初中七年级数学《垂线》同步练习题
人教版数学七年级下册第五章《垂线》真题同步测试6(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试6(含解析)综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释阅卷人一、单选题(共10题;共40分)得分1.(4分)(2023七下·海淀期末)如图,直线AB与CD交于点O,OE⊥AB,若∠AOD=140°,则∠COE的度数为( )A.40°B.50°C.60°D.70°2.(4分)下列四个条件中能判断两条直线互相垂直的有( )①两条直线相交所成的四个角中有一个角是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组相邻的角相等;④两条直线相交所成的四个角中有一组对顶角的和为180°.A.4个B.3个C.2个D.1个∥,DB⊥BC,∠1=40°,则∠2的度数是( )3.(4分)(2022七下·巴彦期末)如图,AB CDA.30°B.40°C.50°D.45°4.(4分)(2020八上·松阳期末)如图,在Rt ABC△中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )A.245B.5C.6D.85.(4分)如图,AB l⊥,BC l⊥,B为垂足,那么A,B,C三点在同一条直线上,理由是( )A.经过直线外一点有且只有一条直线与这条直线平行B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行6.(4分)如图,直线l1∥直线l2,直线l3与直线l1,l2分别相交于点A,点B,AC与BC相交于点C,若AC⊥BC,∠1=∠2,则下列结论正确的个数是( )①∠1+∠3=90°;②∠2+∠4=90°;③∠3=∠4;③∠2=∠4A.1B.2C.3D.47.(4分)如果直线MN外一点A到直线MN的距离是2 cm,那么点A与直线MN上任意一点B所连成的线段AB的长度一定( )A .等于2 cmB .小于2 cmC .大于2 cmD .大于或等于2 cm8.(4分)(2017·承德模拟)如图,AB CD ∥,EF AB ⊥于E ,EF 交CD 于F ,已知∠1=60°,则∠2=( )A .20°B .60°C .30°D .45°9.(4分)直线l 上有A 、B 、C 三点,直线l 外有一点P ,若P A =5cm ,PB =3cm ,PC =2cm ,那么点到直线l 的距离( )A .等于2cmB .小于2cmC .不大于2cmD .大于2cm 且小于3cm10.(4分)(2023九下·沭阳月考)在平面直角坐标系xOy 中,以P (0,−1)为圆心,PO 为半径作圆,M 为⊙P 上一点,若点N 的坐标为(a ,2a +4),则线段MN 的最小值为( )A .√5−1B .2√5+1C .2√5−1D .√5+1阅卷人二、填空题(共8题;共32分)得分11.(4分)(2019七下·老河口期中)如图,已知AB CD ⊥,垂足为点O ,直线EF 经过点O ,若∠1=35°,则∠AOE 的度数为 度.12.(4分)(2022七下·椒江期末)如图,在马路旁有一个村庄,现要在马路l 上设立一个核酸检测点为方便该村村民参加核酸检测,核酸检测点最好设在 处,理由是 .13.(4分)(2021八上·覃塘期末)如图,在 △ABC 中, AB=AC ,D是 BC 边的中点, EF 垂直平分 AB 边,动点P在直线 EF 上,若 BC=12 , S△ABC=84 ,则线段 PB+PD 的最小值为 .14.(4分)如图,在三角形ABC中,∠BCA=90∘,BC=3,AC=4,AB=5,点P是线段AB上的一动点,则线段CP的最小值是 .△中,∠ACB=90°,AC=5,BC=12,D是15.(4分)(2022九下·江岸月考)如图,在Rt ABCAB的中点.E,F分别是直线AC,BC上的动点,∠EDF=90°,则线段EF的最小值为 .⊥,∠1=20°,则∠BOE= 16.(4分)如图,已知直线AB,CD相交于点O,OE平分∠BOD,OF OE°,∠DOF= °,∠AOF= °.17.(4分)(2015七下·深圳期中)已知a,b,c为平面内三条不同直线,若a b⊥,c b⊥,则a与c的位置关系是 .△中,∠ABC=90°,AB=BC,直线l1、l2、l3分别18.(4分)(2017八下·无棣期末)如图,Rt ABC△的面积为 通过A、B、C三点,且l1l∥2l∥3.若l1与l2的距离为4,l2与l3的距离为6,则Rt ABC.第Ⅱ卷 主观题第Ⅱ卷的注释阅卷人三、作图题(共4题;共36分)得分19.(4.5分)按要求画图:∥交DC于E;①作BE AD∥交DC的延长线于F;②连接AC,作BF AC⊥于G.③作AG DC20.(4.5分)(2022七下·法库期中)在如图所示的正方形网格中,有两条线段AB和BC(点A,B,C均在格点上),请按要求画图.( 1 )过点A画出BC的平行线;( 2 )过点C画出AB的平行线,与(1)中的平行线交于点D;( 3 )过点D画AB的垂线,垂足为E.21.(13.5分)(2019·汕头模拟)如图,已知△ABC,按要求作图.(1)(4.5分)过点A作BC的垂线段AD;(2)(4.5分)过C作AB、AC的垂线分别交AB于点E、F;(3)(4.5分)AB=15,BC=7,AC=20,AD=12,求点C到线段AB的距离. 22.(13.5分)(2023七下·宿迁期中)如图,每个小正方形的边长均为1个单位长度,每个小正方形的顶点叫做格点.请利用网格点和直尺,完成下列各题:(1)(4.5分)画出△ABC中AB边上的中线CD,AC边上的高线BE;(2)(4.5分)将△ABC先向左平移4个单位长度,再向上平移3个单位长度,请在图中画出平移后的△A1B1C1;(3)(4.5分)△ABC的面积是 .阅卷人四、综合题(共3题;共42分)得分23.(11分)(2017·兰州)在数学课本上,同学们已经探究过“经过已知直线外一点作这条直线的垂线“的尺规作图过程:已知:直线l和l外一点P求作:直线l的垂线,使它经过点P.作法:如图:⑴在直线l上任取两点A、B;⑵分别以点A、B为圆心,AP,BP长为半径画弧,两弧相交于点Q;⑶作直线PQ.参考以上材料作图的方法,解决以下问题:(1)(5分)以上材料作图的依据是: (2)(6分)已知,直线l和l外一点P,求作:⊙P,使它与直线l相切.(尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)24.(12分)(2016九下·澧县开学考)如图,△ABC是直角三角形,∠ACB=90°.(1)(6分)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.DE 的长.(2)(6分)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求 ^25.(19分)(2021八上·攀枝花期中)小孟同学将等腰直角三角板ABC(AC=BC)的直角顶点C 放在一直线m上,将三角板绕C点旋转,分别过A,B两点向这条直线作垂线AD,BE,垂足为D,E.(1)(6分)如图1,当点A,B都在直线m上方时,猜想AD,BE,DE的数量关系是 ;(2)(6分)将三角板ABC绕C点按逆时针方向旋转至图2的位置时,点A在直线m上方,点B 在直线m下方.(1)中的结论成立吗?请你写出AD,BE,DE的数量关系,并证明你的结论.(3)(7分)将三角板ABC继续绕C点逆时针旋转,当点A在直线m的下方,点B在直线m的上方时,请你画出示意图,按题意标好字母,直接写出AD,BE,DE的数量关系结论.答案解析部分1.【答案】B【解析】【解答】解:∵AOD=140°,∠,∴AOC=180°-AOD=40°⊥,∵OE AB∠,∴AOE=90°∠∠∠,∴COE=AOE-AOC=50°故答案为:B.∠,再根据垂线的定义求出∠AOE=90°,最【分析】根据邻补角的定义先求出AOC=180°-AOD=40°后计算求解即可。
人教版数学七年级下册第五章《垂线》真题同步测试1(含解析)

人教版数学七年级下册第五章《垂线》真题同步测试1(含解析)综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释阅卷人一、单选题(共10题;共40分)得分1.(4分)(2018七下·桐梓月考)若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线l的距离 ( )A.等于3 cm B.大于3 cm而小于4 cm ;C.不大于3 cm D.小于3 cm2.(4分)点P为直线m外一点,点A,B,C为直线m上三点,PA=5cm,PB=6cm,PC=3cm,则点P到直线m的距离为( )A.小于3cm B.5cm C.3cm D.不大于3cm 3.(4分)(2023七下·定兴期末)如图,生活中,有以下两个现象,对于这两个现象的解释,正确的是( )A.两个现象均可用两点之间线段最短来解释B.现象1用垂线段最短来解释,现象2用经过两点有且只有一条直线来解释C.现象1用垂线段最短来解释,现象2用两点之间线段最短来解释D.现象1用经过两点有且只有一条直线来解释,现象2用垂线段最短来解释4.(4分)(2021·裕华模拟)如图,沿笔直小路DE的一侧栽植两棵小树B,C,小明在A处测得AB =5米,AC=7米,则点A到DE的距离可能为( )A.4米B.5米C.6米D.7米⊥,垂足为点O.若5.(4分)(2023七下·遵义月考)如图,直线AB、CD相交于点O,OE CD∠BOE=50°,则∠AOC= ( )A.140°B.50°C.60°D.40°6.(4分)(2021七下·舞阳期末)如图, AB/¿CD , EF⊥AB 于点 E , EF 交 CD 于点 F , EM 交 CD 于点 M ,已知 ∠1=55° ,则 ∠2=¿ ( )A.55°B.35°C.125°D.45°7.(4分)(2019七下·巴南期中)若点 P 为直线 l 外一定点,点 A 为直线 l 上一定点,且P A=2 ,点 P 到直线 l 的距离为 d ,则 d 的取值范围为( )A.0<d<2B.d=2 或 d>2C.0<d<2 或 d=0D.0<d<2 或 d=28.(4分)(2020八上·禹州期中)如图,四边形 ABCD 中, ∠A=90° , AD=3 ,连接 BD ,BD⊥CD ,垂足是D且 ∠ADB=∠C ,点P是边 BC 上的一动点,则 DP 的最小值是( )A .3B .2C .1.5D .19.(4分)(2022七下·赵县月考)在如下所示的条件中,可以判断两条直线互相垂直的是( )①两直线相交所成的四个角都是直角;②两直线相交,对顶角互补;③两直线相交所成的四个角都相等.A .①②B .①③C .②③D .①②③10.(4分)如图,PO OR ⊥,OQ PR ⊥,则点O 到PR 所在直线的距离是线段 的长.( )A .POB .ROC .OQD .PQ阅卷人二、填空题(共8题;共32分)得分11.(4分)(2018七下·龙岩期中)如图,为了把河中的水引到 C 处,可过点 C 作 CD ⊥AB 于D ,然后沿 CD 开渠,这样做可使所开的渠道最短,这种设计的依据是 .12.(4分)如果两条直线相交成 ,那么这两条直线互相垂直.其中一条直线叫做另一条直线的垂线.互相垂直的两条直线的交点叫做 .13.(4分)(2021七下·宣汉期末)如图,直线AB ,CD 相交于点O ,OE CD. ⊥若∠1= 40°,则∠BOE 的大小是 .14.(4分)如图,AO OC ⊥,DO OB ⊥,∠AOD=61°,则∠BOC= °.15.(4分)(2023七下·永吉期末)如图,在△ABC 中,D 为线段BC 上一动点,当∠ADB =90°时,在线段AB ,AC ,AD 中,线段AD 最短,理由是 .16.(4分)(2019八下·诸暨期中)如图,在Rt ABC △中,∠BAC=90°,AB=3,AC=4,点P 为BC 边上一动点,PE AB ⊥于点E ,PF AC ⊥于点F ,连结EF ,点M 为EF 的中点,则AM 的最小值为 . 17.(4分)(2021九上·秦都月考)如图,点P 是 Rt △ABC 中斜边 AC (不与A ,C 重合)上一动点,分别作 PM ⊥AB 点M ,作 PN ⊥BC 于点N ,点O 是 MN 的中点,若 AB =6 ,BC =8 ,当点P 在 AC 上运动时,则 BO 的最小值是 .18.(4分)(2023九下·大冶月考)如图,在矩形ABCD 中,AB =7,BC =7√3,点P 在线段BC 上运动(含B 、C 两点),连接AP ,将线段AP 绕着点A 逆时针旋转60°得到AQ ,连接DQ ,则线段DQ 的最小值为 .第Ⅱ卷 主观题第Ⅱ卷的注释阅卷人三、解答题(共4题;共36分)得分19.(9分)如图所示,已知AO BC ⊥于O ,DO OE ⊥,∠1=65°,求∠2的度数.20.(9分)(2021七下·黄陂期中)在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,在三角形ABC 中,已知∠ADE =∠B.1∠=∠2,FG AB ⊥于点G ,求证:CD AB.⊥证明:∵∠ADE =∠B (已知),∴DE ∥ ▲ ( ),∴∠1= ▲ ( ),又∵∠1=∠2(已知),∴ ▲ = ▲ (等量代换),∴CD ∥ ▲ ( ).∵FG AB ⊥(已知),∴∠FGB =90°(垂直的定义),即∠CDB =∠FGB =90°,∴CD AB ⊥(垂直的定义).21.(9分)如图所示,直线AB 与CD 交于点O ,MO AB ⊥,垂足为O ,ON 平分∠AOD .若∠COM=50°,求∠AON 的度数.22.(9分)(2022七下·静安期中)如图,已知∠ED B +B= 180°∠,∠1=2∠,GF AB ⊥,请填写CD AB ⊥的理由解:因为∠ED B +B= 180°∠( )所以 ▲ ∥ ▲ ()所以∠1=3∠( )因为 ▲ = ▲ ( 已 知 )所以∠2=3∠( 等量代换 )所以 ▲ ∥ ▲ ()所以∠FGB=CDB ∠( )因为GF AB ⊥(已 知 )所以∠FGB=90° ( )所以∠CDB =90°( )所以CD AB ⊥( 垂直的意义 )阅卷人四、综合题(共3题;共42分)得分23.(14分)(2016八上·高邮期末)如图,△ABC 中,AB=AC ,AD BC ⊥,CE AB ⊥,AE=CE .求证:(1)(7分)△AEF CEB ≌△;(2)(7分)AF=2CD .24.(14分)如图,直线AB 与CD 相交于点O ,射线OF ,OD 分别是∠AOE ,∠BOE 的角平分线.(1)(3分)请写出∠EOF 的所有余角: ;(2)(3分)请写出∠DOE 的所有补角: ;(3)(4分)若∠AOC= 16 FOB ∠,求∠COE 的度数;(4)(4分)试问射线OD 与OF 之间有什么特殊的位置关系?为什么?25.(14分)(2021九上·朝阳期末)对于平面直角坐标系xOy 中的图形M 和点P 给出如下定义:Q 为图形M 上任意一点,若P ,Q 两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P 为图形M 的“二分点”.已知点N (3,0),A (1,0),B (0,√3),C (√3,−1).(1)(8分)①在点A,B,C中,线段ON的“二分点”是 ;②点D(a,0),若点C为线段OD的“二分点”,求a的取值范围;(2)(6分)以点O为圆心,r为半径画圆,若线段AN上存在⊙O的“二分点”,直接写出r的取值范围.答案解析部分1.【答案】C【解析】【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故答案为:C.【分析】因为直线外一点到直线的距离,垂线段最短,所以PC的长不会大于3.2.【答案】D【解析】【分析】点P到直线m的距离即为点P到直线m的垂线段的长度,是点P到直线m上各点的连线段中,长度最小的线段.【解答】由图可知,PC长度为3cm,是最小的,则点P到直线m的距离小于或等于3cm,即不大于3cm.故选D.3.【答案】C【解析】【解答】解:现象1:可用“垂线段最短”进行解释;现象2:可用“两点之间,线段最短”进行解释;故答案为:C.【分析】根据垂线段最短解释现象1,根据两点之间,线段最短解释现象2.4.【答案】A【解析】【解答】解:过点A作AM⊥DE,∵AB=5米,AC=7米,∴根据垂线段最短得出AM<AB=5,故答案为:A【分析】根据点到直线的距离的定义和垂线段最短即可得到结论。
人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)(7)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.如图,以A为公共端点的两条线段AB、AC互相垂直,点B、D、C在同一条直线上,AD⊥BC,则图形中能表示点到直线的距离的线段有( )条.A.6 B.5 C.4 D.32.到直线a的距离等于2㎝的点有()个A.0个B.1个C.无数个D.无法确定3.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,下列说法不正确的是()A.点A到BC的垂线段为AD B.点C到AD的垂线段为CDC.点B到AC的垂线段为AB D.点D到AB的垂线段为BD4.下列语句叙述正确的有( )①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个 B.1个 C.2个 D.3个5.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度6.下列说法中正确的是()A.有且只有一条直线与已知直线垂直;B.从直线外一点到这条直线的垂线段,叫做这点到这条直线距离;C.互相垂直的两条线段一定相交;D.直线l外一点A与直线l上各点连接而成的所有线段中,最短线段的长度是3cm,则点A 到直线l的距离是3cm.7.如图是小希同学跳远时沙坑的示意图,测量成绩时先用皮尺从后脚印的点A处垂直拉至起跳线l的点B处,然后记录AB的长度,这样做的理由是()A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线8.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35° B.40° C.45° D.60°9.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是().A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短二、填空题1.如图,BC⊥AC,CB=8 cm,AC=6 cm,点C到AB的距离是4.8 cm,那么点B到AC的距离是____ cm,点A到BC的距离是____ cm,A,B两点间的距离是____ cm.2.如图,AB⊥l 1,AC⊥l 2,垂足分别为B ,A ,则A 点到直线l 1的距离是线段__的长度.3.如图,直线AB CD ,相交于点,O EO AB ⊥.重足为35,O EOC ∠=︒,则AOD ∠的度数为__________度4.已知OA⊥OC 于O ,∠AOB∶∠AOC=2∶3,则∠BOC 的度数为____________度.5.如图,直线a 与b 相交于点O ,直线c⊥b,且垂足为O ,若∠1=35°,则∠2=_____.三、解答题1.如图,已知直线a ,b ,点P 在直线a 外,在直线b 上,过点P 分别画直线a ,b 的垂线.2.如图,按要求画图并回答相关问题:(1)过点A 画线段BC 的垂线,垂足为D ;(2)过点D 画线段..DE∥AB,交AC 的延长线于点E ;(3)指出∠E 的同位角和内错角.3.如图所示,点P 是∠ABC 内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?4.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)⊥于点O.5.如图,己知90∠=,过点O作直线CD,作OE CDAOB()1图中除了直角相等外,再找出一对相等的角,并证明它们相等;()2若70∠的度数;∠=,求BOCAOD()3将直线CD绕点O旋转,若在旋转过程中,OB所在的直线平分DOE∠的∠,求此时AOD度数.参考答案一、单选题1.B分析:根据点到直线距离的定义进行解答即可.详解:解:∵AB、AC互相垂直,AD⊥BC,∴线段AB的长度是点B到直线AC的距离;线段AC的长度是点C到直线AB的距离;线段AD的长度是点A到直线BC的距离;线段CD的长度是点C到直线AD的距离;线段BD的长度是点B到直线AD的距离.∴图形中能表示点到直线的距离的线段有5条.故选:B.点睛:本题考查了点到直线的距离的定义,即直线外一点到直线的垂线段的长度,叫做点到直线的距离,熟知概念是关键.2.C解析:详解:解:到直线a的距离等于2的点的轨迹是与a平行,且到a的距离等于2的两条直线,直线是由无数个点组成.故选C.3.D解析:A. 点A到BC的垂线段为AD,正确; B. 点C到AD的垂线段为CD,正确;C. 点B到AC的垂线段为AB,正确;D. 点B到AD的垂线段为BD.故选D.4.B解析:试题①如果两个角有公共顶点且它们的两边互为反向延长线,那么这两个角是对顶角;故错误.②如果两个角相等,那么这两个角是对顶角;错误.③连接两点的线段长度叫做两点间的距离;正确.④直线外一点到这条直线的垂线段的长度叫做这点到直线的距离.错误.故选B.5.B解析:由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.6.D解析:对照垂线的两条性质逐一判断.①从直线外一点引这条直线的垂线,垂线段最短;②过一点有且只有一条直线与已知直线垂直.详解:解:A、和一条直线垂直的直线有无数条,故A错误;B、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度,故B错误;C、互相垂直的两条线段不一定相交,线段有长度限制,故C错误;D、直线l外一点A与直线l上各点连接而成的所有线段中最短线段就是垂线段,可表示点A 到直线l的距离,故D正确.故选:D.点睛:本题考查的是垂线的相关定义及性质,只要记住并理解即可正确答题.7.C分析:根据“垂线段的性质:垂线段最短”解答即可.详解:这样做的理由是垂线段最短.故选C.点睛:本题考查了垂线段最短.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.8.A解析:试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.9.B解析:利用OM⊥NP,ON⊥NP,所以直线ON与OM重合,其理由是:同一平面内,经过一点有且只有一条直线与已知直线垂直.故选B.二、填空题1.6 10解析:∵BC⊥AC,CB=8cm, AC=6cm,∴点B到AC的距离是8cm,点A到BC的距离是6cm,故答案为8,6,10.2.AB详解:解:根据点到直线的距离的定义,易得A点到直线l的距离是线段AB的长度.1故答案为:AB.3.125分析:根据垂直的定义及角的加法,求出∠BOC的度数,根据对顶角相等求解即可.详解:⊥∵EO AB∴∠EOB=90°∵∠EOC=35°∴∠BOC=∠EOB+∠EOC=125°∴∠AOD=∠BOC =125°故答案为:125点睛:本题考查的是垂直的定义及角的加减,掌握垂直的定义及能从图形中确定角之间的关系是关键.4.30°或150°分析:根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.详解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=3:2,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.如图,①当在∠AOC内时,∠BOC=90°-60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故答案为30°或150°.点睛:此题主要考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直.同时做这类题时一定要结合图形.5.55°解析:如下图,∵直线a、b、c相交于点O,且c⊥b,∴∠1+∠2+3∠=180°,∠3=90°,又∵∠1=35°,∴∠2=180°-35°-90°=55°.故答案为55°.三、解答题1.图形见解析.分析:根据过直线外一点作已知直线的垂线和过直线上一点作已知直线的垂线分别画出即可详解:解:如答图所示,PA为直线a的垂线,PB为直线b的垂线.点睛:垂线的作法是本题的考点,熟练掌握作图方法是解题的关键.2.(1)见解析(2)见解析(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.解析:(1)如图,过A点作AD⊥BD与BC的延长线交于D点即可;(2)如图,过D点作DE∥AB与AC的延长线交于E点即可;(3)根据同位角与内错角的定义进行解答即可.详解:(1)(2)如图所示.(3)∠E的同位角是∠ACD,∠E的内错角是∠BAE和∠BCE.点睛:本题主要考查基础作图,同位角与内错角的定义,熟练掌握其知识点是解此题的关键.3.(1)图形见解析(2)∠EPF=∠B解析:试题分析:(1)①过点P作BC的垂线,D是垂足;②过点P作BC的平行线交AB于E ,过点P 作AB 的平行线交BC 于F ;(2)根据平行线的性质可得∠AEP=∠B,∠EPF=∠AEP 然后利用等量代换得到结论即可. 解:如图所示,(1)①直线PD 即为所求;②直线PE 、PF 即为所求.(2)∠EPF=∠B,理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),∠EPF=∠B(等量代换).点睛:本题考查了平行线和垂线的画法及平行线的性质,熟练掌握两直线平行同位角相等,两直线平行内错角相等是解答本题的关键.4.详见解析.解析:试题分析:(1)过点C 作AB 的平行线.(2)过点C 作CD 垂直于AB 交AB 于点D .根据垂线段最短,可得CD 长度最小,量出CD 的长度,然后按比例尺求出实际的距离. 试题如图:(1)过点C 画一平行线平行于AB .(2)过点C 作CD 垂直于AB 交AB 于点D .然后用尺子量CD 的长度,再按1:2000的比例求得实际距离即可.经测量0.9,CD cm =0.92000180018.cm m ⨯==5.(1)AOD BOE ∠=∠;(2)160BOC ∠=;(3)45AOD ∠=.解析:(1)根据垂直定义可得∠DOB+∠BOE=90°,再根据同角的余角相等可得∠AOD=∠BOE;(2)根据余角定义可得∠BOD=20°,再根据邻补角互补可得∠BOC 的度数;(3)根据角平分线性质可得∠DOB=12∠DOE=45°,再根据角的和差关系可得答案.详解:解:()1AOD BOE∠=∠,∵OE CD⊥于点O,∴90DOB BOE∠+∠=,∵90AOB∠=,∴90AOD DOB∠+∠=,∴AOD BOE∠=∠;()2∵70AOD∠=,90AOB∠=,∴20BOD∠=,∴18020160BOC∠=-=;()3∵OB所在的直线平分DOE∠,∴1452DOB DOE∠=∠=,∵90AOB∠=,∴904545AOD∠=-=.点睛:此题主要考查了垂线,以及余角,补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.。
湘教版数学七年级下册_《第2课时垂线的性质》同步练习

《垂线的性质》同步练习一、选择题(本大题5个小题,每小题6分,共30分)1.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A.3 B.3.5 C.4 D.52.如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是()A.两点之间线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线3.下列图形中,通过测量线段AB的长可以知道点A到直线l的距离的是()A.B.C.D.4.若P为直线l外一定点,A为直线l上一点,且PA=3,d为点P到直线l的距离,则d的取值范围为()A.0<d<3 B.0≤d<3 C.0<d≤3 D.0≤d≤35.如图所示,∠BAC=90°,AD⊥BC,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥AD+BD>AB.A.2个B.3个C.4个D.5个二、填空题(本大题5个小题,每小题6分,共30分)6.自来水公司为某小区A改造供水系统,如图沿路线AO铺设管道和BO主管道衔接(AO ⊥BO),路线最短,工程造价最低,根据是.7.如图,想在河堤两岸搭建一座桥,图中四种搭建方式PA,PB,PC,PD中,最短的是.8.如图,△ABC中,CD⊥AC,CE⊥AB,垂足分别是C、E,那么点C到线段AB的距离是线段的长度.9.如图,BC⊥AC,CB=8cm,AC=6cm,AB=10cm,那么点B到AC的距离是cm,点A到BC的距离是cm,C到AB的距离是cm.10.如图,CD⊥AB,点E、F在AB上,且CE=10cm,CD=8cm,CF=12cm,则点C到AB的距离是.三、综合题(第11题12分,第12题12分,第13题16分,共40分)11.如图,要把水渠中的水引到C点,在渠岸AB的什么地方开沟,才能使沟最短?画出图形,并说明理由.12.已知:点P是直线MN外一点,点A、B、C是直线MN上三点,分别连接PA、PB、PC.(1)通过测量的方法,比较PA、PB、PC的大小,直接用“>”连接;(2)在直线MN上能否找到一点D,使PD的长度最短?如果有,请在图中作出线段PD,并说明它的理论依据;如果没有,请说明理由.13.如图,P是∠AOB的边OB上一点.(1)过点P画OA的垂线,垂足为H;(2)过点P画OB的垂线,交OA于点C;(3)点O到直线PC的距离是线段的长度;(4)比较PH与CO的大小,并说明理由.试题解析一.选择题1.A【分析】根据垂线段的性质,可得答案.【解答】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5,故选:A.【点评】本题考查了垂线短的性质,利用垂线段的性质是解题关键.2.C【分析】根据垂线段的性质:垂线段最短进行解答即可.【解答】解:这样做的理由是根据垂线段最短.故选:C.【点评】此题主要考查了垂线段的性质,关键是掌握性质定理.3.C【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离的概念判断.【解答】解:表示点A到直线l的距离的是C选项图形.故选:C.【点评】本题考查了点到直线的距离的概念,是基础题,熟记概念并准确识图是解题的关键.4.C【分析】根据垂线段最短即可求出答案.【解答】解:由垂线段最短可知:0<d≤3,当d=3时此时PA⊥l故选:C.【点评】本题考查点的直线的距离,解题的关键是熟练运用垂线段最短,本题属于基础题型.5.C【分析】根据点到直线的距离,垂直的定义,三角形三边的关系,可得答案.【解答】解:由∠BAC=90°,AD⊥BC,得AB⊥AC,故①正确;AD与AC不垂直,故②错误;点C到AB的垂线段是线段AC的长,故③错误;点A到BC的距离是线段AD的长度,故④正确;线段AB的长度是点B到AC的距离,故⑤正确;AD+BD>AB,故⑥正确;故选:C.【点评】本题考查了点到直线的距离,利用点到直线的距离,垂直的定义,三角形三边的关系是解题关键.二.填空题6.垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:根据是:直线外一点与直线上各点连接而得到的所有线段中,垂线段最短.故答案为:垂线段最短.【点评】此题主要考查垂线段最短在实际生活中的应用.7.PC.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短,据此作答.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∵PC⊥AD,∴PC最短.故答案为:PC.【点评】此题主要考查了垂线段最短,掌握从直线外一点到这条直线上各点所连的线段中,垂线段最短是解题关键.8.CE.【分析】根据点到直线的距离的定义,找出点C到AB的垂线段即可.【解答】解:如图,∵CE⊥AB,垂足是E,∴点C到线段AB的距离是线段CE的长度.故答案为:CE.【点评】本题考查了点到直线的距离的定义,点到直线的距离就是这个点到这条直线的垂线段的长度.9. 4.8cm.【分析】过点C作CD⊥AB于点D,则线段BC的长即为点B到AC的距离,再根据三角形的面积公式求出CD的长;再根据点到直线距离的定义即可得出结论.【解答】解:如图,过点C作CD⊥AB于点D,则线段CD的长即为点B到AC的距离,∵BC⊥AC,CB=8cm,AB=10cm,AC=6cm,∴CD=6×8÷10=4.8cm,点A到BC的距离是6cm,点B到AC的距离是8cm.故答案为:8,6、4.8.【点评】本题考查了点到直线的距离,是基础题,熟记点到直线的距离的定义是解题的关键.10.8cm.【分析】根据点到直线的距离是垂线段的长度,可得答案.【解答】解:∵CD⊥AB,点E、F在AB上,CD=8cm,∴点C到AB的距离是CD=8cm,故答案为:8cm.【点评】本题考查了点到直线的距离,利用点到直线的距离是垂线段的长度是解题关键.三.综合题11.【分析】根据点到直线的垂线段距离最短解答.【解答】解:如图,过C作CD⊥AB,垂足为D,在D处开沟,则沟最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.【点评】本题考查了垂线的性质在实际生活中的运用,属于基础题.13.【分析】(1)(2)根据题意画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PH、OC的大小关系.【解答】解:(1)作图,(2)作图,(3)OP,故答案为:OP;(4)PH<CO,∵垂线段最短,∴PH<PO,PO<OC,∴PH<CO.【点评】本题考查了垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.也考查了点到直线的距离以及基本作图.。
初中数学同步训练必刷题(人教版七年级下册5

初中数学同步训练必刷题(人教版七年级下册5.1.2 垂线)一、单选题(每题3分,共30分)1.(2022七下·宜春期末)点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=3cm,则点P到直线l的距离为()A.4cm B.5cm C.小于3cm D.不大于3cm【答案】D【知识点】垂线段最短【解析】【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于3cm.故答案为:D.【分析】利用垂线段最短的性质可得答案。
2.(2022七下·江源期末)下列图形中,线段AD的长表示点A到直线BC的距离的是()A.B.C.D.【答案】B【知识点】点到直线的距离【解析】【解答】解:A.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意;B.AD⊥BC于D,则线段AD的长表示点A到直线BC的距离,符合题意;C.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意;D.AD与BC不垂直,故线段AD的长不能表示点A到直线BC距离,不合题意.故答案为:B.【分析】根据点到直线的距离,对每个图形一一判断即可。
3.(2022七下·辛集期末)如图,河道l的同侧有M、N两地,现要铺设一条引水管道,从P地把河水引向M、N两地.下列四种方案中,最节省材料的是()A.B.C.D.【答案】D【知识点】线段的性质:两点之间线段最短;垂线段最短【解析】【解答】解:依据垂线段最短,以及两点之间,线段最短,可得最节省材料的是:故答案为:D.【分析】利用垂线段最短,以及两点之间线段最短求解即可。
4.(2022七下·崇川期末)已知三条射线OA,OB,OC,OA⊥OC,⊥AOB=60°,则⊥BOC等于()A.150°B.30°C.40°或140°D.30°或150°【答案】D【知识点】角的运算;垂线【解析】【解答】解:分两种情况讨论,如图1所示,∵OA⊥OC,∴∠AOC=90°,∵⊥AOB=60°,∴∠BOC=∠AOC−∠AOB=90°−60°=30°;如图2所示,∵OA⊥OC,∴∠AOC=90°,∵⊥AOB=60°,∴∠BOC=∠AOC+∠AOB=90°+60°=150°.综上所述,⊥BOC等于30°或150°.故答案为:D.【分析】分OB在⊥AOC内部和外部两种情况讨论,结合已知的角度,根据角的和差关系求⊥BOC的度数即可.5.(2022七下·迁安期末)如图,在测量跳远成绩的示意图中,直线l是起跳线,则需要测量的线段是()A.AB B.AC C.DC D.BC【答案】C【知识点】垂线段最短【解析】【解答】解:根据垂线段最短可得,需要测量的线段是DC;故答案为:C.【分析】根据垂线段最短可得答案。
人教版数学七年级下册第五章《垂线》真题同步测试3含解析)

人教版数学七年级下册第五章《垂线》真题同步测试3(含解析)一、单选题(共10题;共40分)1.(4分)(2019七下·梁园期末)平面直角坐标系中,点A (﹣3,2),B (1,4),经过点A 的直线L x ∥轴,点C 直线L 上的一个动点,则线段BC 的长度最小时点C 的坐标为( ) A .(﹣1,4)B .(1,0)C .(1,2)D .(4,2)2.(4分)如图,AB BC ⊥,BC CD ⊥,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是 ( )A .是同位角且相等B .不是同位角但相等C .是同位角但不等D .不是同位角也不等3.(4分)给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是( )A .能B .不能C .有的能有的不能D .无法确定4.(4分)(2021七上·普陀期末)如图, OA ⊥OC ,OB ⊥OD ,4位同学观察图形后各自观点如下.甲: ∠AOB =∠COD ;乙: ∠BOC +∠AOD =180° ;丙: ∠AOB +∠COD =90° ;丁:图中小于平角的角有6个;其中正确的结论是( )A .甲、乙、丙B .甲、乙、丁C .乙、丙、丁D .甲、丙、丁5.(4分)(2019八上·海淀月考)如图,△ABC 中,∠C =90°,∠A =30°,AB =4,点P 是AC 边上的动点,则BP 的最小值为( )A .1B .2C .3D .46.(4分)(2021七下·五常期中)下列命题中:①无限小数都是无理数;②内错角相等,两直线平行;③从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离④平方根与立方根相等的数只有0;⑤在一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.其中正确的个数是( )A .2个B .3个C .4个D .5个7.(4分)如图,在四边形ABCD 中,∠BAD=ADC=90°∠,AB=AD=2√2,CD=√2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为32,则点P 的个数为( )A .2B .3C .4D .58.(4分)下列说法错误的个数是( )①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④若a b ∥,b c ∥,则a c ∥.A .、1个B .2个C .3个D .4个9.(4分)(2018·宜昌)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )A .B .C .D .10.(4分)(2016七下·蒙阴期中)如图,AB CD ∥,CD EF ⊥,若∠1=125°,则∠2=( )A .25°B .35°C .55°D .65°二、填空题(共8题;共32分)11.(4分)(2020七下·天台月考)如图,在河的两岸搭建一座桥,搭建方式最短的是PM ,理由是12.(4分)(2023七下·龙江月考)如图所示,直线AB 、CD 相关于点O ,OE ⊥AB 于O ,∠EOD =40°,则∠AOC =¿ .13.(4分)(2023九上·古蔺期末)如图⊙A 的圆心A 的坐标是(−2,0),在直角坐标系中,⊙A 半径为2,P 为直线y =−x +4上的动点过P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 .14.(4分)(2018八上·许昌期末)如图,在△ABC中,AB = AC = 8,S ABC△= 16,点P为角平分线⊥,连接PB,则PB+PE的最小值为 .AD上任意一点,PE AB15.(4分)(2022八上·青田期中)在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是 .16.(4分)(2019七下·上杭期末)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则正确的图形可以是如图中的图 (填甲或乙),你选择的依据是 (写出你学过的一条公理).17.(4分)(2020·上城模拟)如图,在锐角△ABC中,AB=5 √2,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是 .18.(4分)(2021八下·拱墅期中)在Rt ABC △中,∠C =90°,AC =3,BC =4,点N 是BC 边上一点,点M 为AB 边上的动点,点D 、E 分别为CN ,MN 的中点,则DE 的最小值是 .三、解答题(共4题;共36分)19.(9分)(2020七下·北海期末)如图,直线AB ,CD 相交于点O.射线OF CD ⊥于点O ,∠BOF=30°,求∠BOD ,∠AOD 的度数.20.(9分)(2023七下·宣汉月考)如图,AO CO ⊥,BO DO ⊥,∠BOC=43°,求∠AOD 和∠AOB 的度数.21.(9分)如图,AB 和CD 交于O 点,OD 平分∠BOF ,OE CD ⊥于点O ,∠AOC=40°,求∠EOF 的度数.22.(9分)(2019七下·河池期中)如图所示,直线 AB , EF 交于点 O , OD 平分 ∠BOF , CO ⊥EF 于点 O , ∠AOE =70° ,求 ∠COD 的度数四、综合题(共3题;共42分)23.(14分)(2019七下·江门期末)画图题,如图,已知三角形 ABC,AB=5(1)(7分)过点 C 作 CD⊥AB ,点 D 为垂足(2)(7分)在(1)的条件下,若 DB=2 ,求点A到CD的距离24.(14分)(2023七下·乌鲁木齐期中)如图,直线AB,CD相交于点O,EO⊥CD于点O.(1)(7分)若∠AOC=36°,求∠BOE的度数;(2)(7分)若∠BOD:∠BOC=1:5,求∠AOE的度数.⊥.25.(14分)(2020七上·苏州期末)如图所示,直线AB、CD相交于点O,OM AB(1)(7分)若∠1=∠2,判断ON与CD的位置关系,并说明理由;1(2)(7分)若∠1=5 ∠BOC,求∠MOD的度数.答案解析部分1.【答案】C【解析】【解答】解:如图,根据垂线段最短可知,BC AC ⊥时BC 最短.∵A (﹣3,2),B (1,4),AC x ∥轴,∴BC =2,∴C (1,2),故答案为:C.【分析】如图,根据垂线段最短可知,BC AC ⊥时BC 最短;2.【答案】B【解析】【分析】由AB BC ⊥,BC CD ⊥,∠EBC =∠BCF ,即可判断∠ABE 与∠DCF 的大小关系,根据同位角的特征即可判断∠ABE 与∠DCF 的位置关系,从而得到结论。
华东师大版七年级数学上《垂线》同步练习含答案

5.1 2. 垂线一、选择题1.在同一平面内,经过一点能作几条直线与已知直线垂直()A.0条B.1条C.2条D.无数条2.如图K-47-1,OA⊥OB,若∠1=35°,则∠2的度数是()图K-47-1A.35°B.45°C.55°D.70°3.下列说法中错误的是()A.两直线相交,若有一组邻补角相等,则这两条直线垂直B.两直线相交,若有两个角相等,则这两条直线垂直C.两直线相交,若有一组对顶角互补,则这两条直线垂直D.两直线相交,若有三个角相等,则这两条直线垂直4.如图K-47-2,直线l1与l2相交于点O,OM⊥l1.若∠α=44°,则∠β等于()图K-47-2A.56°B.46°C.45°D.44°5.如图K-47-3,已知直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF∶∠BOF=2∶3,则∠AOE的度数为()图K-47-3A.36°B.54° C. 48°D.42°6.如图K-47-4所示,P为直线l外一点,A,B,C三点均在直线l上,并且PB⊥l,有下列说法:①P A,PB,PC三条线段中,PB最短;②线段PB的长度叫做点P到直线l的距离;③线段AB的长度是点A到PB的距离;④线段AC的长度是点A到PC的距离.图K-47-4其中正确的有()A.1个B.2个C.3个D.4个7.P为直线m外一点,A,B,C为直线m上三点,P A=4 cm,PB=5 cm,PC=2 cm,则点P到直线m 的距离()A.等于4 cm B.等于2 cmC.小于2 cm D.不大于2 cm二、填空题8.如图K-47-5所示,OA⊥OC,∠1=∠2,则OB与OD的位置关系是____________.图K-47-59.如图K-47-6,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方向是__________________.图K-47-610.如图K-47-7,AC⊥BC,CD⊥AB,垂足分别是C,D.(1)点C到直线AB的距离是线段________的长度;(2)点B到直线AC的距离是线段________的长度.图K-47-711.如图K-47-8,运动会上,甲、乙两名同学测得小明的跳远成绩分别为DA=4.5米,DB=4.15米,则小明的跳远成绩实际应该为________.图K-47-8三、解答题12.如图K-47-9所示,在这些图形中,分别过点C画直线AB的垂线,垂足为O.图K-47-913.如图K-47-10,已知AO⊥CO,∠COD=40°,∠BOC=∠AOD.试说明OB⊥OD.请完善解答过程,并在括号内填上相应的依据:图K-47-10解:因为AO⊥CO,所以∠AOC=__________(________________________).又因为∠COD=40°(已知),所以∠AOD=________.又因为∠BOC=∠AOD(已知),所以∠BOC=________(__________),所以∠BOD=________,所以________⊥________(____________).14.(1)如图K-47-11甲,小刚准备从C处牵牛到河边AB处饮水,请用三角尺作出小刚的最短路线(不考虑其他因素),并说明理由;(2)如图K-47-11乙,若小刚从C处牵牛到河边AB处饮水,并且必须先到河边D处观察河的水质情况,请作出小刚行走的最短路线,并说明理由.甲乙图K-47-1115.如图K -47-12,直线AB ,CD 相交于点O ,OM ⊥AB ,NO ⊥CD . (1)若∠1=∠2,求∠AOD 的度数;(2)若∠1=14∠BOC ,求∠2和∠MOD 的度数.图K -47-1216.如图K -47-13,射线OC 的端点O 在直线AB 上,OE 平分∠COB ,OD 平分∠AOC ,DO 是否垂直于OE ?请说明理由.图K -47-131.B 2.C 3.B 4.B 5.B 6.C7. D 8.OB ⊥OD 9.北偏西60° 10.(1)CD (2)BC11.4.15米 12.解:如图所示.13. 90° 垂直的定义 50° 50° 等量代换 90° OB OD 垂直的定义14.解:(1)过点C 作AB 的垂线段.理由:直线外一点与直线上各点连结的所有线段中,垂线段最短(画图略).(2)连结CD ,过点D 作AB 的垂线段.理由:两点之间,线段最短;直线外一点与直线上各点连结的所有线段中,垂线段最短(画图略).15.解:∵OM ⊥AB ,NO ⊥CD ,∴∠BOM =∠AOM =∠NOD =∠CON =90°. (1)∵∠1=∠2,∴∠1=∠2=45°,∴∠AOD =180°-∠2=180°-45°=135°, 即∠AOD 的度数是135°.(2)∵∠1+∠BOM =∠BOC ,∠1=14∠BOC ,∴∠1=13∠BOM =30°,∴∠2=90°-∠1=60°.∵∠1+∠MOD =∠COD =180°, ∴∠MOD =180°-∠1=150°. 16.解:DO ⊥OE.理由: 因为OE 平分∠COB , 所以∠COE =12∠COB.因为OD 平分∠AOC , 所以∠DOC =12∠AOC ,所以∠DOE =∠COE +∠DOC =12∠COB +12∠AOC =12(∠COB +∠AOC)=12∠AOB.因为∠AOB 是平角,所以∠DOE =12×180°=90°,所以DO ⊥OE.。
七年级数学下册《垂线》练习题及答案

七年级数学下册《垂线》练习题及答案一、选择题1.下面说法中错误的是()A.两条直线相交,有一个角是直角,则这两条直线互相垂直B.若两对顶角之和为1800,则两条直线互相垂直C.两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D.两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直2.如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个3.如图所示,直线EO⊥CD,垂足为点O,AB平分⊥EOD,则⊥BOD的度数为()A.120°B.130°C.135°D.1404.点P为直线外一点,点A、B、C为直线上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线的距离为()A.4cm B.5cm C.小于2cm D.不大于2cm5.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①⊥AOB=⊥COD;②⊥AOB+⊥COD=90°;③⊥BOC+⊥AOD=180°;④⊥AOC-⊥COD=⊥BOC.A.①②③B.①②④C.①③④D.②③④6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若⊥1=26°,则⊥2的度数是(⊥).A.26°B.64°C.54°D.以上答案都不对7.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段的长度就是点到直线的距离8.如图所示,⊥BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC; ②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC的距离; ⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个9.如图,直线AB,CD相交于点O,射线OM平分⊥AOC,ON⊥OM,若⊥AOM=35°,则⊥CON的度数为()A.35°B.45°C.55°D.65°10.已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C⊥为顶点的三角形的面积为1个平方单位,则C 点的个数为().A.3个B.4个C.5个D.6个11.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.12.下列语句正确的是()A.两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B.两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C.两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D.两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直13.过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情况都有可能14.如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A.线段AC的长B.线段AD的长C.线段BC的长D.线段BD的长15.如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A.两点确定一条直线B.经过一点有且只有一条直线和已知直线垂直C.过一点只能作一条垂线D.垂线段最短16.当两条直线相交所成的四个角中,叫做这两条直线互相垂直,其中的一条直线叫,它们的交点叫.17.过直线上或直线外一点,与已知直线垂直.18.如图所示,若AB⊥CD于O,则⊥AOD=;若⊥BOD=90°,则AB CD.19.如图所示,已知AO⊥BC于O,那么⊥1与⊥2.20.如果CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为.21.如图,已知A,O,E三点在一条直线上,OB平分⊥AOC,⊥AOB+⊥DOE=90°,试问:⊥COD 与⊥DOE之间有怎样的关系?说明理由.-com22.如图,⊥1=30°,AB⊥CD,垂足为O,EF经过点O.求⊥2、⊥3的度数.23.如图,直线AB与CD相交于点O,OP是⊥BOC的平分线,OE⊥AB,OF⊥CD(1)图中除直角外,还有相等的角吗?请写出两对:①;②.(2)如果⊥AOD=40°,则①⊥BOC=;②OP是⊥BOC的平分线,所以⊥COP=度;③求⊥BOF的度数.24.如图,已知⊥AOB,OE平分⊥AOC,OF平分⊥BOC.(1)若⊥AOB是直角,⊥BOC=60°,求⊥EOF的度数;(2)猜想⊥EOF与⊥AOB的数量关系;(3)若⊥AOB+⊥EOF=156°,则⊥EOF是多少度?25.直线AB、CD相交于点O.OE、OF分别是⊥AOC、⊥BOD的平分线.(1)画出这个图形.(2)射线OE、OF在同一条直线上吗?(3)画⊥AOD的平分线OG.OE与OG有什么位置关系?并说明理由.参考答案1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】C6.【答案】B7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】C12.【答案】C13.【答案】D14.【答案】D15.【答案】B16.【答案】有一个直角;另一条直线的垂线;垂足17.【答案】有且只有一条直线18.【答案】90°;⊥19.【答案】互余20.【答案】在同一平面内,过一点有且只有一条直线与已知直线垂直21.【答案】相等,理由:⊥AOB+⊥DOE=90°,且A、O、E三点共线,所以⊥BOC+⊥COD=90°.因为OB平分⊥AOC,所以⊥AOB=⊥BOC,通过等量代换,可以得知⊥COD与⊥DOE相等.22.【答案】∵⊥1与⊥3是对顶角∴⊥1=⊥3,因为⊥1=30°∴⊥3=30°.∵AB⊥CD∴⊥BOD=90°∵⊥2+⊥3=⊥BOD∴⊥2=90°-⊥3=60°.23.【答案】(1)⊥AOD=⊥BOC;⊥BOP=⊥COP(2)40°;20°;50°24.【答案】(1)∵⊥AOC=⊥AOB+⊥BOC,∴⊥AOC=90°+60°=150°.∵OE平分⊥AOC,∴⊥EOC =150°÷2=75°.∵OF平分⊥BOC,∴⊥COF=60°÷2=30°.∵⊥EOC=⊥EOF+⊥COF,∴⊥EOF=75°-30°=45°.(2)∵OE平分⊥AOC,OF平分⊥BOC.∴⊥COE=⊥AOC,⊥COF=⊥BOC∵⊥AOB=⊥AOC-⊥BOC∴⊥EOF=⊥COE-⊥COF=⊥AOC-⊥BOC=(⊥AOC-⊥BOC)=⊥AOB(3)∵OE平分⊥AOC,OF平分⊥BOC,∴⊥COE=⊥AOC,⊥COF=⊥BOC∴⊥EOF=⊥AOC-⊥BOC=(⊥AOC-⊥BOC)=⊥AOB.又∵⊥AOB+⊥EOF=156°∴⊥EOF=52°.25.【答案】(1)如图:(2)射线OE、射线OF在同一条直线上.理由如下:∵直线AB、CD相交于点O,∴⊥AOC=⊥BOD,⊥AOC+⊥AOD=180°,∵OE、OF分别是⊥AOC、⊥BOD的平分线,∴⊥AOE=12⊥AOC,⊥DOF=12⊥BOD ∴⊥AOE=⊥DOF,∴⊥AOE+⊥DOF=⊥AOC,∴⊥AOE+⊥DOF+⊥AOD=180°,∴射线OE、射线OF在同一条直线上;(3)如图OE⊥OG.理由如下:∵OG平分⊥AOD,∴⊥AOG=⊥DOG,∵⊥AOE=⊥DOF,⊥AOE+⊥DOF+⊥AOD=180°,∴⊥AOE+⊥AOG=90°,∴OG⊥OE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.2《垂线》同步练习题(3)
知识点:
1、垂直:因为∠AOC,所以AB⊥CD
2、过一点有且只有一条直线与已知直线垂直
3、垂线段最短
4、点到直线的距离:直线外一点到已知直线的垂线段的长度
同步练习:
一、选择题:(每小题3分,共18分)
1.如图1所示,下列说法不正确的是( )
A.点B到AC的垂线段是线段AB;
B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段;
D.线段BD是点B到AD的垂线段
D C
B A
D
C
B
A
O D
C
A
(1) (2) (3)
2.如图1所示,能表示点到直线(线段)的距离的线段有( )
A.2条
B.3条
C.4条
D.5条
3.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,过一点可以任意画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个
B.2个
C.3个
D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=a cm, BC=b cm,则BD的范围是( )
A.大于a cm
B.小于b cm
C.大于a cm或小于b cm
D.大于b cm且小于a cm
5.到直线L的距离等于2cm的点有( )
A.0个
B.1个;
C.无数个
D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直
线m的距离为( )
A.4cm
B.2cm;
C.小于2cm
D.不大于2cm
二、填空题:(每小题3分,共12分)
1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠
_______=∠_______=∠_______=90°.
2.过一点有且只有________直线与已知直线垂直.
3.画一条线段或射线的垂线,就是画它们________的垂线.
4.直线外一点到这条直线的_________,叫做点到直线的距离.
三、训练平台:(共15分)
如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.
G
O
F
E
D
C
B
A
四、提高训练:(共15分)
如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.
五、探索发现:(共20分)
如图6所示,O 为直线AB 上一点,∠AOC=
1
3
∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.
O
D
C B
A
六、中考题与竞赛题:(共20分)
(2001.杭州)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.
N
B
A
答案:
一、1.C 2.D 3.C 4.D 5.C 6.D
二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°
四、解:如图3所示.
l
A
l
五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,
∴1
3
∠BOC+∠BOC=180°,
∴4
3
∠BOC=•180°,
∴∠BOC=135°,∠AOC=45°,
又∵OC是∠AOD的平分线,
∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,
∴OD⊥AB.
六、解:如图4所示.
N
A。