 a 2 2 10.∴所求圆方程为 (x 2 2 10)2 (y 4)2 42,或 (x 2 2 10)2 (y 4)2 42.(2)当C 2 (a , 4)时, (a 2)2 ( 4 1)2 72,或(a 2)2 ( 4 1)2 12 (无解),故 a 2 2 6.∴所求圆的方程为 (x 2 2 6)2 (y 4)2 42 ,或 (x 2 2 6)2 (y 4)2 42. 说明: 对本题,易发生以下误解:由题意,所求圆与直线 y 0相切且半径为 4,则圆心坐标为 C(a,4) ,且方程形如 (x a)2 (y 4)2 42.又 2 2 2 2 2圆x 2 y 2 4x 2y 4 0,即(x 2)2 (y 1)2 3 2 ,其圆心为 A(2 , 1) ,半径为 3.若两圆相切,则 CA 4 3.故 (a 2)2 (4 1)2 72 , 解 之 得 a 2 2 10 . 所 以 欲 求 圆 的 方 程 为 (x 2 2 10)2 (y 4)2 42 , 或 2 2 2 (x 2 2 10)2 (y 4)2 42 .上述误解只考虑了圆心在直线 y 0 上方的情形,而疏漏了圆心在直线 y 0下方的情形.另外,误解中没有考虑两圆 内切的情况.也是不全面的.例3 求经过点 A(0 , 5) ,且与直线 x 2y 0和2x y 0都相切的圆的方程.分析: 欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点 A ,故只需确定圆心坐标.又圆与两已知直 线相切,故圆心必在它们的交角的平分线上.解: ∵圆和直线 x 2y 0与 2x y 0相切, ∴圆心 C 在这两条直线的交角平分线上, 又圆心到两直线 x 2y 0和 2x y 0 的距离相等.∴x 2y x 2y .∴ 5 5 .∴两直线交角的平分线方程是 x 3y 0或 3x y 0. 又∵圆过点 A(0 ,5) ,∴圆心 C 只能在直线 3x y 0 上. 设圆心 C(t ,3t)∵ C 到直线 2x y 0 的距离等于 AC化简整理得 t 2 6t 5 0 .解得: t 1或 t 5∴圆心是 (1 , 3) ,半径为 5 或圆心是 (5 ,15) ,半径为 5 5 . ∴所求圆的方程为 (x 1)2 (y 3)2 5或 (x 5)2 (y 15)2 125.说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过 定点且与两已知直线相切的圆的方程的常规求法.例 4、 设圆满足: (1)截 y 轴所得弦长为 2; (2)被 x 轴分成两段弧,其弧长的比为 3:1,在满足条件 (1)(2)的所有圆中, 求圆心到直线 l :x 2y 0 的距离最小的圆的方程.分析: 要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个, 其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到 符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一: 设圆心为 P(a ,b) ,半径为 r . 则P 到 x 轴、 y 轴的距离分别为 b 和 a由题设知:圆截 x 轴所得劣弧所对的圆心角为 90 ,故圆截 x 轴所得弦长为 2r . 2∴r 2b 2又圆截 y 轴所得弦长为 2.2∴r a 2 1 .又∵ P(a ,b) 到直线 x 2y 0的距离为22a 2 4b 24ab2 2 2 2a 2 4b 2 2(a 2 b 2 )2b当且仅当 a b 时取“ =”号,此时 d mina b这时有2b 2 a 2 1a 1 a1或b 1b1又r22b 22∴ 5d 22a 2b2故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 解法二:同解法一,得a 2bd.5∴ a 2b 5d .2 2 2∴ a2 4b2 4 5bd 5d2.将a2 2b2 1代入上式得:222b2 4 5bd 5d2 1 0 .上述方程有实根,故28(5d 2 1) 0,∴d 5.5将d 5代入方程得b 1.5又2b2 a2 1 ∴ a 1.由a 2b 1 知a 、b 同号.故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例 5 已知圆O:x2 y2 4,求过点P 2,4 与圆O相切的切线.解:∵点P 2,4 不在圆O 上,∴切线PT 的直线方程可设为y k x 2 4根据d r∴2k 4 221 k3解得k343所以y 3 x 2 44即3x 4y 10 0因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0 解决(也要注意漏解) .还可以运用2x0x y0y r 2,求出切点坐标x0、y0的值来解决,此时没有漏解.例6 两圆C 1:x 2 y 2 D 1x E 1y F 1 0与C 2:x 2 y 2 D 2x E 2yF 2 0相交于 A 、 B 两点,求它们的公共弦AB 所在直线的方程.分析: 首先求 A 、 B 两点的坐标,再用两点式求直线 AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求,可以采用“设而不求”的技巧.解: 设两圆 C 1、C 2 的任一 交点坐标为 (x 0 , y 0) ,则有:22 x 0 y 0 D 1xE 1y 0F 1 0①22 x 0 yD 2x0 E 2 yF 2 0②①-②得: (D 1 D 2)x 0 (E 1 E 2)y 0 F 1F 2 0 .∵ A 、 B 的坐标满足方程(D 1 D 2)x(E 1 E 2)yF 1F 2 0 .∴方程 (D 1 D 2 )x (E 1E 2)yF 1 F 2是过 A 、 B 两点的直线方程又过 A 、 B 两点的直线是唯一的.∴两圆C 1、 C 2的公共弦 AB 所在直线的方程为 (D 1 D 2)x (E 1 E 2)yF 1 F 2 0.说明: 上述解法中,巧妙地避开了求 A 、 B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲 线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了 对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例 7、过圆 x 2 y 2 1外一点 M(2,3) ,作这个圆的两条切线 MA 、 MB ,切点分别是 A 、B ,求直线 AB 的方程。

高中数学必修二同步练习题库:圆的方程(选择题:较易)

高中数学必修二同步练习题库:圆的方程(选择题:较易)

圆的方程(选择题:较易)1、若圆与轴相切于点,与轴的正半轴交于两点,且,则圆的标准方程是()A. B.C. D.2、方程表示一个圆,则的范围是()A. B.C. D.3、与圆同圆心,且过的圆的方程是()A. B.C. D.4、已知圆的圆心与点关于直线对称.直线与圆相交于两点,且,则圆的方程为A. B.C. D.5、在平面直角坐标系中,动点的坐标满足方程,则点的轨迹经过()A.第一、二象限 B.第二、三象限C.第三、四象限 D.第一、四象限6、圆的圆心坐标和半径分别为()A.(0,2),2 B.(2,0),2 C.(-2,0),4 D.(2,0),47、以为圆心,且与两条直线与同时相切的圆的标准方程为()A. B.C. D.8、圆心为且过点的圆的方程是()A. B.C. D.9、点A(1,0)在圆上,则a的值为()A.1 B.-2 C.1或-2 D.2或-210、方程表示的圆()A.关于x轴对称B.关于y轴对称C.关于直线对称D.关于直线对称11、已知点P(x,y)为圆C:x2+y2﹣6x+8=0上的一点,则x2+y2的最大值是()A.2 B.4 C.9 D.1612、圆心在轴上,半径为1,且过点(1,2)的圆的方程是()A. B.C. D.13、圆:与圆:的位置关系是( )A.相交 B.外切 C.内切 D.相离14、已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.15、圆的圆心坐标和半径分别是()A. B. C. D.16、由曲线围成的图形的面积为()A. B. C. D.17、点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=118、若直线过圆的圆心,则实数的值为()A. B. C. D.19、圆,那么与圆有相同的圆心,且经过点的圆的方程是().A. B.C. D.20、圆的方程为,则其圆心坐标及半径分别为().A., B., C., D.,21、若圆与圆关于原点对称,则圆的方程为().A. B.C. D.22、圆的圆心坐标与半径是()A. B.C. D.23、已知A(-4,-5)、B(6,-1),则以线段AB为直径的圆的方程( )A.(x+1)2+(y-3)2=29 B.(x-1)2+(y+3)2=29C.(x+1)2+(y-3)2=116 D.(x-1)2+(y+3)2=11624、若表示圆,则实数的取值范围是()A. B. C. D.25、对于,直线恒过定点,则以为圆心,2为半径的圆的方程是()A. B.C. D.26、已知圆:,圆与圆关于直线对称,则圆的方程为()A. B.C. D.27、已知圆的方程为,则圆的半径为()A.3 B.9 C. D.28、已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.29、圆的圆心坐标与半径是()A. B.C. D.30、经过圆x2+y2+2y=0的圆心C,且与直线2x+3y-4=0平行的直线方程为()A.2x+3y+3=0 B.2x+3y-3=0 C.2x+3y+2=0 D.3x-2y-2=031、以点A为圆心,且与轴相切的圆的方程为()A. B.C. D.32、方程x2+y2+x+y-m=0表示一个圆,则m的取值范围是().A.m>- B.m<- C.m≤- D.m≥-33、在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为()A. B. C. D.34、圆的圆心坐标和半径分别为A.圆心 B.圆心C.圆心 D.圆心35、过点P(2 ,1)且被圆C:x 2+y2– 2x+4y =" 0" 截得弦长最长的直线l的方程是()A.3x – y– 5 = 0 B.3x +y– 7 = 0C.x –3y+5 = 0 D.x +3y– 5 = 036、过点、点且圆心在直线上的圆的方程是()A.B.C.D.37、圆关于直线对称的圆的方程为()A. B.C. D.38、已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B. C. D.39、若直线(,),经过圆的圆心,则的最小值是()A. B. C. D.40、抛物线与坐标轴的交点在同一个圆上,则交点确定的圆的方程为()A. B.C. D.41、圆与轴相切于,与轴正半轴交于两点,且,则圆的标准方程为()A.B.C.D.42、过,圆心在轴上的圆的方程为()A. B.C. D.43、方程x2+y2+4x-2y+5=0表示的曲线是()A.两直线 B.圆 C.一点 D.不表示任何曲线44、如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,则必有()A.D=E B.D=F C.F=E D.D=E=F45、圆x2+y2+4x-6y-3=0的圆心和半径分别为()A.(4,-6),r=16 B.(2,-3),r=4C.(-2,3),r=4 D.(2,-3),r=1646、若方程x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是()A.R B.(-∞,1) C.(-∞,1] D.[1,+∞)47、已知圆的方程为,过点的该圆的所有弦中,最短的弦长为()A. B. C.2 D.448、若圆始终平分圆的周长,则满足的关系是()A. B.C. D.49、已知圆心在x轴上的圆C与x轴交于两点A(1,0),B(5,0),此圆的标准方程为( ) A.(x-3)2+y2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=450、已知点P(a,a+1)在圆x2+y2=25内部,那么a的取值范围是( )A.-4<a<3 B.-5<a<4 C.-5<a<5 D.-6<a<451、圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A.(x-4)2+(y+1)2=10B.(x+4)2+(y-1)2=10C.(x-4)2+(y+1)2=100D.(x-4)2+(y+1)2=52、点P(a,5)与圆x2+y2=24的位置关系是( )A.点在圆外 B.点在圆内 C.点在圆上 D.不确定53、圆和圆的公共弦长为()A. B.C. D.54、方程表示的曲线为()A.一条直线和一个圆 B.一条线段与半圆C.一条射线与一段劣弧 D.一条线段与一段劣弧55、已知直线是圆的对称轴,过点作圆的一条切线,切点为,则=()A.2 B.C.6 D.56、已知圆,圆,圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离57、设圆的方程是,若,则原点与圆的位置关系是()A.原点在圆上 B.原点在圆外C.原点在圆内 D.不确定58、已知圆,直线上至少存在一点,使得以点为圆心,半径为的圆与圆有公共点,则的最小值是()A. B.C. D.59、过两点的面积最小的圆的方程为()A.B.C.D.60、已知两圆的圆心距=" 3" ,两圆的半径分别为方程的两根,则两圆的位置关系是()A.相交 B.相离 C.相切 D.内含61、与圆及圆都外切的圆的圆心在()A.一个椭圆上 B.双曲线的一支上C.一条抛物线上 D.一个圆上62、圆与圆的位置关系是()A.相交 B.外切C.内切 D.相离63、已知圆的方程为是该圆内一点,过点的最长弦和最短弦分别为和,则四边形的面积是()A. B.C. D.64、已知圆的方程为是该圆内一点,过点的最长弦和最短弦分别为和,则四边形的面积是()A. B.C. D.65、已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.66、以为圆心,4为半径的圆的方程为()A. B.C. D.67、两圆与的位置关系为()A.内切 B.外切C.相交 D.相离68、过点且圆心在直线上的圆的方程是()A.B.C.D.69、若圆与圆的公共弦的长为,则()A.2 B.1C. D.70、动点与定点的连线的斜率之积为,则点的轨迹方程是()A.B.C.D.参考答案1、C2、A3、B4、A5、A.6、B7、A8、D9、B10、D11、D12、A13、A14、C15、D16、B17、A18、A19、B20、D21、A22、D23、B24、B25、A26、B27、A28、B29、D30、A31、A32、A33、B34、B35、A36、C37、D38、C39、B40、D41、A42、D43、C44、A45、C46、B47、C48、C49、A50、A51、A52、A53、A54、D55、C56、C57、B58、A59、A60、D61、B62、D63、D64、D65、D66、C67、D68、C69、B70、C【解析】1、设中点为,则∴故选C.2、试题分析:由圆的一般式方程可知考点:圆的方程3、试题分析:把原圆的方程写成标准方程为,由于两圆共圆心,可设另一个圆方程为:,把代入所设方程,得:,所以所求的圆的方程为,化简为:,故选B.考点:1、圆的一般式方程;2、圆的标准方程的.4、试题分析:易知关于直线的对称点为,即,圆心到直线的距离为,所以,圆方程为.故选A.考点:圆的标准方程.5、试题分析:由题意得,点在以为圆心,为半径的圆上,如下图所示,故可知点在第一、二象限,故选A.考点:圆的标准方程.6、试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程7、试题分析:因为两条直线与的距离为,所以所求圆的半径为,所以圆心到直线的距离为即或,又因为圆心到直线的距离也为,所以,所以所求的标准方程为,故应选.考点:直线与圆的位置关系.8、试题分析:由圆的标准方程可知所求圆为考点:圆的方程9、试题分析:因为点在圆上,故解得.考点:圆的一般方程.10、试题分析:圆心,即圆心坐标满足方程,所以圆关于直线对称,考点:圆的性质11、试题分析:将圆C化为标准方程,找出圆心与半径,作出相应的图形,所求式子表示圆上点到原点距离的平方,根据图形得到当P与A重合时,离原点距离最大,求出所求式子的最大值即可.解:圆C化为标准方程为(x﹣3)2+y2=1,根据图形得到P与A(4,0)重合时,离原点距离最大,此时x2+y2=42=16.故选D考点:圆的一般方程.12、试题分析:设圆的标准方程为,由题可知,a=0,r=1,将(1,2)代入方程,可求得b=2,因此圆的标准方程为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-圆的标准方程练习题
5分钟训练(预习类训练,可用于课前)
1.圆心是O(-3,4),半径长为5的圆的方程为( )
A.(x-3)2+(y+4)2=5
B.(x-3)2+(y+4)2
=25
C.(x+3)2+(y-4)2=5
D.(x+3)2+(y-4)2
=25
解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2
. 答案:D
2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( )
A.(x+5)2+(y-4)2=16
B.(x-5)2+(y+4)2
=16
C.(x+5)2+(y-4)2=25
D.(x-5)2+(y+4)2
=25
解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2
=16. 答案:A
3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________.
解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x
联立,得a=1.故方程为(x-1)2+(y-1)2
=1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1).
答案:(x-1)2+(y-1)2
=1
10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2
+y 2
=3,那么
x
y
的最大值是( ) A.
2
1
B.33
C.23
D.3
解析:令
x
y
=k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D
2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( )
A.(x-3)2+(y+1)2=4
B.(x+3)2+(y-1)2
=4
C.(x-1)2+(y-1)2=4
D.(x+1)2+(y+1)2
=4
解:由题意得线段AB 的中点C 的坐标为(2
1
1,
211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1
1--(x-0),即y=x.所以圆心坐标
(x,y)满足⎩⎨
⎧=-+=.
02,
y x x y 得y=x=1.
∴圆的半径为])1(1[)11(2
2
--+-=2.因此,所求圆的方程为(x-1)2
+(y-1)2
=4.
答案:C
3.设点P(2,-3)到圆(x+4)2+(y-5)2
=9上各点距离为d,则d 的最大值为_____________.
解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2
=9的圆心距离加上圆的半径,即d max =2
2
)53()42(--+++3=13.
答案:13
4.已知点P 是曲线x 2+y 2
=16上的一动点,点A 是x 轴上的定点,坐标为(12,0).当点P 在曲线上运动时,求线段PA 的中点M 的轨迹方程. 解:设M(x,y)、P(x 0,y 0). 由题意
y y x x =+=+2
,21200. ∴x 0=2x-12,y 0=2y.
又P(x 0,y 0)在圆x 2+y 2
=16上,
∴x 02+y 02
=16.
∴(2x -12)2+(2y)2=16,即(x-6)2+y 2
=4. 30分钟训练(巩固类训练,可用于课后)
1.若半径为1的圆分别与y 轴的正半轴和射线y=x 3
3
(x≥0)相切,则这个圆的方程为_____________.
解析:本题考查圆的标准方程和直线与圆的相切.
由题意可设圆的圆心为(1,b)(b >0).根据该圆与直线y=
x 3
3
相切,得⇒=-13
4|33|
b 3332|33|
=⇒=-b b 或3
3-(舍),故所求圆的方程为(x-1)2+(y-3)2
=1. 答案:(x-1)2+(y-3)2
=1
2.从点P(3,b)向圆(x+2)2+(y+2)2
=1作切线,则切线长的最小值为( )
A.5
B.4
C.5.5
D.26 解析:切线长d=24)2(2841)2()23(222
2
++=++=-+++b b b b ,∴当b=-2时,
d 取最小值62.
答案:D
3.若直线x+y=m 与圆x 2+y 2
=m(m >0)相切,则m 为( ) A.
2
1
B.2
C.2
D.22
解析:利用圆心到直线的距离等于半径,即有
m m =2
||,∴m=2.
答案:B
4.在圆(x-2)2+(y+3)2
=2上与点(0,-5)距离最大的点的坐标是( ) A.(5,1) B.(4,1)
C.(32,2
2-+) D.(3,-2)
解析:利用点(0,-5)到圆心(2,-3)的距离求得. 答案:C
5.三颗地球通讯卫星发射的信号即可覆盖全球,若设赤道大圆的方程为x 2+y 2=R 2
(R 为地球半径),三颗卫星均可分布于赤道上空,则三个卫星所在位置确定的圆的方程为( ) A.x 2+y 2=2R 2 B.x 2+y 2=4R 2 C.x 2+y 2=8R 2 D.x 2+y 2=9R 2
解析:由题意知卫星距地面高度为R,所以方程为x 2+y 2=4R 2
.故选B. 答案:B
6.圆(x-a)2+(y-b)2=r 2
经过原点的条件是( )
A.a=b=0
B.a 2+b 2=r 2
C.a=-b
D.a 2+b 2+r 2
=2
解析:考查对圆的标准方程及圆的性质的认识和把握.圆经过原点,说明点(0,0)适合圆的方
程.由题意有(0-a)2+(0-b)2=r 2,即a 2+b 2=r 2
. 答案:B
7.由y=|x|和圆x 2+y 2
=4的图象所围成的较小区域的面积是( ) A.
4
π
B.π
C.43π
D.23π
解析:如图,设y=|x|与圆x 2
+y 2
=4所围成的较小面积为S 扇形OAB ,
由题意知∠AOB=90°.
∴S 扇形OAB =
41S ⊙O =4
1πr 2
=π. 答案:B
8.圆心在直线2x-y-7=0上的圆C 与y 轴交于两点A(0,-4)、B(0,-2),则圆C 的方程为_____________.
解析:设圆心C(a,b),则⎪⎩⎪⎨⎧++=++=--.
)2()4(,
0722
222b a b a b a ∴⎩⎨
⎧-==,
3,
2b a 且|AC|=|BC|=r=5.
∴(x -2)2
+(y+3)2
=5为所求.
答案:(x-2)2+(y+3)2
=5
9.圆心为(2,-3),一条直径的两个端点分别落在x 轴和y 轴上的圆的方程是_______________. 解析:由圆心为C(2,-3),一条直径的两个端点分别落在x 轴和y 轴上,由直径所对的圆周角为直角,可知圆必过原点O(0,0),从而有r=13)03()02(2
2=--+-,r 2
=13.
∴所求圆的方程为(x-2)2+(y+3)2
=13.
答案:(x-2)2+(y+3)2
=13
10.圆(x-3)2+(y+1)2
=1关于直线x+2y-3=0对称的圆的方程是____________.
解:关于直线对称的两圆半径相等,圆心连线被直线x+2y-3=0垂直平分.设所求圆的方程为
(x-a)2+(y-b)2
=1.
由题意得⎪⎪⎩⎪⎪⎨⎧=--⨯++-=-⨯-+.0321223,1)2
1(31b a a b
解得⎪⎪⎩
⎪⎪⎨⎧==.53,519b a
∴所求圆的方程为(519-
x )2+(5
3-y )2
=1. 答案:(519-x )2+(5
3-y )2
=1
11.已知点A(0,2)和圆C :(x-6)2+(y-4)2=5
36,一条光线从A 点出发射到x 轴上后沿圆的
切线方向反射,求这条光线从A 点到切点所经过的路程.
解:设反射光线与圆相切于D 点,点A 关于x 轴的对称点的坐标为A 1(0,-2),则光线从A 点到切点所走的路程为|A 1D|.
在Rt△A 1CD 中,|A 1D|2
=|A 1C|2
-|CD|2
=(-6)2
+(-2-4)2
5324536=-.
∴|A 1D|=
5518,即光线从A 点到切点所经过的路程是5
5
18.。

相关文档
最新文档