数字图像处理第八章PPT课件

合集下载

数字图像处理_第八章二值图像处理2

数字图像处理_第八章二值图像处理2

图(d) : N (4) (0 0) (0 0) (0 0) (0 0) 0; N (8) (1 0) (1 0) (1 1) (1 0) 3. 图(e) : N (4) (1 0) (1 0) (1 0) (1 0) 4; N (8) (0 0) (0 0) (0 0) (0 0) 0. 图(f ) : N (4) (0 0) (0 0) (0 0) (0 0) 0; N (8) (1 0) (1 0) (1 0) (1 0) 4.
原图
四连接定义下
八连接定义下
在四连接定义下,内部点是“在当前点的八近邻像素点中没有值为0 的点”,而在八连接定义中,内部点是“在当前点的四近邻像素点中 没有值为0的点”。
2013-8-7 4
10.1.3 连接数与交叉数
连接数:是指沿着当前点的近邻(四近邻或者八近邻)像 素所构成的边界轨迹上移动时,通过的像素值为1的点的 个数。 四近邻下的连接数定义:
判断该结构元素所覆盖范围内的像素值是否至少有一个为1如果是则膨胀后的图像的相同位置上的像素值为1如果该覆盖范围内的所有像素值为0则膨胀后图像的相同位置上的像素值0101000110100010000011000000001011111110011010011100001100000000原图像原图像结构元素结构元素膨胀后的图像膨胀后的图像2012627161022膨胀原图图原膨胀一次次膨胀一膨胀二次次膨胀二膨胀三次次膨胀三201262717103开运算与闭运算腐蚀处理目标物的面积减少
LS N e 2 N o
其中,Ne表示边界ຫໍສະໝຸດ 上的方向码为偶数的像 素个数;No为边界线上方向码为奇数的像素 个数。

遥感数字图像处理第8章 图像分割

遥感数字图像处理第8章 图像分割

腐蚀运算
目的:消除目标的边界点,用于消除无意义的小目标
(毛刺,小突起)
方法:
1.原点在集合B(结构元素)中
2.原点不在集合B(结构元素)中
腐蚀运算(erosion)
腐蚀运算(erosion)
A B x | ( B )x A .
对结构元素B作平移x,B全包含在A中时,
原点的集合就是计算结果
(1)直方图方法:直方图的谷底位置
最佳阈值的选择
(2)自适应阈值方法
A.将目标分割成大小固定的块
B.确定每一个块的目标峰值和背景峰值
C.第一次处理:对每一个块进行分割(边界阈值采用目标和背 景峰值的中点) D.计算每一个块的目标灰度和背景灰度平均值 E.第二次处理:对每个块再次分割(边界阈值采用目标和背景灰 度平均值的中值)
四连通 八连通
工作流程
1.确定待分割对象
2.选择敏感波段
3.选择分割方法
4.对分割的结果进行矢量化
分割原理和方法
边界(边缘)方法: 阈值分割技术,微分算子
边缘检测
假设:图像分割结果中的子区域在原来图像中有边缘存在,或
不同子区域间有边界的存在(像素值灰度不连续性)
区域方法:区域增长技术,聚类分割技术
图像分割的目的
图像分割的目标:根据图像中的物体将图像的像素分
类,并提取感兴趣目标
图像分割是图像识别和图像理解的基本前提步骤
图像
图像预处理
图像识别
图像理解
图像分割
图像分割的目的
图像分割是把图像分解成构成的部件和对象的过程
把焦点放在增强感兴趣对象:汽车牌照(前景)
排除不相干图像成分:其它区域(背景)
最佳阈值的选择

(848页PPT幻灯片)数字图像处理(冈萨雷斯)课件

(848页PPT幻灯片)数字图像处理(冈萨雷斯)课件

例3:镜头边界检测
பைடு நூலகம்
例4:基于内容的图像检索 例5:基于内容的镜头检索
例6:基于内容的视频片断检索
例7:视频字幕识别
例7:视频字幕识别
T. B$alr
Boat
Fish
H. Jlntao J.
E. Lah oud MaI•
MeetJn
MJIIta Mono§o us Motorbike
News pa per
为什么要用SAN
存传储统区存域储网解S决AN方(S案tor—ag—e A信re息a 岛Network)
SAN
SAN是什么?
SAN是什么?(续)
不是client/server,而是client/storage devices 独立于LAN之外的高速存储网络 一般采用高速的光纤通道作为传输媒体( 2Gbit/s) 将存储设备通过光通道互连设备构成一个存 储子网 支持服务器和存储设备之间任意到任意的连 接 S A N上的任何一台服务器均可存取网络中的任何一个 存 储设备 对网上的存储资源实施集中统一的管理
Vision (IJCV) ✓ Pattern Recognition (PR) ✓ Image and Vision Computing (IVC)
✓…
目前需要做的事情
选课学生发送下列信息给老师: pengyuxin@
✓ 姓名 ✓ 学号 ✓ 联系方式:E_mail,电话 ✓ 硕士生或博士生,年级 ✓ 所在院系、实验室、导师 ✓ 研究方向
✓灰度图像是一个二维灰度(或亮度)函数f(x,y) ✓彩色图像由三个(如RGB,HSV)二维灰度(或亮度)函数 f(x,y)组成
y
y
x
x
什么是数字图像?

[课件]数字图像处理 第八讲 图像分割PPT

[课件]数字图像处理 第八讲 图像分割PPT

图像分割
拉普拉斯(Laplacian)算子是不依赖于边缘方向的 二阶微分算子。它是一个标量而不是向量,具有旋 转不变即各向同性的性质,在图像处理中经常被用 来提取图像的边缘。其表示式为
f x ,y f x ,y f x ,y 2 2 x y
2 2 2
f(x-1,y-1) f(x-1,y)
f(x,y-1) f(x,y-1) f(x,y) f(x,y) f(x,y+1)
f(x+1,y-1) f(x+1,y) f(x+1,y+1)
图像分割
选取适当的门限TH,作如下判断:G[f(x,y)]>TH, (x,y)为阶跃状边缘点。
二、Sobel梯度算子(3×3个像素) 先做加权平均,再作微分,即
2
图像增强
f(x-1,y)
f(x,y-1)
f(x,y)
f(x,y+1)
f(x+1,y)
图像分割
当拉普拉斯算子输出出现过零点时就表明有边 缘存在。该算子有两个缺点:其一就是边缘方向信 息的丢失,其二它是二阶差分,双倍加强了图像中 噪声的影响。
改进的LOG算法:
在进行拉普拉斯运算前先进行平滑去噪,然后 再提取边缘。平滑去噪采用高斯滤波器,然后与拉 普拉斯边缘检测合并在一起,形成LOG(Laplacian Of Gaussian)。
图像分割
对于数字图像,可用一阶差分替代一阶微分:
f f x,yf x x ,y 1 ,y x f x f f x,yf x,y x ,y 1 y f y
此时梯度的幅度可表示为:
G f x , y f x , y f x , y x y

数字图像处理与分析图像分割(课堂PPT)

数字图像处理与分析图像分割(课堂PPT)
下面看一下导数的求取方法。从第三章了解到,图像 中的一阶导数采用梯度算子计算,而二阶导数常使用 拉普拉斯算子得到。
13
梯度算子
一幅数字图像的一阶导数是基于各种二维梯度的近似值。图像f(x,y)在位
置(x,y)的梯度定义为下列向量:
f
F
G x
G
y
x
f
y
(10.1.3)
向量的大小:
图10.7中第一列的图 像分割显示了分割左 右黑白区域的4个斜 坡边缘的特写图。分 别被均值为0且 σ=0.0,0.1,1.0,10.0 的随机高斯噪声污染。 第二列是一阶导数图 像和灰度级剖面线。 第三列为二阶导数图 像和灰度级剖面线。
图10.7
12
这个例子很好的说明了导数对于噪声的敏感性。 那么为了对于有意义的边缘点进行分类,必须使得与 这个点相联系的灰度级变换比在这一点的背景上的变 换更为有效才行。即所作的变换应该更有利于区分边 缘点。比如,如果噪声严重的话,就要慎用导数变换。
的特征,那么特征值的分界点就是一个门限。
3
8.1 间断检测
间断检测技术包括点检测,线检测和边界检测三种。寻找间断最 一般的方法是模板检测。计算模板所包围区域的灰度级与模板系 数的乘积之和。
图像中任意点的模板响应公式(3×3模板):
Rw1z1w2z2 w9z9
9
wizi i1 图10.1 3*3模板
可以看到,
(a)
(1)图中水平和垂直的部
分都被去掉了,并且在(b)
中所有原图中接近-450的部
分产生了最强响应。
(2)加了门限之后,在(c) 中有孤立点,可以使用点检 测模板检测,然后删除,或 者使用下一章的形态学腐蚀 法删除。

数字图像处理第八章课件

数字图像处理第八章课件
消除心理视觉冗余会导致数量信息的损失,又称量化。
Chapter 8 Image Compression
量化,不可逆,信息损失
IGS, Improved Gray-Scale quantization
IGS意识到眼睛对边缘特有的敏感性,通过加入伪随机数 来破坏边缘:
伪随机数从邻近像元的低4位获得,加入当前像元灰度值后 才量化。(图像的低bit面很象随机数,见p.89) 低4位的初值为0000,对高4位为1111的像素不加随机数。
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 ImaCompression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
8.1 基础
数据压缩——表示定量信息所需数据量的减少过程
数据、信息、知识。
比如,不同人讲相同的事件。
数据冗余:是数字图像压缩的中心问题。
这不是抽象的概念,而是可以用数学式子度量的实体:
如果表示相同信息的两组数据所用的信息载体单元数量
分别为n1和n2, 则第一组数据的相对(第二组数据的)
a

数字图像处理第8章-image understanding.ppt

数字图像处理第8章-image understanding.ppt

Designed by Ruifang ZHAI
华中农业大学计算机科学与技术系
(1) 边界用隙码表示时,周长为24; (2) 边界用链码表示时,周长为10+5 2 ; (3) 边界用面积表示时,周长为15。
Designed by Ruif科学与技术系
表示为
p Ne
2N
式中,Ne和No分别是边界链码(8方向)中走偶步与走奇步
的数目。
Designed by Ruifang ZHAI
华中农业大学计算机科学与技术系
3. 周长 区域的周长即区域的边界长度。常用的简便方法如下:
(3) 计算边界点数之和求周长:周长用边界所占面积表示, 也即边界点数之和, 每个点占面积为1的一个小方块。
(3) 用边界坐标计算面积
Green(格林)定理表明,在x-y平面中的一个封闭曲线包 围的面积由其轮廓积分给定,即
A12(xdyyd)x
其中,积分沿着该闭合曲线进行。将其离散化变为
1 Nb
A 2 i1 [xi(yi1 yi ) yi(xi1 xi )]
1 2
Nb i1
[xi
yi1
xi1yi
特征提取:将由图像分割得到区域的特征提取出来,用 于 图像识别与理解。
Designed by Ruifang ZHAI
华中农业大学计算机科学与技术系
1. 特征表示与描述:把图像分割后,为了进一步的处理,分割 后的图像一般要进行形式化的表达和描述。
2. 解决形式化表达问题一般有两种选择:
1)根据区域的外部特征来进行形式化表示
Designed by Ruifang ZHAI
华中农业大学计算机科学与技术系
物体方向可由最小二阶矩轴定义

数字图像处理课件8

数字图像处理课件8
1 2
f ( x + 1, y ) −
其中,f(x,y)是具有整数像素坐标的输入图 像。其中的平方根运算使该处理类似于人类视觉 系统中发生的过程。
Sobel边缘算子
两个卷积核形成了Sobel边缘算子。图像中的每 个点都用这两个核做卷积。一个核对通常的垂直 边缘响应最大而另一个对水平边缘响应最大。两 个卷积的最大值作为该点的输出值。运算结果是 一幅边缘幅度图像。
形态学图像处理
§ 1. 集合论术语(Definition)
形态学处理语言中,二值图像B和结构元素S 都是定义在二维笛卡儿网格上的集 合,“1”是这些集合中的元素。 当一个结构元素的原点位移到点(x,y)处 时,我们将其记作。形态学运算的输出是另一个 集合,这个运算可用一个集合论方程来确定。
§ 2. 腐蚀和膨胀(Dilation and Erosion)
8.6.2开运算和闭运算
§ 开运算 :先腐蚀后膨胀的过程称为开运算。它具
有消除细小物体、在纤细点处分离物体、和平滑 较大物体的边界时又不明显改变其面积的作用。 开运算定义为:
B • S = (B ⊗ S ) ⊕ S
§ 闭运算 :先膨胀后腐蚀的过程称为闭运算。它具
有填充物体内细小空洞、连接邻近物体、在不明 显改变物体面积的情况下平滑其边界的作用。闭 运算定义为:
其中定义了一个从原点到线上最近点的向量。这 个向量与该直线垂直。
§ 如果有一组位于由参数确定的直线上的边缘点,
则每个边缘点对应了空间的一条正弦型曲线。所 有这些曲线必交于点,因为这是它们共享的一条 直线的参数。 § 建立一个在空间的二维直方图。对每个边缘点, 我们将给所有与该点的Hough变换(正弦曲线) 对应的空间的直方图方格一个增量。当对所有边 缘点施行完这种操作后,包含的方格将具有局部 最大值。然后对空间的直方图进行局部最大值搜 索可以获得边界线段的参数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Cபைடு நூலகம்apter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
数据冗余的类别
1. 空间冗余2. 时间冗余 3 .信息熵冗余(编码冗余) 4.结构冗余5. 知识冗余 6. 视觉冗余 7 .其它冗余
在数字图像压缩中,3种基本的数据冗余是: • 编码冗余, • 像素间冗余, • 心理视觉冗余。 减少其中1到多种冗余就是数据压缩
Chapter 8 Image Compression
Objective: Subjective = 3:7
Chapter 8 Image Compression
8.2 Image Compression Models
图8.5 通用压缩系统模型 信源编码:消除输入冗余。 信道编码:对源编码的输出加强噪声免疫。
Chapter 8 Image Compression
a
b
Mapper: 减少空间冗余 Quantizer: 减少视觉冗余。不可逆,不失真(熵)编码要省去。 Symbol encoder: 减少编码冗余
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
利用像元值的空间相关可预测
8.1.2 像元间的冗余
c,d直方图分别 对应a,b图, 相同的三峰,
两边是火柴:
计算像元间的 相关性γ可用 P414中的6式。
沿某水平线
等长码有编码冗余, 可用变长码压缩。 但是,变长码还是 不能改变像元间的 相关性。
• 当n2<<n1, CR∞,RD1,表示显著压缩和高度 冗余
• 当n2>>n1, CR0,RD-∞,表示第二组数据比原 始表示包含多得多得数据。这也是通常不希望出 现得数据膨胀。
• 比如CR=10,RD=0.9, 表示第一组数据中有90%的 数据是冗余的。
Chapter 8 Image Compression
数据冗余RD可定义为:
RD= 1 - 1/CR
∈(-∞, 1)
其中:CR= n1/n2, ∈(0, ∞)
Chapter 8 Image Compression
RD= 1 - 1/CR
∈(-∞, 1)
其中:CR= n1/n2, ∈(0, ∞)
• 当n1=n2, CR=1而RD=0,表示相对于第二组数据, 第一种数据表达没有包含冗余数据。
Chapter 8 Image Compression
8.1 基础
数据压缩——表示定量信息所需数据量的减少过程
数据、信息、知识。
比如,不同人讲相同的事件。
数据冗余:是数字图像压缩的中心问题。
这不是抽象的概念,而是可以用数学式子度量的实体:
如果表示相同信息的两组数据所用的信息载体单元数量
分别为n1和n2, 则第一组数据的相对(第二组数据的)
e,f分别反映a,b图像 像元在不同间隔后 灰度的相关程度
Chapter 8 Image Compression
减少像元间冗余
a
的一种方法:
行程编码(RLC)
Run-Length Code
b
p.417,
CR的 计算
c d, nonvisual
Chapter 8 Image Compression
Chapter 8 Image Compression
第8章 图像压缩(图像编码)
• 目的是减少表示数字图像的数据量。 • 去除冗余。 • 35年前,电视传输的带宽压缩; • 60年前,C.E. Shannon等的信息理论发展成
目前的国际图像压缩标准。 • 目前,图像压缩技术被认为是一种“使能
技术”( enabling technology”)。提高图像 分辨率,开发新的电视标准,电视会议、 RS、FAX等。
8.1.1 编码冗余
Code1的二进制平均码长为3; Code1的二进制平均码长 (∑l2pr)为2.7 ;Huffman码
压缩比CR=3/2.7=1.11
Chapter 8 Image Compression
上例压缩的原理: l2 (rk)与pr (rk)成反比
变长编码 Code1不能使其平均码长(∑l2pr)最小,有编码冗余。 数字图像一般都有编码冗余
消除心理视觉冗余会导致数量信息的损失,又称量化。
Chapter 8 Image Compression
量化,不可逆,信息损失
IGS, Improved Gray-Scale quantization
IGS意识到眼睛对边缘特有的敏感性,通过加入伪随机数 来破坏边缘: 伪随机数从邻近像元的低4位获得,加入当前像元灰度值后 才量化。(图像的低bit面很象随机数,见p.89) 低4位的初值为0000,对高4位为1111的像素不加随机数。
Chapter 8 Image Compression
Chapter 8 Image Compression
Chapter 8 Image Compression
0110 1100 0000
0110 1100
1000 1011 1100
1001 0111
1000 0111 0111
1000 1110
1111 0100 1110
1111 0100
Chapter 8 Image Compression
8.1.4 保真度准则
Objective/Subjective Fidelity Criteria Objective:SNR, p.420 Subjective: judged by a group of people
8.1.3视觉冗余
256 128 64 32
16 8 42
在8个比特的灰度值中,每次去掉一个bit面,从左/右?
Chapter 8 Image Compression
8.1.3 Psycho-visual Redundancy
原图256级
16级,2:1 IGC16级,2:1
眼睛对所有视觉信息的响应具有不同的灵敏度。
相关文档
最新文档