2016年北京市怀柔区中考二模数学试题(图片版)

合集下载

轴对称图形习题及详细解答

轴对称图形习题及详细解答

轴对称图形习题及详细解答一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):,这条性质可用符号表示为:;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.28.(2016春•安岳县期末)等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.29.(2016春•西藏校级期末)如图,在△ABC 中,AB=AC,点D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F.(1)求证:点O在AB的垂直平分线上;(2)若∠CAD=20°,求∠BOF的度数.30.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.参考答案与试题解析一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【分析】先证明△DEC是等边三角形,再在RT △DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C 重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D 的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF 为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F 与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)由(1)得四边形CEGD是菱形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.【点评】本题考查了翻折变换﹣折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.【分析】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG 即可.【解答】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【点评】本题考查了角平分线的性质;综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.【分析】结合已知条件,根据全等三角形的判定定理,推出△POD≌△POE即可.【解答】证明:∵OC是∠AOB的平分线,∴∠POD=∠POE,∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD与△POE中,,∴△POD≌△POE,∴PD=PE.【点评】本题主要考查了全等三角形的判定和性质、角平分线的性质,解题的关键在于找到对应角相等、公共边.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.【分析】由AD是△ABC的角平分线,DE⊥AB,DF⊥AC,根据角平分线的性质,可得DE=DF,∠BED=∠CFD=90°,继而证得Rt△BED≌Rt △CFD,则可得∠B=∠C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC,∵AD是△ABC的角平分线,∴AD是BC的中垂线.【点评】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.注意掌握三线合一性质的应用.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.【分析】根据线段垂直平分线的性质得出AE=BE,再由直角三角形的性质即可得出结论.【解答】证明:∵DE是线段AB的垂直平分线,∴AE=BE,∠ADE=90°,∴∠EAB=∠B.在Rt△ABC中,∵∠C=90°,∴∠CAB+∠B=90°.在Rt△ADE中,∵∠ADE=90°,∴∠AED+∠EAB=90°,∴∠CAB=∠AED.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.【点评】此题考查了等腰三角形的性质、平行线的性质以及角平分线的定义.注意等边对等角定理的应用.11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.CAD,∠ADB=∠ADC=90°,根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF,等量代换即可得到结论.【解答】证明:∵AB=AC,AD是△ABC点的中线,∴∠BAD=∠CAD,∠ADB=∠ADC=90°,∵E是AC的中点,∴DE=AE=EC,∴∠CAD=∠ADE.在Rt△ABD中,∠ADB=90°,∴∠B+∠BAD=90°.∵DF⊥AB,∴∠B+∠BDF=90°,∴∠BAD=∠BDF,∴∠BDF=∠CAD,∴∠BDF=∠ADE,【点评】本题考查了等腰直角三角形的性质,余角的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.【点评】本题考查了等腰三角形的性质,角平分线的性质,熟练掌握等腰三角形的性质是解题的关键.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.【分析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.【解答】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【点评】此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.【分析】由三角形的中位线定理得到DE=CF,DE∥CF,证得四边形DEFC是平行四边形,即可证得S△ECF=S△DEC=S△ADE,即可证得S四边形DEFB=S△ABC,求得△ABC的面积即可.【解答】解:∵点D、E分别是AB、AC的中点,∴DE=BC,DE∥BF,∵CF=,∴DE=CF,DE∥CF,∴四边形DEFC是平行四边形,∴S△ECF=S△DEC=S△ADE,∵△ABC是等边三角形,D是AB的中点,∴CD⊥AB,AD=BD=1,BC=2,∴DC==∴S 四边形DEFB=S△ABC=×2×=.【点评】本题考查了三角形中位线定理,平行四边形的判定和性质,勾股定理的应用,证得S△ECF=S△DEC=S△ADE是本题的关键.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.【分析】根据直角三角形的性质得出AE=BE=CE=AB,即可得出答案.【解答】证明:∵∠BAC=90°,∠C=30°,∴AB=BC,∵AE为BC边上的中线,∴AE=BE=CE,∴AB=AE=BE,∴△ABE是等边三角形.【点评】本题考查了等边三角形的性质,掌握等边三角形的判定:三边都相等的三角形是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.【分析】(1)根据折叠的性质以及平行线的性质可以证明∠B'FE=∠B'EF,根据等角对等边证明B'E=B'F,然后根据折叠的性质可证得;(2)直角△A'B'E中利用勾股定理求得B'E的长,然后根据(1)的结论即可求解.【解答】(1)证明:∵矩形ABCD中,AD∥BC,∴∠B'EF=∠EFB,又∵∠B'FE=∠EFB,∴∠B'FE=∠B'EF,∴B'E=B'F,又∵BF=B'F,∴B'E=BF;(2)解:∵直角△A'B'E中,A'B'=AB=4,∴B'E===5,∴BF=N'E=5.【点评】本题考查了折叠的性质以及勾股定理,在折叠的过程中认识到相等的角和相等的边是关键.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):对角线互相垂直,这条性质可用符号表示为:已知四边形ABCD是筝形,则AC⊥BD.;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.【分析】(1)根据筝形的定义可以证明△BAC ≌△DAC,依据全等三角形的性质即可证得边和对角线的关系;(2)利用△BAC≌△DAC,根据边、角、对角线的性质证得.【解答】解:(1)筝形的性质:两组邻边分别相等;对角线互相垂直,即已知四边形ABCD是筝形,则AC⊥BD;有一条对角线被另一条平分;有一条对角线平分对角;是轴对称图形.(写出一条即可);故答案是:对角线互相垂直;已知四边形ABCD 是筝形,则AC⊥BD;(2)筝形的判定方法:有一条对角线平分一组对角的四边形是筝形.已知:四边形ABCD中,AC是一条对角线,∠BAC=∠DAC,∠BCA=∠DCA.求证:四边形ABCD是筝形.证明:在△BAC和△DAC中,,∴△BAC≌△DAC,∴AB=AD,BC=CD,即四边形ABCD是筝形.其他正确的判定方法:有一条对角线垂直平分令一条对角线的四边形是筝形;有一组邻边相等且互相垂直的四边形是筝形.【点评】本题考查了图形的对称以及全等三角形的判定,正确证明△BAC≌△DAC是解决本题的关键.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.【分析】(1)利用尺规作出∠ABC的平分线BD 即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A 1DC的面积=•A1C•A1D计算即可.【解答】解:(1)∠ABC的平分线BD,交AC 于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A 1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴=.【点评】本题考查尺规作图、翻折变换、勾股定理、三角形面积等知识,熟练掌握基本尺规作图是解题的关键,属于基础题,中考常考题型.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC 和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.【分析】(1)先根据AB∥CD得出∠BAC=∠DCA,再由∠BAE=∠DCF可知∠EAM=∠FCM,故可得出结论;(2)先由AM平分∠FAE得出∠FAM=∠EAM,再根据∠EAM=∠FAM可知∠FAM=∠FCM,故△FAC是等腰三角形,由等腰三角形三线合一的性质即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA,又∵∠BAE=∠DCF,∴∠EAM=∠FCM,∴AE∥CF;(2)证明:∵AM平分∠FAE,∴∠FAM=∠EAM,又∵∠EAM=∠FCM,∴∠FAM=∠FCM,∴△FAC是等腰三角形,又∵AM=CM,∴FM⊥AC,即EF垂直平分AC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BCE的周长=AC+BC,再求解即可;(2)根据等腰三角形两底角相等求出∠C=72°,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠ABE=∠A,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,从而得到∠BEC=∠C,然后根据等角对等边求解.【解答】(1)解:∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC,∵AC=15cm,∴BC=25﹣15=10cm;(2)证明:∵∠A=36°,AB=AC,∴∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴∠ABE=∠A,由三角形的外角性质得,∠BEC=∠A+∠ABE=36°+36°=72°,∴∠BEC=∠C,∴BC=BE.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,综合题难度不大,熟记各性质并准确识图是解题的关键.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC﹣60°=∠C﹣60°,最后根据三角形内角和定理得出关系式∠C﹣60°+∠C=90°解出即可.【解答】解:∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC则∠EBC=∠ABC﹣60°=∠C﹣60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C﹣60°+∠C=90°解得∠C=75°.【点评】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?【分析】根据已知条件“上午8时,一条船从A 处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得∠C=32°,所以△ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离.【解答】解:根据题意,得AB=30×4=120(海里);在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°﹣∠NAC﹣∠ABC=32°,∴∠C=∠NAC,∴BC=AB=120(海里),即从B处到灯塔C的距离是120海里.【点评】本题考查了等腰三角形的性质、方向角.解答该题时充分利用了三角形的内角和定理.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【分析】(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(2)由在△ABC中,AB=AC,∠A=70°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(3)由在△ABC中,AB=AC,根据等腰三角形的性质,即可用∠A表示出∠ABC,又由AB点M,即可求得答案.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.【分析】(1)直接利用加减消元法,即可求得a,b的值;(2)分别从若7为腰长,2为底边长与若2为腰长,7为底边长,去分析求解即可求得答案.【解答】解:(1),①+3②得:10a=70,解得:a=7,把a=7代入2a+b=16,得:b=2,∴;(2)①若7为腰长,2为底边长,则周长为:7×2+2=16;②若2为腰长,7为底边长,∵2+2<7,∴不能组成三角形,舍去;∴这个等腰三角形的周长为16.【点评】此题考查了等腰三角形的性质以及二元一次方程组的解法.注意掌握分类讨论思想的应用是解此题的关键.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a 的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y 的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.【分析】先根据勾股定理求得AC的长,根据条件可知DE是△ABC的中位线,所以利用中位线定理可知DE的长.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∴CD=BC=5,∵AD=12,∴在Rt△ADC中,AC==13,。

北京市怀柔区2016年中考一模数学试卷

北京市怀柔区2016年中考一模数学试卷

怀柔区2015—2016学年初三数学模拟练习(一)数学试卷一.选择题(共有10个小题,每小题3分,共30分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.截止到目前,参加北京市普通小客车摇号的申请人数已经超过2500000人,将2500000用科学记数法表示为A.25×10 5B. 2.5×106C. 0.25×10 7D.2.5×108 2.实数a ,b 在数轴上的位置如图所示,下列结论中正确的是A .a >b B.|a |>|b | C .-a <b D .a +b <03. 如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是 A.23B.12C.13 D.164.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.5.北京市去年5月份第一周连续七天的最高气温分别为27,25,24,27,24, 28, 24(单位:℃). 这组数据的众数和中位数分别是()A .24℃,25℃ B .24℃,26℃ C .24℃,27℃ D .28℃,25℃6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.50° B. 40°C.30°D.20°标为()A.(3,2)B.(3,1)C.(2,2)D.(-2,2)8.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数是()A.30°B.45°C.60°D.75°9.如图,在△ABC中,AB=4,C作CG ⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.21B.1C.27D. 710.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.当甲、乙两车相距50千米时,时间t的值最多有A.1个B.2个C.3个D.4个二、填空题(本题共6个小题,每小题3分,共18分)11.若分式1x-3有意义,则x的取值范围是.12.分解因式:2a3-18a=_________.13.已知⊙O是半径为2的圆形纸板,现要在其内部设计一个内接正三角形图案,则内接正三角形的边长为.14.已知关于x的方程x2-2x+m=0有两个不相等的实数根,写出一个满足条件的实数m值:8题图m=______.15.李白(701年-762年),唐代伟大的浪漫主义诗人,被后人誉为“诗仙”.李白的一生和酒有不解之缘,写下了如《将进酒》这样的千古绝句.古代民间流传着这样一道算题:李白街上走,提壶去打酒; 遇店加一倍,见花喝一斗; 三遇店和花,喝光壶中酒; 试问酒壶中,原有多少酒?意思是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次看见花店就喝去一斗(斗是古代容量单位,1斗=10升),这样遇到酒店、看见花店各三次.把酒喝完.问壶中原来有酒多少?设壶中原来有酒x 斗,可列方程为 . 16.在数学课上,老师提出如下问题:小明的折叠方法如下:老师说:“小明的作法正确.”请回答:小明这样折叠的依据是_________________________.三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:1221()5-π(45sin 210-++--.18.已知063a a 2=++,求代数式1)-1)(a (a 3)a(2a +-+的值.EDCBAAB EFD 19.解不等式组⎪⎩⎪⎨⎧+<-≤-.41x 3x 3,3x 2)2(x 并写出它的所有非负整数解...... 20.如图,在Rt △ABC 中,∠C=90°,AB 边的垂直平分线DE 交BC 于点E ,垂足为D.求证:∠CAB=∠AED.21.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,每购买一台,客户可获得500元财政补贴.某校用6万元购买此款空调,补贴后可购买的台数是补贴前的1.2倍,则该款空调补贴前的售价为每台多少元?22. 如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,过点C 作CE//AB 交DF 的延长线于点E ,连结AE .(1)求证:四边形ADCE 为平行四边形.(2)若EF=22,∠FCD=30°,∠AED=45°,求DC 的长.23双曲线xm=和直线b kx y +=交于A ,B 两点,A (5,1),BC ⊥y 轴于C ,且OC=5BC . (1)求双曲线和直线的解析式;(2)若点P 是x 轴上一点,且满足∆ABP 是以AB 为直角边的直角三角形,请直接写出点P 的坐标.24.如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CF 与OB 交于点E ,过点F ,A 分别作⊙O 的切线交于点H ,且HF 与AB 的延长线交于点D . (1)求证:DF=DE;(2)若tan ∠OCE =12,⊙O 的半径为4,求AH 的长.20题图25. 阅读下列材料:2013、2014年各大银行信用卡累计发卡量如图:25题图根据以上材料回答下列问题:(1)2015年工商银行信用卡累计发卡量为 万张(保留一位小数);(2)选择统计表或.统计图,将2013~2015年工商银行、建设银行和民生银行的信用卡累计发卡量表示出来.根据以上材料完成下列问题:(1)如图3、4、5是一组布鞋图片,6、7、8是一组鞋样的图片,请你在答题纸上将布鞋和对应的鞋样用线段连接起来;26题图226题图1(2)图10是图9所示童鞋的鞋样.看到这个鞋样,明明认为鞋样丢了一部分,芳芳认为鞋样没有丢.请你判断明明和芳芳谁说的对,并用所学的数学知识说明理由.27.在平面直角坐标系中,二次函数y=x 2+mx+2m-7的图象经过点(1,0). (1)求抛物线的表达式;(2)把-4<x<1时的函数图象记为H ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象H 在x 轴下方的部分沿x 轴 翻折,图象H 的其余部分保持不变,得到一个新图象M .若直线y=x+b 与图象M 有三个公共点,求b 的取值范围.28. 在正方形ABCD 中,点H 在对角线BD 上(与点B 、D 不重合),连接AH ,将HA 绕点H 顺时针旋转 90º与边CD (或CD 延长线)交于点P ,作HQ ⊥BD 交射线DC 于点Q. (1)如图1:①依题意补全图1;②判断DP 与CQ 的数量关系并加以证明;(2)若正方形ABCD 的边长为3,当 DP=1时,试求∠PHQ 的度数.29.给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值时,就称该最小值为两个图形G 1和G 2之间的“近距离”;如果线段PQ 的长度存在最大值时,就称该最大值为两个图形G 1和G 2之间的“远距离” . 请你在学习,理解上述定义的基础上,解决下面问题: 在平面直角坐标系xOy 中,点A (-4, 3),B (-4,-3),C (4,-3),D (4, 3). (1)请在平面直角坐标系中画出四边形ABCD ,直接写出线段AB 和线段CD 的“近距离”和“远距离”. (2)设直线b x y +=34(b>0)与x 轴,y 轴分别交于点E ,F ,若线段EF 与四边形ABCD 的“近距离”是1,求它们的“远距离” ;(3)在平面直角坐标系xOy 中,有一个矩形GHMN ,若此矩形至少有一个顶点在以O 为圆心,2为半径的圆上,其余各点可能在圆上或圆内.将四边形ABCD 绕着点O 旋转一周,在旋转的过程中,它与矩形GHMN 的“远距离”的最大值是 ;“近距离”的最小值是 .怀柔区2016年高级中等学校招生模拟考试(一)数学评分标准一、选择题(每小题有且只有一个选项是正确的,请把正确的选项前的序号填在相应的表格内. 本题共有10个小题,每小题3分,共30分)11. x≠3. 12. 2a(a-3)(a+3). 13. 32. 14.答案不唯一,符合m<1即可. 15. [(2x-1)×2-1] ×2-1=0或8x-7=0.. 16. CD 和EF 是四边形DECF 对角线,而CD 和EF 互相垂直且平分(答案不唯一).xE DCBA三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17. 解: 原式=1221222-++-⨯………………………………………………4分= 22.………………………………………………5分 18.解:1)-1)(a (a 3)a(2a +-+=1)(a 3a 2a22--+=1a 3a 2a 22+-+=13a a 2++.……………………………………………………3分 ∵063a a 2=++, ∴-63a a 2=+.∴原式=-6+1=-5. ……………………………………………………5分19.解:2(x-2)3x-3, x x+1<34⎧⎪⎨⎪⎩≤① . ②解不等式①得:x≥-1. ……………………………………………………2分解不等式②得:x<3. ……………………………………………………4分 所以不等式组的解集为-1≤x<3.所以不等式组的非负整数解为0,1,2. .………………………………………5分 20.证明:∵DE 是AB 边的垂直平分线, ∴AE=BE , ∠ADE=90°.∴∠EAB=∠B. ……………………………………………………3分 在Rt △ABC 中,∠C=90°,∴∠CAB+∠B=90°.在Rt △ADE 中,∠ADE=90°,∴∠AED+∠EAB=90°. ……………………………………………………4分∴∠CAB=∠AED. ……………………………………………………5分21. 解:设该款空调补贴前的售价为每台x 元, ……………………………………………1分 由题意,得:,500x 600001.2x 60000-=⨯………………………………………………2分 解得:x=3000. ……………………………………………………3分HA EFD经检验,x=3000是原方程的解,且符合题意.………………………………………………4分 答:该款空调补贴前的售价为每台3000元.…………………………………………5分 22. (1)证明:∵CE//AB ,∴∠DAF=∠ECF. ……………………………1分 ∵F 为AC 的中点, ∴AF=CF. 在△DAF 和△ECF 中,DAF=ECF AF=CFAFD=CFE ∠∠⎧⎪⎨⎪∠∠⎩∴ △DAF ≌△ECF .∴ AD=CE . ………………………………2分 ∵CE//AB ,∴ 四边形ADCE 为平行四边形.………………………………3分 (2)作FH ⊥DC 于点H . ∵ 四边形ADCE 为平行四边形,∴ AE//DC ,DF= EF=22, ∴∠FDC =∠AED=45°. 在Rt △DFH 中,∠DHF=90°,DF=22,∠FDC=45°,∴ sin ∠FDC=FH DF ,得FH=2, tan ∠FDC=HF=1HD,得DH=2. ………………………………4分 在Rt △CFH 中,∠FHC=90°,FH=2,∠FCD=30°,∴ FC=4. 由勾股定理,得HC=32.∴ DC=DH+HC=2+32. ………………………………5分 23.解:(1)把A (5,1)代入xm y =中, ∴m=5.∴反比例函数表达式x5y =.………………………………1分 ∵OC=5BC,设B(x,5x) , (x<0) 把B(x,5x)代入x5y =中,∴5x 2=5. x 1=1(舍),x 2=-1.∴B(-1,-5) . ……………………………2分 把A (5,1),B(-1,-5) 代入b kx y +=中, 得⎩⎨⎧-=+-=+5.b k 1,b 5k解得⎩⎨⎧-==4.b 1,k∴一次函数表达式为4x y -=.……………………………3分(2)P (6,0)或P (-6,0) . ……………………………5分 24. (1)证明:连结OF ,如图.∵DH 为⊙O 的切线,OF 为半径,∴OF ⊥DH. ∴∠OFD=90°。

北京市怀柔区中考数学二模试卷

北京市怀柔区中考数学二模试卷

北京市怀柔区中考数学二模试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.(3分)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣4B.﹣2C.0D.42.(3分)2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()A.13.1×106B.1.31×107C.1.31×108D.0.131×108 3.(3分)正八边形的内角和等于()A.720°B.1080°C.1440°D.1880°4.(3分)下列各式计算正确的是()A.a2+2a3=3a5B.(a2)3=a5C.a6÷a2=a3D.a•a2=a3 5.(3分)以下问题,不适合用普查方法的是()A.了解某种酸奶中钙的含量B.了解某班学生的课外作业时间C.公司招聘职员,对应聘人员的面试D.旅客上飞机前的安检6.(3分)一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为()A.B.C.D.7.(3分)如图所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m8.(3分)在四边形ABCD中,AB∥DC,AD∥BC,如果添加一个条件,即可推出该四边形是矩形,那么这个条件可以是()A.∠D=90°B.OH=4C.AD=BC D.Rt△AHB 9.(3分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤110.(3分)小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t,小丽与学校的距离为S.下面能反映S与t的函数关系的大致图象是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.(3分)如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有性.12.(3分)因式分解:x3﹣9x=.13.(3分)矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:.(填一条即可)14.(3分)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为.15.(3分)观察下列一组坐标:(a,b),(a,c),(b,c),(b,a),(c,a),(c,b),(a,b),(a,c)…,它们是按一定规律排列的,那么第9个坐标是,第2015个坐标是.16.(3分)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.三、解答题(本题共30分,每小题5分)17.(5分)如图,点C,D在线段BF上,AB∥DE,AB=DF,BC=DE.求证:AC=FE.18.(5分)计算:.19.(5分)解不等式组:.20.(5分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.21.(5分)列方程或方程组解应用题:周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每只定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.22.(5分)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?四、解答题(本题共20分,每小题5分)23.(5分)如图,P为等腰△ABC的顶角A的外角平分线上任一点,连接PB,PC.(1)求证:PB+PC>2AB.(2)当PC=2,PB=,∠ACP=45°时,求AB的长.24.(5分)课外阅读是提高学生素养的重要途径.某校为了解学生课外阅读情况,随机抽查了50名学生,统计他们平均每天课外阅读时间t(小时).根据t的长短分为A,B,C,D四类,下面是根据所抽查的人数绘制的两幅不完整的统计图表.请根据图中提供的信息,解答下面的问题:50名学生平均每天课外阅读时间统计表类时间t(小人数别时)A t<0.510B0.5≤t<120C1≤t<1.515D t≥1.5a(1)本次调查的样本容量为;(2)求表格中的a的值,并在图中补全条形统计图;(3)该校现有1200名学生,请你估计该校共有多少名学生课外阅读时间不少于1小时?25.(5分)已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于点D,DE⊥CB的延长线于点E.(1)求证:DE为⊙O的切线;(2)若∠A=30°,BE=3,分别求线段DE和的长.26.(5分)阅读下面材料:小强遇到这样一个问题:试作一个直角△ABC,使∠C=90°,AB=7,AC+BC=9.小强是这样思考的:如图1,假定直角△ABC已作出,延长AC到点D,使CD =CB,则AD=9,∠D=45°,因此可先作出一个辅助△ABD,再作BD的垂直平分线分别交AD于点C,BD于点E,连接BC,所得的△ABC即为所作三角形.具体做法小强是利用图2中1×1正方形网格,通过尺规作图完成的.(1)请回答:图2中线段AB等于线段.(2)参考小强的方法,解决问题:请在图3的菱形网格中(菱形最小内角为α,边长为a),画出一个△ABC,使∠C=α,AB=6b,AC+BC=8b.(在图中标明字母,不写作法,保留作图痕迹).五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)已知:抛物线y=x2+bx+c经过点(2,﹣3)和(4,5).(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x轴翻折,得到图象G,求图象G的表达式;(3)在(2)的条件下,当﹣2<x<2时,直线y=m与该图象有一个公共点,求m的值或取值范围.28.(7分)在△ABC内侧作射线AP,自B,C分别向射线AP引垂线,垂足分别为D,E,M为BC边中点,连接MD,ME.(1)依题意补全图1;(2)求证:MD=ME;(3)如图2,若射线AP平分∠BAC,且AC>AB,求证:MD=(AC﹣AB).29.(8分)阅读理解:学习了三角形全等的判定方法:“SAS”,“ASA”,“AAS”,“SSS”和直角三角形全等的判定方法“HL”后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”即“SSA”的情形进行研究.我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠A=∠D.初步探究:如图1,已知AC=DF,∠A=∠D,过C作CH⊥射线AM于点H,对△ABC的CB边进行分类,可分为“CB<CH,CB=CH,CH<CB<CA,”三种情况进行探究.深入探究:第一种情况,当BC<CH时,不能构成△ABC和△DEF.第二种情况,(1)如图2,当BC=CH时,在△ABC和△DEF中,AC=DF,BC =EF,∠A=∠D,根据,可以知道Rt△ABC≌Rt△DEF.第三种情况,(2)当CH<BC<CA时,△ABC和△DEF不一定全等.请你用尺规在图1的两个图形中分别补全△ABC和△DEF,使△DEF和△ABC不全等(表明字母,不写作法,保留作图痕迹).(3)从上述三种情况发现,只有当BC=CH时,才一定能使△ABC≌△DEF.除了上述三种情况外,BC边还可以满足什么条件,也一定能使△ABC≌△DEF?写出结论,并利用备用图证明.北京市怀柔区中考数学二模试卷参考答案一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.B;2.B;3.B;4.D;5.A;6.C;7.D;8.A;9.D;10.B;二、填空题(本题共18分,每小题3分)11.稳定;12.x(x+3)(x﹣3);13.对角线相互平分;14.4;15.(b,c);(c,a);16.15°或45°或75°;三、解答题(本题共30分,每小题5分)17.;18.;19.;20.;21.;22.;四、解答题(本题共20分,每小题5分)23.;24.50;25.;26.AF;五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.;28.;29.HL或AAS;。

北京市怀柔区2016届中考数学二模试题(含解析)

北京市怀柔区2016届中考数学二模试题(含解析)

2016年北京市怀柔区中考数学二模试卷一.选择题(共有10个小题,每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.进入春季后,杨树、柳树飞絮影响着人们的生活,本市将对现有的2000000棵杨、柳树雌株进行治理,减少飞絮现象.将2000000用科学记数法表示为()A.2×107B.2×106C.20×105D.200×1042.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3 B.﹣7 C.±3 D.﹣3或﹣73.从0,π,,这四个数中随机取出一个数,取出的数是无理数的概率是()A.B.C.D.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列四个几何体中,主视图为圆的是()A. B.C.D.6.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35° B.45° C.55° D.65°7.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁8.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为()A.7sinα米B.7cosα米C.7tanα米D.(7+α)米9.如图,△ABC内接于⊙O,若⊙O的半径为2,∠A=45°,则的长为()A.πB.2πC.3πD.4π10.如图,点M从等边三角形的顶点A出发,沿直线匀速运动到点B,再沿直线匀速运动到点C,在整个过程中,设M与A的距离为y,点M的运动时间为x,那么y与x的图象大致为()A.B.C.D.二、填空题(本题共6个小题,每小题3分,共18分)11.二次根式有意义,则x的取值范围是.12.分解因式:3a2﹣6a+3= .13.我市某一周的日最高气温统计如下表:则这组数据的中位数是,众数是.14.如图,用扳手拧螺母时,旋转中心为,旋转角为.15.如图,某校教学楼有一花坛,花坛由正六边形ABCDEF和6个半径为1米、圆心分别在正六边形ABCDEF的顶点上的⊙A,⊙B,⊙C,⊙D,⊙E,⊙F组合而成.现要在阴影部分种植月季,则种植月季面积之和为米2.16.在数学课上,老师提出如下问题:小明的作图过程如下:老师说:“小明的作法正确.”请回答:小明这样作图的依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°﹣|.18.先化简,再求值:﹣,其中x=﹣1.19.解分式方程: +=1.20.如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.21.某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?22.已知:如图,在矩形ABCD中,E是BC边上一点,DE平分∠ADC,EF∥DC交AD边于点F,连结BD.(1)求证:四边形FECD是正方形;(2)若BE=1,ED=2求tan∠DBC的值.23.在平面直角坐标系xOy中,反比例函数y=(k>0)的图象经过点A(2,m),连接OA,在x 轴上有一点B,且AO=AB,△AOB的面积为2.(1)求m和k的值;(2)若过点A的直线与y轴交于点C,且∠ACO=30°,请直接写出点C的坐标.24.如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,点O在AB上,⊙O经过B,D两点,交BC于点E.(1)求证:AC是⊙O的切线;(2)若BC=6,tan∠A=,求CD的长.25.阅读下列材料:我国以2015年11月1日零时为标准时点进行了全国人口抽样调查.这次调查以全国人口为总体,抽取占全国总人口的1.6%的人口为调查对象.国家统计局在2016年4月20日根据这次抽查结果推算的全国人口主要数据权威发布.明明同学感兴趣的数据如下:一、总人口全国大陆31个省、自治区、直辖市和现役军人的人口为13.7亿人.同第六次全国人口普查2010年11月1日零时的133972万人相比,五年共增加3377万人.二、年龄构成大陆31个省、自治区、直辖市和现役军人的人口中,0﹣14岁人口为22696万人,占16.52%;15﹣59岁人口为92471万人,占67.33%;60岁及以上人口为22182万人,占16.15%,其中65岁及以上人口为14374万人,占10.47%.同2010年第六次全国人口普查相比,0﹣14岁人口比重下降0.08个百分点,15﹣59岁人口比重下降2.81个百分点,60岁及以上人口比重上升2.89个百分点,65岁及以上人口比重上升1.60个百分点.三、各种受教育程度人口大陆31个省、自治区、直辖市和现役军人的人口中,具有大学(指大专以上)教育程度人口为17093万人;具有高中(含中专)教育程度人口为21084万人,;具有初中教育程度人口为48942万人;具有小学教育程度人口为33453万人,(以上各种受教育程度的人包括各类学校的毕业生、肄业生和在校生).2010年第六次全国人口普查时,具有大学(指大专以上)文化程度的人口为11964万人;具有高中(含中专)文化程度的人口为18799万人;具有初中文化程度的人口为51966万人;具有小学文化程度的人口为35876万人.根据以上材料回答下列问题:(1)2015年11月1日零时为标准时点进行的全国人口抽样调查的样本容量万(保留整数);(2)请你根据这次抽查调查结果推算的全国人口主要数据,写出一条全国年龄构成特点或年龄发展趋势;(3)选择统计表或统计图,将我国2010年和2015年受教育程度人口表示出来.26.有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:(1)函数的自变量x的取值范围是;(2)列出y与x的几组对应值.请直接写出m的值,m= ;(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数的一条性质.27.已知:二次函数y1=x2+bx+c的图象经过A(﹣1,0),B(0,﹣3)两点.(1)求y1的表达式及抛物线的顶点坐标;(2)点C(4,m)在抛物线上,直线y2=kx+b(k≠0)经过A,C两点,当y1>y2时,求自变量x的取值范围;(3)将直线AC沿y轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后直线的表达式.28.在△ABC中,∠ABC=90°,D为△ABC内一动点,BD=a,CD=b(其中a,b为常数,且a<b).将△CDB沿CB翻折,得到△CEB.连接AE.(1)请在图(1)中补全图形;(2)若∠ACB=α,AE⊥CE,则∠AEB= ;(3)在(2)的条件下,用含a,b,α的式子表示AE的长.29.已知:x为实数,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[﹣1.2]=﹣2.请你在学习,理解上述定义的基础上,解决下列问题:设函数y=x﹣[x].(1)当x=2.15时,求y=x﹣[x]的值;(2)当0<x<2,求函数y=x﹣[x]的表达式,并画出函数图象;(3)在(2)的条件下,平面直角坐标系xOy中,以O为圆心,r为半径作圆,且r≤2,该圆与函数y=x﹣[x]恰有一个公共点,请直接写出r的取值范围.2016年北京市怀柔区中考数学二模试卷参考答案与试题解析一.选择题(共有10个小题,每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.进入春季后,杨树、柳树飞絮影响着人们的生活,本市将对现有的2000000棵杨、柳树雌株进行治理,减少飞絮现象.将2000000用科学记数法表示为()A.2×107B.2×106C.20×105D.200×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2000000=2×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3 B.﹣7 C.±3 D.﹣3或﹣7【考点】数轴.【分析】符合条件的点有两个,一个在﹣5点的左边,一个在﹣5点的右边,且都到﹣5点的距离都等于2,得出算式﹣5﹣2和﹣5+2,求出即可.【解答】解:数轴上距离表示﹣5的点有2个单位的点表示的数是﹣5﹣2=﹣7或﹣5+2=﹣3.故选:D.【点评】本题主要考查了数轴,当要求的点在已知点的左侧时,用减法;当要求的点在已知点的右侧时,用加法.3.从0,π,,这四个数中随机取出一个数,取出的数是无理数的概率是()A.B.C.D.【考点】概率公式.【分析】先求出无理数的个数,再根据概率公式即可得出结论.【解答】解:∵0,π,,这四个数中无理数有2个,∴随机取出一个数,取出的数是无理数的概率=.故选D.【点评】本题考查的是概率公式,熟记随机事件的概率公式是解答此题的关键.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.【点评】本题考查了轴对称图形与中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.下列四个几何体中,主视图为圆的是()A. B.C.D.【考点】简单几何体的三视图.【专题】计算题.【分析】找出从正面看,主视图为圆的几何体即可.【解答】解:主视图为圆的为,故选B【点评】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.6.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35° B.45° C.55° D.65°【考点】平行线的性质;直角三角形的性质.【专题】计算题.【分析】利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故选:A.【点评】本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.7.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.020<0.021<0.022,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为()A.7sinα米B.7cosα米C.7tanα米D.(7+α)米【考点】解直角三角形的应用-仰角俯角问题.【分析】利用三角函数即可直接求解.【解答】解:在直角△ABC中,tanA=,则BC=AC•tanA=7tanα(米).故选C.【点评】本题考查仰角的定义,要求学生能利用三角函数的定义解直角三角形.9.如图,△ABC内接于⊙O,若⊙O的半径为2,∠A=45°,则的长为()A.πB.2πC.3πD.4π【考点】三角形的外接圆与外心;圆周角定理;弧长的计算.【分析】连接OB、OC,根据圆周角定理求出圆心角∠BOC,然后根据弧长公式求解即可.【解答】解:连接OB、OC∵∠A=45°,∴∠BOC=90°,∵OB=OC=2∴l==π∴的长为π.故选:A.【点评】本题考查了圆周角定理及弧长计算公式,解题的关键是连接辅助线求出弧所对的圆心角度数.10.如图,点M从等边三角形的顶点A出发,沿直线匀速运动到点B,再沿直线匀速运动到点C,在整个过程中,设M与A的距离为y,点M的运动时间为x,那么y与x的图象大致为()A.B.C.D.【考点】动点问题的函数图象.【专题】数形结合.【分析】当点M从等边三角形的顶点A出发,沿直线匀速运动到点B时,距离y是在逐步增大的,当点M沿直线匀速运动到点C时,距离y先减少再增大,利用排除法可以得出答案.【解答】解:当点M从点A出发,沿直线匀速运动到B时,y随x的增大而增大,且y是从0开始的,故B、D错误;当点M沿直线匀速运动到点C时,设等边三角形边长为a,则y=(a≤x≤2a)故A是正确的.故选:A.【点评】此题考查了动点问题的函数图象,解题关键是理解动点的完整运动过程.二、填空题(本题共6个小题,每小题3分,共18分)11.二次根式有意义,则x的取值范围是x≥3 .【考点】二次根式有意义的条件.【分析】二次根式的被开方数x﹣3≥0.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.13.我市某一周的日最高气温统计如下表:则这组数据的中位数是27℃,众数是28℃.【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:最高气温为28℃的天数有3天,最多,故众数为28℃;排序后位于中间位置的数为27℃,故中位数为27℃,故答案为:27℃,28℃.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.14.如图,用扳手拧螺母时,旋转中心为螺丝(母)的中心,旋转角为0°~360°的任意角(答案不唯一).【考点】旋转的性质.【分析】根据旋转中心的定义以及旋转角的定义解答即可.【解答】解:由旋转中心的定义:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心可知,用扳手拧螺母时,旋转中心为螺丝(母)的中心,而旋转角可估计实际情况决定,所以不确定,故答案为:螺丝(母)的中,0°~360°的任意角(答案不唯一)【点评】本题考查了和旋转有关的概念:旋转中心和旋转角,属于基础性题目,对此知识点的考查重点在于对旋转的性质的掌握.15.如图,某校教学楼有一花坛,花坛由正六边形ABCDEF和6个半径为1米、圆心分别在正六边形ABCDEF的顶点上的⊙A,⊙B,⊙C,⊙D,⊙E,⊙F组合而成.现要在阴影部分种植月季,则种植月季面积之和为2π米2.【考点】扇形面积的计算;正多边形和圆.【分析】扇形的面积公式是:S=,各个扇形的半径相等,因而六个扇形(阴影部分)的面积之和就等于:六边形的内角和×.【解答】解:种植月季面积之和扇形的面积的和=720×=2π.故答案为:2π【点评】本题考查了扇形的面积,熟记扇形的面积公式是解决本题的关键.16.在数学课上,老师提出如下问题:小明的作图过程如下:老师说:“小明的作法正确.”请回答:小明这样作图的依据是有一个角为直角的平行四边形为矩形.【考点】作图—复杂作图;矩形的判定.【专题】作图题.【分析】利用作法得到AM=CM,BM=DM,则可判断四边形ABCD为平行四边形,然后根据矩形的定义可确定四边形ABCD为矩形.【解答】解:小明的作法正确.因为AM=CM,BM=DM,所以四边形ABCD为平行四边形,而∠ABC=90°,所以四边形ABCD为矩形.故答案为有一个角为直角的平行四边形为矩形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的判定.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°﹣|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质、二次根式的性质分别化简各数进而求出答案.【解答】解:原式=﹣2+3+2﹣,=5﹣2.【点评】此题主要考查了负整数指数幂的性质以及特殊角的三角函数值、绝对值的性质、二次根式的性质等知识,正确化简各数是解题关键.18.先化简,再求值:﹣,其中x=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=﹣==,当x=﹣1时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.解分式方程: +=1.【考点】解分式方程.【分析】根据解分式方程的一般步骤,可得分式方程的解.【解答】解:方程两边都乘以(x+3)(x﹣3),得3+x(x+3)=x2﹣93+x2+3x=x2﹣9解得x=﹣4检验:把x=﹣4代入(x+3)(x﹣3)≠0,∴x=﹣4是原分式方程的解.【点评】本题考查了解分式方程,先求出整式方程的解,检验后判定分式方程解的情况.20.如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠BAD=∠CAD,∠ADB=∠ADC=90°,根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF,等量代换即可得到结论.【解答】证明:∵AB=AC,AD是△ABC点的中线,∴∠BAD=∠CAD,∠ADB=∠ADC=90°,∵E是AC的中点,∴DE=AE=EC,∴∠CAD=∠ADE.在Rt△ABD中,∠ADB=90°,∴∠B+∠BAD=90°.∵DF⊥AB,∴∠B+∠BDF=90°,∴∠BAD=∠BDF,∴∠BDF=∠CAD,∴∠BDF=∠ADE.【点评】本题考查了等腰直角三角形的性质,余角的性质,熟练掌握等腰三角形的性质是解题的关键.21.某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?【考点】一元一次方程的应用.【分析】设初一年级种植x盆,则初二年级种植(2x﹣3)盆,初三年级种植(2x﹣3+25)盆,根据“三个年级共种植909盆”列出方程并解答.【解答】解:设初一年级种植x盆,依题意得:x+(2x﹣3)+(2x﹣3+25)=909,解得,x=178.∴2x﹣3=3532x﹣3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆.【点评】本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.22.已知:如图,在矩形ABCD中,E是BC边上一点,DE平分∠ADC,EF∥DC交AD边于点F,连结BD.(1)求证:四边形FECD是正方形;(2)若BE=1,ED=2求tan∠DBC的值.【考点】正方形的判定与性质;解直角三角形.【分析】(1)先证明四边形FECD为平行四边形,再证出CD=CE,得出四边形FECD为菱形,由∠C=90°,即可得出四边形FECD为正方形;(2)先由三角函数求出正方形FECD的边长CD=CE,得出BC,即可求出tan∠DBC的值.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠ADC=∠C=90°,∵EF∥DC,∴四边形FECD为平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠DEC,∴∠CDE=∠DEC,∴CD=CE,∴四边形FECD是菱形,又∵∠C=90°,∴平行四边形FECD是正方形;(2)解:∵四边形FECD是正方形,∴∠CDE=45°,∵∴CE=CD=ED•sin45°=2×=2,∴BC=BE+EC=1+2=3,∴.【点评】本题考查了矩形的性质、正方形的判定与性质、平行四边形和菱形的判定、解直角三角形;熟练掌握矩形和正方形的性质,并能进行推理论证与计算是解决问题的关键.23.在平面直角坐标系xOy中,反比例函数y=(k>0)的图象经过点A(2,m),连接OA,在x 轴上有一点B,且AO=AB,△AOB的面积为2.(1)求m和k的值;(2)若过点A的直线与y轴交于点C,且∠ACO=30°,请直接写出点C的坐标.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)把(2,m)代入反比例函数,可得k=2m,且m>0,再根据△AOB的面积为2可得,解可得m,进而可求k;(2)据图可得点C有两个,坐标分别是(0,1+)或C(0,1﹣).【解答】解:(1)由题意可知B(4,0),过A作AH⊥x轴于H.∵,AH=m,OB=4,∴,∴m=1,∴A(2,1),∴k=2.(2)C(0,1+)或C(0,1﹣).【点评】本题考查了反比例函数的知识,解题的关键是理解点和函数的关系,并能依题意画图,要考虑两种情况.24.如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,点O在AB上,⊙O经过B,D两点,交BC于点E.(1)求证:AC是⊙O的切线;(2)若BC=6,tan∠A=,求CD的长.【考点】切线的判定.【分析】(1)连接DO,由等腰三角形的性质和角平分线的定义得出∠ODB=∠CBD,证出DO∥BC,由平行线的性质得出∠ADO=90°,即可得出结论;(2)在Rt△ABC中,∠ACB=90°,根据三角函数的定义得到AC=8,根据相似三角形的性质得到R=,在Rt△ABC中,根据三角函数的定义即可得到结论.【解答】(1)证明:如图,连接OD,∵⊙O经过B,D两点,∴OB=OD,∴∠OBD=∠ODB,又∵BD是∠ABC的平分线,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥BC,∵∠ACB=90°,即BC⊥AC,∴OD⊥AC.又OD是⊙O的半径,∴AC是⊙O的切线;(2)解:在Rt△ABC中,∠ACB=90°,∵BC=6,tan∠BAC=,∴AC=8,∵OD∥BC,∴△AOD∽△ABC,∴,即,解得:R=,∴OD=,在Rt△ABC中,OD⊥AC,∴tan∠A=,∴AD=5,∴CD=3.【点评】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、垂径定理等知识;本题综合性强,有一定难度,特别是(2)中,需要证明相似三角形求出半径才能得出结果.25.阅读下列材料:我国以2015年11月1日零时为标准时点进行了全国人口抽样调查.这次调查以全国人口为总体,抽取占全国总人口的1.6%的人口为调查对象.国家统计局在2016年4月20日根据这次抽查结果推算的全国人口主要数据权威发布.明明同学感兴趣的数据如下:一、总人口全国大陆31个省、自治区、直辖市和现役军人的人口为13.7亿人.同第六次全国人口普查2010年11月1日零时的133972万人相比,五年共增加3377万人.二、年龄构成大陆31个省、自治区、直辖市和现役军人的人口中,0﹣14岁人口为22696万人,占16.52%;15﹣59岁人口为92471万人,占67.33%;60岁及以上人口为22182万人,占16.15%,其中65岁及以上人口为14374万人,占10.47%.同2010年第六次全国人口普查相比,0﹣14岁人口比重下降0.08个百分点,15﹣59岁人口比重下降2.81个百分点,60岁及以上人口比重上升2.89个百分点,65岁及以上人口比重上升1.60个百分点.三、各种受教育程度人口大陆31个省、自治区、直辖市和现役军人的人口中,具有大学(指大专以上)教育程度人口为17093万人;具有高中(含中专)教育程度人口为21084万人,;具有初中教育程度人口为48942万人;具有小学教育程度人口为33453万人,(以上各种受教育程度的人包括各类学校的毕业生、肄业生和在校生).2010年第六次全国人口普查时,具有大学(指大专以上)文化程度的人口为11964万人;具有高中(含中专)文化程度的人口为18799万人;具有初中文化程度的人口为51966万人;具有小学文化程度的人口为35876万人.根据以上材料回答下列问题:(1)2015年11月1日零时为标准时点进行的全国人口抽样调查的样本容量2192 万(保留整数);(2)请你根据这次抽查调查结果推算的全国人口主要数据,写出一条全国年龄构成特点或年龄发展趋势;(3)选择统计表或统计图,将我国2010年和2015年受教育程度人口表示出来.【考点】统计图的选择;总体、个体、样本、样本容量;统计表.【分析】(1)根据样本容量的定义即可求解;(2)根据实际情况写出即可;(3)根据题意选择统计表或统计图,将我国2010年和2015年受教育程度人口表示出来即可.【解答】解:(1)2015年11月1日零时为标准时点进行的全国人口抽样调查的样本容量是2192万;(2)我国大学受教育程度的人数呈现上升趋势;(3)我国2010年和2015年受教育程度人口统计表:故答案为:2192.【点评】本题主要考查数据的整理与统计图表的选择与制作,阅读材料理清数据的类型和年份是列表解决问题的关键.26.有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成: (1)函数的自变量x 的取值范围是 x ≠﹣1 ;(2)列出y 与x 的几组对应值.请直接写出m 的值,m= 3 ;(3)请在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象; (4)结合函数的图象,写出函数的一条性质.【考点】反比例函数的性质.【分析】(1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;(2)将y=代入函数解析式中求出x值即可;(3)描点、连线画出函数图象;(4)观察函数图象,写出函数的一条性质即可.【解答】解:(1)∵x+1≠0,∴x≠﹣1.故答案为:x≠﹣1.(2)当y==时,x=3.故答案为:3.(3)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.。

最新整理北京市怀柔区中考第二次模拟练习数试卷及答案.doc

最新整理北京市怀柔区中考第二次模拟练习数试卷及答案.doc

第6题图A.B.C.D.北京市怀柔区中考第二次模拟练习数学试卷20xx.6.4考生须知1.本试卷共6页,九道大题,25个小题,满分120分.考试时间为120分钟.2.请在试卷和答题卡上认真填写学校名称、姓名和准考证号.3.试题答案一律用黑色钢笔、签字笔按要求填涂或书写在答题卡划定的区域内,在试卷上作答无效;作图题可以使用黑色铅笔作答.4.考试结束后,请将本试卷和答题卡一并交回.一、选择题(共8道小题,每小题4分,共32分)在每个小题给出的四个备选答案中,只有一个是正确的,请将所选答案前的字母按规定要求填涂在“机读答题卡”第1—8题的相应位置上.1.25的算术平方根是()A.±5 B.5 C.-5 D.152.下列各式计算错误的是()A.5x-2x =3x B.a2b+a2b=2a2b C.235a a a+=D.a2•a3=a53.已知⊙O1的半径为3cm,⊙O2的半径为4cm,且两圆内切. 则O1O2的长为()A.7cm B.1cm C.1cm或7 cm D.以上都不对4.对称现象无处不在,请你观察下面的五个图形,其中是轴对称图形的有()A.2个B.3个C.4个D.5个5.函数xk1y-=的图象与直线xy=没有交点,那么k的取值范围是A.1k>B.1k<C.1k->D.1k-<6.如图,在△ABC中,∠C =90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°7.我们从不同的方向观察同一物体时,可以看到不同的平面图形,由6个小正方体按如图所示的方式摆放,则这个图形的左视图是()8.某城市 春季已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到 春季增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( ) A .300(1+x)=363 B .363(1-x)2=300 C .300(1+2x)=363 D .300(1+x)2=363 第Ⅱ卷(非选择题,共88分)二、填空题(本大题共4道小题,每小题4分,共16分) 9.如果∠A=35°,那么∠A 的补角的度数=_________.10.若实数x, y 满足0322=-+-)(y x ,则代数式xy y -2的值为 . 11.如图,从边长为a 的大正方形纸板中间挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证我们学过的什么公式?答:_________ .12.若多项式m x x +-2在有理数范围内能分解因式,把你发现字母m 的取值规律用含字母n (n 为正整数)的式子表示为 .三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:13.计算:2)32(60sin 41122-+︒-+--π. 解:14.(本小题满分5分) 15.(本小题满分5分)如果代数式21-x 不大于x -4. 已知2m+n=0,求分式 222n m nm -+.(m+n)的值.①求x 的取值范围; 解: ②将x 的取值范围用数轴表示出来. 解:16.(本小题满分5分)已知,在同一直角坐标系中,反比例函数5y x =与二次函数22y x x c =-++的图象交 于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标. 解:11题图17.(本小题满分5分)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE.⑴求∠DCE的度数;⑵当AB=4,AD∶DC=1∶3时,求DE的长.解:四、解答题(共2道小题,共10分)18.(本小题满分5分)3,如图,在梯形ABCD中, AB//DC, ∠ADC=90︒, ∠ACD=30︒,∠ACB=45︒,BC=2求AD的长.解:19.(本小题满分5分)如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE⊥AC于E。

2016北京中考数学各区二模28题汇编(含答案)

2016北京中考数学各区二模28题汇编(含答案)

1.(海淀二模) 已知:AB BC =,90ABC ∠=︒.将线段AB 绕点A 逆时针旋转α(090α︒<<︒)得到线段AD .点C 关于直线BD 的对称点为E ,连接AE ,CE 。

(1)如图, ①补全图形;②求AEC ∠的度数;(2)若AE =1CE =,请写出求α度数的思路.(可以不写出计算结果.........)2.(石景山二模)如图,正方形ABCD ,G 为BC 延长线上一点,E 为射线BC 上一点,连接AE . (1)若E 为BC 的中点,将线段EA 绕着点E 顺时针旋转90°,得到线段EF ,连接CF . ①请补全图形; ②求证:∠DCF =∠FCG ;(2)若点E 在BC 的延长线上,过点E 作AE 的垂线交∠DCG 的平分线于点M ,判断AE 与EM 的数量关系并证明你的结论.EGD CBAMABCDGE3.(顺义二模)已知:如图,90ACD ∠=︒,MN 是过点A 的直线,AC DC =,DB MN ⊥于点B .图2图3图1ABCDNMABCDNMNMABCD(1)在图1中,过点C 作CE CB ⊥,与直线MN 于点E ,①依题意补全图形;②求证:BCE ∆是等腰直角三角形;③图1中,线段BD 、AB 、CB 满足的数量关系是 ; (2)当MN 绕A 旋转到如图(2)和图(3)两个位置时,其它条件不变. 在图2中,线段BD 、AB 、CB 满足的数量关系是 ; 在图3中,线段BD 、AB 、CB 满足的数量关系是 ; (3)MN 在绕点A 旋转过程中,当30BCD ∠=︒,BD =则CB = .4.(通州二模) 已知,在菱形ABCD 中,∠ADC=60°,点F 为CD 上任意一点(不与C 、D 重合),过点F 作CD 的垂线,交BD 于点E ,连接AE 。

(1)①依愿意补全图1;②线段EF 、CF 、AE 之间的等量关系是 . (2)在图1中将ΔDEF 绕点D 逆时针旋转,当点F 、E 、C 在一条直线上(如图2). 线段EF 、CE 、AE 之间的等量关系是 。

2016北京市各区初三数学二模-第26题汇编包含答案


8 3
3
2
0
3 2
n…
求 m,n 的值;
(3)如下图,在平面直角坐标系 xOy xOy 中,描出了以上表中各对 y
对应值为坐标的点. 根据描出的点,画出该函数的图象;
5
4
(4)结合函数的图象,写出该函数的性质
3
(一条即可):________________.
2 1
-3
-2
-1
O -1
12 345
x
-2
C
C 点横坐标为 x3.请你计算 1 1 与 1 的值,并判断
x3
x1 x2 x3
它们的数量关系.
y
B A
x1 O
x2 x
(2)在数学的世界里,有很多结论的形式是统一的,这也体现了数学的美.请你在下列两
组条件中选.择.一.组.,证明
1 x1
1 x2

1 x3
仍具有(1)中的数量关系.
①如图,∠APC=120º,PB 平分∠APC,直线 l 与 PA、
则 cosA A的邻边 AC
斜边
AB
3 2
.
类似的,可以在等腰三角形中建立边角之间的联系,我们定
义:等腰三角形中底边与腰的比叫做顶角的正对. 如图 2,在△ ABC 中,AB=AC,顶角 A 的
正对记作 sadA,这时,sadA= 底边 BC . 容易知道一个角的大小与这个角的正对值也是相 腰 AB
26.(1)解: 由题意可得 x2 1 x 3 . 2
∵ x1 x2 ,

x1
3 2

x
2 2

…………………………………………………1 分
∴ 1 1 1.

5.2015-2016第2学期初2数学期末考试题 怀柔

怀柔区2015—2016学年度第二学期初二期末质量检测一、选择题(本题共10道小题,每小题3分,共30分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.点A 的坐标是(-2,5),则点A 在 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.下列四个艺术字中,不是中心对称图形的是A .木B .田C .王D .噩3. 中,∠B =60°,则∠D 的度数等于A .120°B .60°C .40°D .30° 4.一个三角形的周长是36cm ,则以这个三角形各边中点为顶点的三角形的周长是A .6cmB .12cmC .18cm D .36cm5. 一次函数4+=x y 的图象上有两点11(-)2A y ,、2(1)B y ,,则下列说法正确的是 A .12y y ≤ B.12y y ≥C .21y y >D .21y y <6.甲、乙、丙、丁四名同学在几次数学测验中,各自的平均成绩都是98分,方差分别为:2甲S =0.51,2乙S =0.52,2S 丙=0.56,2S 丁=0.49,则成绩最稳定的是 A .甲 B .乙 C .丙 D .丁 7.菱形ABCD 的对角线AC=5,BD=10,则该菱形的面积为 A. 50 B.3225C. 25D.12.5 8.如图是利用平面直角坐标系画出的怀柔城区附近部分乡镇分布图. 若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向. 表示南华园村的点坐标为(0,-1),表示下园村的点的坐标为(1.6,0.9),则表示下列各地的点的坐标正确的是 A .石厂村(-1.2,-2.7) B .怀柔镇(0.4,1) C .普法公园(0,0)DCB A北D .大屯村(2.2,2.6)9. 已知:如图,折叠矩形ABCD ,使点B 落在对角线AC 上的点F 处,若BC=4,AB=3,则线段CE 的长度是 A.825 B. 25C.3D.2.810.如图,在等腰△ABC 中,直线L 垂直底边BC ,现将直线L 沿线段BC从B 点匀速平移至C 点,直线L 与△ABC 的边相交于E 、F 两点.设线段EF 的长度为y ,平移时间为x ,则下图中能较好反映y 与x 的函数关系的图象是二、填空题(本题共6道小题,每小题3分,共18分)11.在平面直角坐标系中,点A (1,2)关于x 轴对称点的坐标是 .12.如图是由射线AB ,BC ,CD ,DE ,EF 、FA 组成的平面图形,则∠1+∠2+∠3+∠4+∠5+∠6= .13.如图,点D 是直线外一点,在上取两点A ,B ,连接AD ,分别以点B ,D为圆心,AD ,AB 的长为半径画弧,两弧交于点C ,连接CD ,BC ,则四边形ABCD 是平行四边形,理由是_____________________.B C D A L DCB A14. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。

2016北京市各区初三数学二模 双曲线与直线综合问题归纳整理含答案

2016北京市各区初三数学二模 双曲线与直线综合问题归纳整理(西城2016二模) 23.在平面直角坐标系xOy 中,反比例函数xky =1的图象与一次函数2y ax b =+的图象交于点A (1,3)和(3)B m -,. (1)求反比例函数xky =1和一次函数2y ax b =+的表达式; (2)点C 是坐标平面内一点,BC ∥x 轴,AD ⊥BC 交直线BC 于点D ,连接AC .若AC ,求点C 的坐标. 23.解:(1)∵反比例函数xky =1的图象与一次函数2y ax b =+的图象交于点A (1,3)和(3)B m -,.∴点A (1,3)在反比例函数xky =1的图象上, ∴3k =.∴反比例函数的表达式为13y x=.…………………………………………1分 ∵点(3)B m -,在反比例函数13y x=的图象上, ∴1m =-.……………………………………………………………………2分 ∵点A (1,3)和点(31)B --,在一次函数2y ax b =+的图象上,∴3,3 1.a b a b +=⎧⎨-+=-⎩解得1,2.a b =⎧⎨=⎩∴一次函数的表达式为22y x =+.…………………………………………3分(2)如图.∵BC ∥x 轴,∴点C 的纵坐标为1-.∵AD ⊥BC 于点D , ∴∠ADC =90°,点D 的坐标为(1,1-). ∴AD =4. ∵在Rt △ACD 中,222AC AD CD =+,且AC ,∴222)4CD =+. 解得2CD =.∴点C 1的坐标为(3,1-),点C 2的坐标为(1-,1-).……………5分 综上可得,点C 的坐标为(3,1-)或(1-,1-).评述:考点:考查双曲线以及直线的解析式,利用两点间的距离关系,逆向求点C 的坐标 方法:勾股定理,注意分类讨论思想. 问题:没有分类讨论.这类题目的考查比前几年难度加大,条件不直接,需要自己画图,是一道区分度较大的题目.(2016海淀二模)23.在平面直角坐标系xOy 中,直线1l :12y x b =+与双曲线6y x =的一个交点为(,1)A m .(1)求m 和b 的值;(2)过(1,3)B 的直线交1l 于点D ,交y 轴于点E .若2BD BE =,求点D 的坐标. 23.解:(1)∵点)1,(m A 在双曲线xy 6=上, ∴6=m .………………………1分 ∵点)1,6(A 在直线b x y +=21上, ∴2-=b .………………………2分 (2)当点B 在线段DE 上时,如图1,过点D 作DP ⊥y 轴于P ,过点B 作BQ ⊥y 轴于Q .可得EQB △∽EPD △. ∵BE BD 2=, ∴13BQ BE DP DE ==. ∵1BQ =, ∴3DP =. ∵点D 在直线1l 上,∴)213(-,的坐标为点D .………………4分 当点B 在线段DE 的延长线上时,如图2, 同理,由BE BD 2=,可得点D 的坐标为图15(1)2--,.综上所述,点D 的坐标为)213(-,或5(1)2--,.…………… 5分(2016朝阳二模)23.如图,在平面直角坐标系xOy 中,反比例函数4y x=的图象 与正比例函数y =kx 的图象的一个交点为M (1,b ). (1)求正比例函数y =kx 的表达式;(2)若点N 在直线OM 上,且满足MN=2OM , 直接写出点N 的坐标. 23.解:(1)∵双曲线4y x=过点M (1,b ), ∴4b =.……………………………………………………………………1分 ∵正比例函数y kx =的图象过点M (1,4),∴4k =.……………………………………………………………………2分 ∴正比例函数的表达式为4y x =.………………………………………3分 (2)(-1,-4),(3,12).…………………………………………………5分 (2016顺义二模)23.在平面直角坐标系xOy 中,一次函数y x k =-+的图象与反比例函数4y x=-的图象交于点A (-4,n )和点B .(1)求k 的值和点B 的坐标;(2)若P 是x 轴上一点,且=AP AB ,直接写出点P 的坐标.23. 解:(1)把A (-4,n )代入4y x=-中,得1n =, …………………....….1分把A (-4,1)代入y x k =-+中,得3k =- ……………….….…….2分解方程组3,4.y x y x =--⎧⎪⎨=-⎪⎩得4,1.x y =-⎧⎨=⎩ , 1,4.x y =⎧⎨=-⎩∴点B 的坐标是(1,4)- ……………………………………….…...…3分 (2)点P 的是坐标(3,0)或(11,0)- ……………………………….…...…5分(2016丰台二模)23. 已知反比例函数y =xk(k ≠0)的图象经过点A (-1,6). (1)求k 的值;(2)过点A 作直线AC 与函数y =xk的图象交于点B ,与x 轴交于点C , 且AB =2BC ,求点B 的坐标.(2016通州二模)22. 如图。

初中数学 北京市怀柔区中考模拟二模数学考试题及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是A. 4B. 0C. -2D. -4试题2:2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为A.13.1×106 B.1.31×107 C.1.31×108D.0.131×108试题3:正八边形的内角和等于A. 720°B. 1080°C. 1440°D.1880°试题4:下列各式计算正确的是A. B. C. D.试题5:以下问题,不适合用普查方法的是A.了解某种酸奶中钙的含量B.了解某班学生的课外作业时间C.公司招聘职员,对应聘人员的面试 C. 旅客上飞机前的安检试题6:一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为A. B. C.D.试题7:如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为A.15m B.25m C.30m D.20m试题8:在四边形中,AB∥DC , AD∥BC,如果添加一个条件,即可推出该四边形是矩形,那么这个条件可以是A. B.C.D.试题9:一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是A. m>1B. m=1 B. m<1C. m≤1试题10:小丽早上从家出发骑车去上学,途中想起忘了带昨天晚上完成的数学作业,于是打电话让妈妈马上从家里送来,同时小丽也往回骑,遇到妈妈后停下说了几句话,接着继续骑车去学校.设小丽从家出发后所用时间为t,小丽与学校的距离为S.下面能反映S与t的函数关系的大致图象是试题11:如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_________________性.试题12:分解因式x3-9x=__________.试题13:矩形,菱形,正方形都是特殊的四边形,它们具有很多共性,如___________.(填一条即可).试题14:如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为__________.试题15:观察下列一组坐标:(a,b),(a,c),(b,c),(b,a),(c,a),(c,b),(a,b),(a,c)……,它们是按一定规律排列的,那么第9个坐标是,第2015个坐标是.试题16:已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为__________.试题17:如图,点C,D在线段BF上,,,BC=DE.求证:AC=FE.试题18:计算:试题19:解不等式组:试题20:先化简,再求值:,其中试题21:列方程或方程组解应用题:周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每把定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.试题22:大星发超市进了一批成本为8元/个的文具盒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档