激光器设计原理讲解

合集下载

激光器的工作原理及应用

激光器的工作原理及应用

激光器的工作原理及应用激光器是一种能够产生高度聚焦、具有高纯度、高单色性的光束的装置。

它的工作原理是通过将一些能量源输入到激光介质中,从而激发介质中的原子或分子跃迁到一个激发态,然后在受激辐射的影响下,将能量原子或分子从激发态跃迁到一个更低的能级,从而产生出高度聚焦、单色性良好的激光光束。

激光器可以应用于多个领域,下面将介绍一些典型的应用。

首先是激光器在医疗领域的应用。

激光可以用于低侵入性手术,如激光抛光、激光热凝固等,这些手术使用激光器可以减少创伤和出血,使手术更加安全和有效。

此外,激光还可以用于治疗皮肤病、眼科手术和癌症治疗等,因为激光可以精确地照射到目标组织,达到切除或破坏病变组织的目的。

其次是激光器在通信领域的应用。

激光可以用于光纤通信系统中的激光器发射端和接收端。

在激光器发射端,激光器产生的激光光束可以通过光纤传输数据,传输效率高、带宽大,可以满足高速数据传输的需求。

在激光器接收端,激光可以被光探测器接收并转换成电信号,进一步处理和传递。

激光器在光纤通信系统中发挥着非常重要的作用,是现代通信技术的关键。

另外,激光器还在制造业中有广泛的应用。

激光可以被用来切割、焊接、打孔、打标等。

比如,激光切割可以通过将高能量密度的激光束直接照射在材料上,使材料熔化、汽化,从而实现切割。

此外,激光打标可以将图案或文字刻在各种材料上,广泛应用于包装、饰品、汽车零配件等制造行业。

此外,激光器还应用于测距、测速、光谱分析等领域。

激光测距原理是通过发送激光脉冲并测量其返回时间来计算出物体与激光器的距离,被广泛应用于测绘、地质勘探、机械制造等领域。

激光测速原理是通过测量激光光束的多普勒频移来计算速度,被广泛应用于交通违章监控、车辆测速等。

激光光谱分析可以通过测量物质吸收、发射或散射激光光束的方式,获得物质的化学成分、构造和性质。

总的来说,激光器作为一种具有特殊光学特性的光源,被广泛应用于医疗、通信、制造业和科学研究等领域。

激光器的工作原理及应用

激光器的工作原理及应用

激光器的工作原理及应用引言概述:激光器是一种利用激光原理产生并放大一束高度聚焦的光束的装置。

它的工作原理基于电子的激发和辐射过程。

激光器在众多领域中有着广泛的应用,包括医疗、通信、制造等。

本文将详细介绍激光器的工作原理及其在不同领域的应用。

一、激光器的工作原理1.1 激光的产生激光的产生是通过受激辐射的过程实现的。

当外界能量作用于激活物质(如激光介质)时,激活物质中的电子被激发到高能级,形成一个激发态。

当这些激发态的电子回到基态时,会释放出能量,产生光子。

这些光子经过放大和反射,最终形成一束高度聚焦的激光。

1.2 激光的放大激光的放大是通过激光介质中的光子与受激辐射的过程实现的。

在激光介质中,光子与激发态的电子发生相互作用,导致更多的电子从低能级跃迁到高能级。

这样,激发态的电子数量增加,从而产生更多的光子。

这个过程通过在激光介质中反复反射光子来实现,从而放大激光的强度。

1.3 激光的聚焦激光的聚焦是通过激光器中的光学元件实现的。

光学元件,如凸透镜或反射镜,可以改变激光光束的传播方向和聚焦程度。

通过调整这些光学元件的位置和形状,可以将激光束聚焦到非常小的尺寸,从而实现高度聚焦的激光束。

二、激光器在医疗领域的应用2.1 激光手术激光器在医疗领域中被广泛应用于各种手术操作,如激光眼科手术、激光皮肤修复等。

激光手术具有创伤小、恢复快的优势,可以精确地切割组织或疾病部位,减少手术风险。

2.2 激光治疗激光器还可以用于治疗一些疾病,如激光治疗癌症、激光治疗静脉曲张等。

激光的高能量可以破坏癌细胞或静脉曲张血管,从而达到治疗的效果。

2.3 激光诊断激光器还可以用于医学诊断,如激光扫描显微镜、激光断层扫描等。

激光的高分辨率和高灵敏度可以帮助医生观察和诊断微小的组织结构或病变。

三、激光器在通信领域的应用3.1 光纤通信激光器在光纤通信中扮演着重要的角色。

激光器产生的高度聚焦的激光束可以通过光纤传输信息,实现高速、远距离的通信。

光纤激光器的工作原理

光纤激光器的工作原理

光纤激光器的工作原理
光纤激光器是一种应用广泛的激光器类型,其工作原理是基于光纤和激光介质之间的相互作用。

光纤激光器通常是由多个光纤组成的,其中包括了一个激光介质,如钕玻璃或掺铒光纤等。

当光线从光纤中传播时,它会与激光介质相互作用,从而导致激光放大和产生。

这种相互作用是通过受激辐射的过程实现的,即将激光介质放在一个光学谐振腔中,并通过一个激光器激发器激发激光介质。

当激光器激发器激发激光介质时,它会在光纤中放出一束光,这束光与激光介质相互作用,从而产生更多的光子。

这些光子会沿着光纤继续传播,直到它们被放大到足够的程度,以产生一个激光束。

光纤激光器的工作原理与其他激光器类型有很大不同,其中最大的区别是它使用光纤来传送激光能量。

这种设计有许多好处,其中包括光纤的灵活性和可靠性。

光纤不仅可以弯曲和扭曲,还可以在不同的环境中工作,而不会受到外部干扰的影响。

光纤激光器还具有高效的能源利用,因为光纤可以将激光能量直接传输到需要处理的区域,而不需要经过中间的传输系统或其他设备。

这使得光纤激光器非常适合需要高能量密度和高精度的应用,如切割、焊接和打孔等。

光纤激光器的工作原理基于光纤和激光介质之间的相互作用,通过激光放大和产生来产生激光束。

光纤激光器的设计具有灵活性、可靠性和高效能源利用的优点,因此广泛应用于许多行业和领域。

激光器原理解析与稳定性研究

激光器原理解析与稳定性研究

激光器原理解析与稳定性研究激光器是一种利用电磁辐射产生激光的装置,广泛应用于科学研究、医疗、通信等领域。

在激光技术的发展过程中,激光器的原理和稳定性一直是研究的重点。

本文将从激光器的原理解析和稳定性研究两个方面进行探讨。

首先,我们来解析激光器的原理。

激光器的原理基于光的受激辐射和光的放大效应。

当物质受到外界能量激发时,原子或分子的电子跃迁到较高的能级,形成激发态。

当这些激发态的粒子回到基态时,会放出光子。

这些光子会被反射、折射和放大,形成一束相干的激光。

激光器的核心部分是激光介质,常见的有气体激光器、固体激光器和半导体激光器。

气体激光器利用气体放电产生激光。

典型的气体激光器有二氧化碳激光器和氩离子激光器。

二氧化碳激光器的激光介质是二氧化碳气体,通过电子碰撞的方式激发气体分子,产生激光。

氩离子激光器则利用氩离子的能级跃迁产生激光。

固体激光器的激光介质是固体晶体,如Nd:YAG晶体。

通过外界能量的输入,激发晶体内的离子,产生激光。

半导体激光器则是利用半导体材料的特性产生激光,常见的有激光二极管。

激光器的稳定性研究是为了提高激光器的输出质量和稳定性。

激光器的稳定性受到多个因素的影响,包括温度、光学元件的稳定性和激光介质的特性等。

首先是温度的影响。

激光器的工作温度对激光器的性能和稳定性有重要影响。

温度的变化会导致激光器的输出功率和波长发生变化,影响激光器的工作效果。

因此,控制激光器的温度是提高激光器稳定性的重要手段之一。

其次是光学元件的稳定性。

激光器中的光学元件包括反射镜、透镜等,它们的稳定性直接影响激光的品质。

光学元件的表面质量、反射率和透过率都会影响激光的输出功率和波长。

因此,保持光学元件的稳定性和优良的表面质量是提高激光器稳定性的关键。

最后是激光介质的特性。

激光介质的特性包括吸收谱、发射谱和增益谱等。

这些特性会影响激光的输出波长和功率。

在激光器的设计和制造过程中,需要选择合适的激光介质,并对其特性进行研究和优化,以提高激光器的稳定性和输出质量。

激光器的工作原理讲解

激光器的工作原理讲解

激光器的工作原理讲解激光器是一种能够产生激光的装置,其工作原理基于能级跃迁和受激辐射的过程。

下面将详细介绍激光器的工作原理。

激光器的主要组成部分包括:光源、增益介质和光腔。

首先,激光器的光源即外界提供的能量,它能够激发光子从基态跃迁到激发态,产生激光的能级跃迁所需的能量。

其次,激光器的增益介质是激光放大器的核心部件,它负责产生和放大激光。

在激光器中常用的增益介质有:气体(如氦氖激光器、二氧化碳激光器)、晶体(如钕:钋酸钆激光器)、半导体材料(如半导体激光器)等。

这些增益介质在受到外界能量刺激后,产生能级跃迁和受激辐射的过程,从而产生激光。

具体来说,激光器中的增益介质处于一个激发态能级,它有一个高能级和一个低能级。

当外界能量激发增益介质时,光子能够从低能级跃迁到高能级的激发态,形成一个激发态聚集。

而由于激光器中的增益介质受到激发态聚集的初始扰动,这些激发态聚集会随着时间的推移发生非平衡运动,从而形成光子之间的能量传输。

在这个过程中,当一个处于激发态的光子与一个低能级的光子相互作用时,受激辐射的过程会发生。

也就是说,处于激发态的光子可以激发一个低能级的光子跃迁到同样的激发态,并且两者的能量和相位几乎完全相同。

这个过程会引起光子的指数增长,从而形成激光光束。

最后,激光器的光腔是光子在增益介质中来回传播的空间。

光腔一般有两个反射镜组成,一个是部分穿透镜(输出镜),它允许一部分激光通过;另一个是全反射镜(反射镜),它将大部分激光反射回来。

由于全反射镜的存在,光子在光腔中来回多次反射,增强了激光的功率。

当激光增益与光腔损耗达到平衡时,激光器就能稳定地输出激光。

总结起来,激光器的工作原理是通过外界能量的激发、增益介质的能级跃迁和受激辐射的过程,形成光子之间的能量传输,并利用光腔的多次反射来增强激光功率。

这种高聚集、高能量的光子群就是我们所说的激光。

激光器的构造及工作原理

激光器的构造及工作原理

激光器的构造及工作原理
激光器是由激光源和光学系统组成的一种光谱仪。

激光源一般指能够发出连续或短脉冲的单调径向的高能量、高浓度的光束的设备,其光束具有空间和时间上的共轭性。

表面积小、能量大、具有很强的抗形变性能、良好的传输特性,它们都是光子学应用领域的主要设备之一
激光器的构造主要由三部分组成,即激光激发源、激光放大器和激光器输出腔。

激光激发源由发射活性物质构成,发射活性物质可以获得电子能量。

在有电子能量激发状态的发射活性物质状态下,光子压力迫使电子从高能状态向低能状态跃迁,从而释放出与其他系统无法比拟的能量。

激光放大器把由激发源发出的微弱光子增强到与激发源达到较高的能量。

激光器的输出腔是把激发源和放大器的光束收集并聚集起来,表现出空间均匀分布形成一束光束,从而输出激光能量的部分。

激光器是把粒子的运动转化为激光的一种有序的机制。

根据力学反演原理,根据反激光的原理,激发活性物质中的电子被激发到了高能状态,使得它们的电子位置出现了不同的状态,激发活性物质为一种固体,形成了发射团的几种状态,电子在这几种状态间来回跃迁,在其中产生激发发射,最后形成一束激光。

激光器的工作原理讲解(课堂PPT)

激光器的工作原理讲解(课堂PPT)

1
L R2
0
所以 g1 g2<0
11
其二为: R1+R2<L
可以证明: g1 g2>1 (证明略)
2.平凹非稳腔 稳定条件: R1<L , R2= ∞
证明 : ∵g2=1, g1<0 ∴ g1 g2<0
R1
R2
L
R1 L
12
3.凹凸非稳腔 凹凸非稳腔的非稳定条件也有两种:
其一是: R2<0, 0<R1<L
R1
L
7
同理:g2<0 ,∴g1g2>0 ;又∵ L<R1+R2
∴ L2 < R1 R2 L

R1R2
R1R2
(1 L )(1 L ) 1 R1 R2 L L2 <1
R1
R2
R1R2
R1R2

g1g2<1
0< g1g2<1
如果 R1=R2 ,则此双凹腔为对称双凹腔,上述的两种稳
定条件可以合并成一个,即: R1=R2=R>L/2
R1
g1
1
L R1
g2
1
L R2
L
其中 L ---- 腔长(二反射镜之间的距离) , L>0 ;
共轴 R2
Ri ---- 第i面的反射镜曲率半径(i = 1,2);
符号规则: 凹面向着腔内时(凹镜) Ri>0 , 凸面向着腔内时(凸镜) Ri<0。
对于平面镜, R , f
成像公式为:
1 1 1 s s f
2. 控制光束特性: 包括纵模数目、横模、损耗、输出功
率等。
1
二.光腔 —— 开放式共轴球面光学谐振腔的构成 1.构成:在激活介质两端设置两面反射镜(全反、部分反)。
R2 共轴

说明激光器工作原理

说明激光器工作原理

说明激光器工作原理激光器工作原理。

激光器是一种利用激光放大的装置,它能够产生一束高度集中的光束,具有高能量和高单色性。

激光器在许多领域都有着广泛的应用,比如医疗、通信、材料加工等。

它的工作原理是通过激发原子或分子,使其处于激发态,然后在这些激发态的粒子之间引发光子的放大过程,最终形成一束高度聚焦的激光束。

激光器的工作原理可以分为三个主要步骤,激发、增益和反射。

首先,激发步骤是通过给予激光介质能量的方式,使得原子或分子处于激发态。

这通常可以通过电子激发、光子激发或化学激发来实现。

一旦原子或分子处于激发态,它们就会具有一定的能量,可以通过与其他激发态的粒子相互作用来引发光子的发射。

接下来是增益步骤,这一步骤是通过在激发态的原子或分子之间引发光子的发射,从而实现光子的放大。

这通常是通过将激发态的粒子置于一个光学共振腔中来实现的。

在共振腔中,光子会不断地在激发态的粒子之间反复传播,从而引发更多的光子的发射,最终形成一束高度聚焦的激光束。

最后是反射步骤,这一步骤是通过在激光介质的两端放置反射镜,使得激光束在介质内不断地来回反射,从而增强激光束的能量和聚焦度。

一旦激光束被反射镜反射出来,它就可以被用于各种应用,比如在医疗领域用于手术、在通信领域用于光纤通信、在材料加工领域用于激光切割等。

总的来说,激光器的工作原理是通过激发、增益和反射三个主要步骤来实现的。

通过这些步骤,激光器能够产生一束高度聚焦的激光束,具有高能量和高单色性,从而在各种领域都有着广泛的应用。

随着激光技术的不断发展,相信激光器在未来会有更加广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言
光纤传感器自20世纪70年代以来,以其具有的灵敏度高、耐腐蚀、抗电磁干扰能力强、安全可靠等特点取得了飞速的发展。

同时,这些特性也使它可以实现某些特殊条件下的测量工作,比起常规检测技术具有诸多优势,是传感技术发展的一个主导方向。

作为光纤传感器中关键的光学元件之一的光源,其稳定度直接影响着光纤传感器的准确度。

本文所涉及的光纤传感器采用的是半导体激光器光源,半导体激光器具有单色性好、方向性好、体积小、光功率利用率高等优点,但是,光功率输出受外界环境变化的影响较大。

因此,本文针对半导体激光光源的工作原理和特性,设计了一种简单可行的自动功率控制(APC)驱动电路,通过背向监测光电流形成反馈,实现恒功率控制。

并且,引入了慢启动电路,防止电源电压的干扰,使激光器不会受到每次开启电源时产生的过流冲击,延长了激光器的使用寿命。

经实验验证,该电路解决了激光器在使用中输出功率不稳定的问题,其稳定度优于0.5%,达到了较好的稳流效果。

1 光源的工作原理和特性
目前,实际应用的光源有表面光发射二极管(LED)、激光二极管(LD)、超辐射二极管(SLD)、超荧光光源(SFS)等。

随着光纤传感技术的迅速发展,体积小、质量轻、功耗小、容易与光纤耦合的LD等半导体光源应用越来越广泛。

本文主要研究半导体LD的驱动设计。

1.1 LD发光机理分析
LD的基本结构为:垂直于PN结面的一对平行平面构成法布里-珀罗谐振腔,它们可以是半导体晶体的解理面,也可以是经过抛光的平面。

其余两侧面则相对粗糙,用以消除主方向外其他方向的激光作用。

当半导体的PN结加有正向
电压时,会削弱PN结势垒,迫使电子从N区经PN结注入P区,空穴从P区经过PN结注入N区,这些注入PN结附近的非平衡电子和空穴将会发生复合,从而发射出波长为λ的光子,其公式
λ=hc/Eg, (1)
式中 h为普朗克常数;c为光速;Eg为半导体的禁带宽度。

如果注入电流足够大,则会形成和热平衡状态相反的载流子分布,即粒子数反转。

当有源层内的载流子在大量反转情况下,少量自发辐射产生的光子由于谐振腔两端面往复反射而产生感应辐射,造成选频谐振正反馈,或者说对某一频率具有增益。

当增益大于吸收损耗时,就可从PN结发出方向性好、相干性强、亮度高、频带窄的激光。

LD除了具备一般激光的相干性好、方向性强、发散角小、能量高度集中外,还具有光电转换效率高、输出功率大、体积小、重量轻、结构简单、抗震性强等特点。

1.2 LD输出特性
图1是一种典型的半导体激光器在不同温度下的输出功率与正向驱动电流的关系曲线。

为了便于看清楚,图中底部的近似直线部分有意抬高了一些。

由图1中可以看出:当驱动电流低于阈值时,激光器只能发射出荧光,只有当驱动电流大于激光器的阈值电流时,激光器才能正常工作发出激光,因此,要使LD发射激光,就要供给LD略大于阈值电流的工作电流。

而且,LD的阈值电流受温度的影响,温度越高,相应的阈值电流越大。

在某一温度下,当驱动电流低于阈值电流时,输出光功率近似为零;当驱动电流高于阈值时,输出激光,光输出功率随着驱动电流的增大而迅速增加,并近似呈线性上升。

本文使用的是波长为1310 nm的FP同轴激光器,其工作电流为25.0 mA,输出功率为0.96 mW,内部光路原理结构如图2所示。

LD与背向检测探测器P D组合,并封装在一起,LD是正向接法,PD是反向接法。

PD用来检测激光器的背向输出光功率,其输出光功率取决于LD的输出值。

1.3 LD的调制和背光耦合
为了方便进行光功率自动控制,通常,激光器内部将LD和背向光检测器PD集成在一起,见图2。

其中,LD有2个光输出面,主光输出面输出的光供用户使用,次光输出面输出的光(即背向光)被光电二极管PD接收,所产生的光电流用于监控LD的工作状态。

背向光检测器的监测电流与主输出面光输出功率呈线性关系,根据背向光检测器对LD的耦合特性,可设计适当的外围电路完成对LD的自动光功率控制。

2 LD驱动控制电路设计
由图3可以看出:LD与监测二极管是集成在一起的元器件。

流入LD的电流经过APC电路的预偏置电流。

APC电路通过电流负反馈电路抑制由于温度变化、器件老化等引起的光功率的变化。

APC电路部分采用背向光反馈自动偏置控制方式,即用半导体激光器组件中的PD光电二极管监测LD背向输出的光功率。

因为背向输出光功率能跟踪前向输出光功率的变化,通过闭环控制系统就可以调节激光器的电流,达到输出稳定光功率的目的。

图4所示的APC电路由运算放大器1,2和晶体管Q1以及外围电路组成,该电路是一个以三极管为核心的负反馈系统,具有自动稳定激光器光输出功率的功能。

反馈取自LD的背向光,由背向光监测二极管检出并转换成相应的电流,经电容器C1滤波后,进入运放的反向输入端,将电流信号转换成电压信号V1。

运放的同向输入端由LM336和运放组成的+2.5 V稳定基准源及变位器R5组成。

基准电压的输出为V2,可以通过变位器进行调节。

在给驱动电路加上电压的瞬间,会产生一个较大的冲击电流,瞬间电流的大变化会影响半导体激光器的使用寿命。

此外,一般情况下,电源电压都是由交流220 V经变压整流提供给驱动电路电压,外部串入的干扰信号也会产生瞬间的大电流,这样,长期工作也会影响半导体激光器的使用寿命。

基于这种情况,在设计中引人慢启动电路,即在基准源的输入端并接二极
管和电容,其中的电容在10~470μF左右,其最佳值在22~47μF。

这样,驱动电路不受电源电压的干扰,具有慢启动效果,使激光器不会受到每次开启电源时产生的过流冲击,延长了激光器的使用寿命。

APC电路控制过程如下:当由于某种原因,使LD的输出光功率降低时,耦合至光电二极管的电流也同比例减小,即V1减小,这样,通常状态下的平衡被打破,使得运放1输出端的电压即V3将会增大,于是,三极管Q1的基极电流增大,集电极电流也随之增大,而集电极电流正是流入LD的电流。

因此,流入激光器的电流增大,输出光功率相应增大,从而使输出光功率保持不变;反之,亦然。

根据本传感器的激光器的性能参数,选择合适的电阻电容进行匹配,调节电位器,可以得到不同的光功率输出值。

图5是在室温(25℃)下进行的实验曲线图,从图中可以看出:该光纤传感器LD光源的阈值电流在8 mA左右,稳定工作在10~30mA之间。

输出功率与驱动电流在大于阈值电流后呈较好的线性关系。

正常工作时能输出-0.1,-1,-2,-5,-10 dB等可调的稳定的光功率值。

电路中的参数配置,使流入LD的电流不会超过其极限值。

实验证明:该设计电路正确可行,基于背向监测器的自动光功率反馈保证了光纤传感器能够在功率恒定的情况下正常工作。

3 结论
本文所设计的驱动电路,通过慢启动和功率自动控制电路解决了激光器在使用中输出功率不稳定的问题,其稳定度优于0.5%,达到了较好的稳流效果。

本文中的光纤传感器是应用于液氮的低温环境下,本次实验是在室温下进行,将其耦合器和其驱动电路部分通过光纤引出处于室温(25℃)下,温度变化不是很大,因此,没有引入温度补偿控制电路。

下一步实验将使光纤传感器处于液氮的低温环境下工作,温度波动较大,需要考虑加入自动温度补偿电路,实现恒温控制。

相关文档
最新文档