PKPM构件配筋详解

合集下载

PKPM配筋结果绘制施工图详解

PKPM配筋结果绘制施工图详解

第四章施工图的绘制作为结构工程师,施工图就是我们的思想的表达,为了正确表达我们的设计思想和设计理念,画出良好的施工图那是必不可少的。

第一节板钢筋图的绘制板可分为单向板和双向板。

单向板指两边支承或四边支承时长宽比>2。

双向板指四边支承时长宽比<2。

单向板的配筋计算只需计算短跨方向的底筋,长跨方向的底筋和四边的负筋按构造要求,负筋长度从梁边到板内的长度取短净跨的1/4。

双向板的配筋计算需计算两个方向的底筋和四边负筋,负筋长度从梁边到板内的长度取短净跨的1/4。

第二节梁钢筋图的绘制图中代表钢筋配筋如上(此图涉及的平法表示见03G101-1图集)1、梁下部纵筋面积(418)=10.182cm >9.02cm 2、梁上部左端纵筋面积(420)=12.572cm ≈132cm 3、梁上部右端纵筋面积(420)=10.182cm >112cm 4、梁加密区一个间距范围内箍筋面积(双肢箍8@100)=1.012cm >0.52cm 5、梁非加密区一个间距范围内箍筋面积(双肢箍8@200)=0.52cm ≈0.52cm6、考虑梁高≥450㎜在梁侧面配构造钢筋4127、上下纵筋之间的距离要≤200㎜注意:取某轴线上所有梁归为一类b≥350采用四肢箍h≥450加腰筋;框架梁截面高度一般>400,规范规定梁箍筋间距大于梁截面高度的1/4,如果截面高度小于400,则箍筋最小间距得<100,【特别注意】那么如何进行箍筋加密区和非加密区的箍筋间距转换。

已知:假定在SATWE上显示的结果为GAsv-Asv0,即加密区的箍筋面积为Asv,非加密区的箍筋面积为Asv0,在SA TWE中输入的箍筋间距为100。

加密区箍筋:梁通常采用的是n肢箍,选用单肢箍的面积为A的箍筋,则双肢箍的面积为nA。

如果nA>Asv,则可以选用这种钢筋。

非加密区箍筋:换算成间距为200的箍筋,nAx100/200,n是因为选择n肢箍。

最新PKPM构件配筋详解

最新PKPM构件配筋详解

P K P M构件配筋详解功能说明这项菜单主要以图形方式显示各构件设计及验算结果,可以直接输出DWG图形文件。

图8.6.4 构件计算配筋简图8.6.4.1 各构件设计及验算结果功能说明简图上各构件的配筋结果表达方式如下:(1)钢筋混凝土梁和型钢混凝土梁(RC-Beam、SRC-Beam)图中:Asul-Asum-Asur:为梁上部左端、跨中、右端配筋面积(cm2);Asdl-Asdm-Asdr:为梁下部左端、跨中、右端配筋面积(cm2);GAsv:为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);GAsvm:为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);VTAst :为梁受扭纵筋面积(cm2);VTAst1 :为梁抗扭箍筋的单肢箍面积(cm2);G、VT :为箍筋及剪扭配筋标志。

注意事項(1)梁配筋简图如下:图8.6.4.1-1 梁配筋示意图(2)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,当输入的箍筋间距为加密区间距时,梁端箍筋加密区的计算结果可直接使用;如果非加密区与加密区的箍筋间距不同时,需要对非加密区的箍筋面积按非加密区的间距进行换算后再使用。

当梁受扭时,配置的箍筋单肢面积不应小于VTAst1。

(3)输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。

(4)输出的纵筋及箍筋面积都满足规范要求的最小配筋率要求,如果计算出的配筋面积小于最小配筋率时,按最小配筋面积来输出。

(5)VTAst和VTAst1都为零时,该行不输出。

功能说明(2)矩形钢筋混凝土柱和型钢混凝土柱(RC-Column、SRC-Column)图中:Asc :为柱1根角筋的总面积(cm2);Asy、Asz:分别为柱B边和H边的单边面积,包括两根角筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv :为柱加密区抗剪箍筋面积(cm2);GAsvm :为柱非加密区抗剪箍筋面积(cm2);Uc :为非地震作用效应荷载组合下柱的轴压比;Ucs :为地震作用效应荷载组合下柱的轴压比;G :为箍筋配筋标志。

PKPM版画结构平面图楼板配筋计算详解

PKPM版画结构平面图楼板配筋计算详解

PKPM版画结构平面图楼板配筋计算详解PKPM2010版画结构平面图楼板配筋计算详解付成在PKPM结构平面中,楼板计算即有弹性计算、还有塑性计算,弹性计算中还有查静力手册计算、有限元计算,边界元计算的不同方式,考虑一些特殊情况,用户还可以选择按照考虑活荷载不利布置计算或者按照连续板块的计算方式。

面对诸多选择,广大用户可能不能很好的选择适合的方式,本文结合2010版针对新规范的修改,深入剖析不同算法的应用技巧和技术条件,使用户在计算时做到心中有数。

一:自动计算方法的选择程序在计算时根据楼板的形状可分为矩形板和非矩形板两大类。

自动计算时程序会对各块板逐块做内力计算,对非矩形的凸形不规则板块,程序用边界元法计算该块板,对非矩形的凹形不规则板块,程序则采用有限元法计算该块板,程序自动识别板的形状类型并选相应的计算方法。

对于矩形板块,计算方法采用用户指定的计算方法(如弹性或塑性)计算。

当房间内有次梁时,程序对房间按被次梁分割产生的多个板块分别计算。

如图1所示。

楼板计算满足近似矩形计算条件矩形楼板非矩形楼板非单一边界单向板计算双向板凹多边形凸多边形弹性查表法塑性计算有限元法边界元法图1从上图可以看出,非矩形板计算也可以采取静力手册查表的方法计算,对于矩形楼板,即使用户选择了按照塑性计算,但很多情况并没有按照塑性计算,塑性计算必须同时满足以下一个条件:1:选择了按照塑性计算。

2:按形状是矩形楼板或者近似矩形楼板。

3:四边的任意一边边界条件必须相同。

以下分别就矩形和非矩形楼板计算方式做简要说明二:矩形钢筋混凝土楼板计算《砼规》(GB 50010,2010)9.1.1条规定混凝土板应按下列原则进行计算:1. 两对边支承的板应按单向板计算,2. 四边支承的板应按下列规定计算:1)当长边与短边长度之比小于或等于2.0时~应按双向板计算,2)当长边与短边长度之比大于2.0~但小于3.0时~宜按双向板计算,当按沿短边方向受力的单向板计算时~应沿长边方向布置足够数量的构造钢筋,3)当长边与短边长度之比大于或等于3.0时~可按沿短边方向受力的单向板计算。

PKPM构件配筋详解(DOC)

PKPM构件配筋详解(DOC)
GAsvm:为柱非加密区抗剪箍筋面积(cm2);
Uc:为非地震作用效应荷载组合下柱的轴压比;
Ucs:为地震作用效应荷载组合下柱的轴压比;G:为箍筋配筋标志。
注意事項
(1)圆柱是按等效矩形截面来计算箍筋面积的;
(2)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积 配箍率的要求控制。柱子的体积配箍率是按普通箍和复合箍的要求取值的。输出 的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要 除以箍筋肢数;
Aswvl:为地下室外墙或人防临空墙,每延米单侧竖向分布筋面积
(cm2/m)。
功能说明
(5)墙梁(RC Wall-Beam)
墙梁的配筋及输出格式与框架梁一致。需要特别说明的是:墙梁除混
凝土强度等级与剪力墙一致外,其它参数:主筋强度、箍筋强度、墙梁的箍筋间 距等均与框架梁一致。
注意事項
当墙梁的跨高比ln/h》时,墙梁按框架梁来设计;墙梁的跨高比In/h<5时,
(3)Asvj取计算的Asvjz与Asvjy的大值;Asv取计算的Asvz和Asvy的大 值;Asvm取Asvzm与Asvym的大值;
(4)输出的柱子纵筋面积满足规范规定的最小配筋率要求。
图中:
Asw:为墙柱端部边缘构件Lc范围内配筋面积(cm2);
Aswh:为墙柱水平分布筋间距范围内水平分布筋面积(cm2);
Ucs:为地震作用效应荷载组合下柱的轴压比;
G:为箍筋配筋标志。
注意事項
(1)柱配筋简图如下:
图8.641-3柱箍筋简图
(2) 柱子全截面配筋面积计算方法:As=2*( Asx+Asy)-4*Asc
(3)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积 配箍率的要求控制。柱子的体积配箍率是按普通箍和复合箍的要求取值的。输出 的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要 除以箍筋肢数。

PKPM配筋信息总结

PKPM配筋信息总结

PKPM配筋信息总结PKPM 中配筋信息的解释:混凝土(型钢混凝土)梁:其中:Asu1- Asu2- Asu3为梁上部左端、跨中、右端配筋面积(cm)。

Asd1- Asd2- Asd3为梁下部左端、跨中、右端配筋面积(cm)。

Asv 为梁加密区抗剪箍筋面积和扭剪箍筋面积的较大值(cm)。

Asv0为梁非加密区抗剪箍筋面积和扭剪箍筋面积的较大值(cm)。

G 为箍筋标志。

VT 为剪扭配筋标志。

Ast 、Ast1为梁受扭纵筋面积和抗扭箍筋沿周边布置的单肢箍的面积(cm)。

混凝土(型钢混凝土)柱:其中:Asc 为柱一根角筋的面积,双偏压时控制,单偏压时不控制(cm)。

Asx 、Asy 分别为柱B 边和H 边的配筋面积,含角筋(cm )。

Asvj 、Asv 、Asv0分别为柱节点域、加密区、非加密区箍筋面积(cm )。

若柱为剪力墙的边框柱,且为构造配筋时,以上各参数均以0表示。

GAsv-Asv0 Asu1-Asu2- Asu3 Asd1-Asd2- Asd3 VTAst-Ast1 Asv (Uc) Asx AsyGAsv-Asv0 AscUc为柱的轴压比。

G为箍筋的标志。

注:柱全截面配筋面积As=2(Asx+Asy)-4Asc圆形混凝土柱:(Uc)AsvjAsGAsv-Asv0其中:As为圆柱全截面配筋面积。

Asvj、Asv、Asv0按等面积矩形截面计算箍筋,分别为柱节点域、加密区、非加密区箍筋面积(cm)。

若该柱为剪力墙的边框柱,而且是构造配筋控制则程序取As、Asv、Asv0均为0。

Uc为柱的轴压比。

G为箍筋的标志。

1、板中间黄色的字表示板底每米配筋面积,水平的那个数字表示x向钢筋,竖向那个表示y向钢筋。

2、梁线上蓝色的字表示板顶每米配筋面积,梁线上数字表示垂直于梁的板顶钢筋。

梁线两侧数字不一样,表示梁两侧板顶钢筋计算配筋量不一样。

剪力墙专篇剪力墙如何根据SATWE计算结果配筋(你是怎么配的?)假设此楼层为构造边缘构件,剪力墙厚度为200,剪力墙显示“0”是指边缘构件不需要配筋且不考虑构造配筋(此时按照高规表7.2.16来配),当墙柱长小于3倍的墙厚或一字型墙截面高度不大于800mm时,按柱配筋,此时表示柱对称配筋计算的单边的钢筋面积。

pkpm柱配筋计算

pkpm柱配筋计算

pkpm柱配筋计算摘要:1.Pkpm柱配筋计算简介2.柱配筋计算的基本原理3.Pkpm软件的操作步骤及注意事项4.柱配筋计算的实际应用案例5.提高柱配筋计算准确性的方法正文:一、Pkpm柱配筋计算简介Pkpm是一款应用于建筑结构设计的软件,其中柱配筋计算是其功能之一。

通过对柱子的受力分析,结合规范要求,进行合理的配筋计算,以确保结构的安全和稳定。

二、柱配筋计算的基本原理柱配筋计算主要包括以下几个方面:1.确定柱子的受力情况:包括柱子的轴压承载力、弯矩、剪力等。

2.选择合适的钢筋规格:根据受力情况,选择合适的钢筋直径、数量和布置方式。

3.计算钢筋的面积:根据规范要求,计算所需钢筋的面积,以确保柱子的抗弯、抗剪等性能满足要求。

4.验算钢筋的强度:根据钢筋的面积和材料性能,验算钢筋的强度是否满足设计要求。

三、Pkpm软件的操作步骤及注意事项1.打开Pkpm软件,输入项目基本信息。

2.建立结构模型,包括柱子的位置、尺寸、材料等信息。

3.进行结构分析,软件会自动计算柱子的受力情况。

4.进入配筋模块,根据软件给出的建议配筋方案,进行调整和优化。

5.输出配筋结果,检查是否符合规范要求。

注意事项:1.在输入柱子信息时,务必准确无误,以确保计算结果的准确性。

2.软件给出的配筋建议仅供参考,实际工程中需结合实际情况进行调整。

3.配筋计算过程中,要密切关注钢筋的强度、面积等参数,确保满足规范要求。

四、柱配筋计算的实际应用案例以一个实际工程为例,项目为一座多层住宅,采用框架结构。

通过对柱子的受力分析,使用Pkpm软件进行柱配筋计算,最终确定合适的钢筋规格和布置方式,确保了结构的安全稳定。

五、提高柱配筋计算准确性的方法1.深入了解建筑结构和材料性能,掌握规范要求。

2.熟练掌握Pkpm等设计软件,善于运用技巧提高计算效率。

3.多参考实际工程案例,积累经验,不断提高自己的计算能力。

4.加强与相关专业人士的沟通和协作,确保计算结果的准确性。

PKPM如何根据SATWE计算结果配筋

PKPM如何根据SATWE计算结果配筋

PKPM如何根据SATWE计算结果配筋PKPM(结构设计软件)可以根据SATWE(静载试验计算系统)的结果进行配筋设计。

以下是一个关于如何使用PKPM根据SATWE计算结果进行配筋的详细说明。

1.静载试验计算系统(SATWE)的计算结果SATWE是一种在梁柱结构上进行施工前的静载试验的计算系统。

它通过施加一定的静载荷载来测定试件的抗力和变形能力,并计算出结构的刚度、强度等参数。

其中包括梁柱构件的应变、应力、弯矩、剪力等数据。

2.PKPM的配筋设计PKPM是一种常用的结构设计软件,它能够根据结构的受力分析和设计要求,进行钢筋的配筋计算和设计。

配筋设计的目的是确保结构在承受设计荷载时具有足够的强度和刚度。

3.输入SATWE计算结果在PKPM中,可以将SATWE计算得到的梁柱构件的荷载、应变、应力、弯矩、剪力等数据输入到软件中。

这些数据将作为配筋设计的基础。

4.确定设计要求和参数在进行配筋设计之前,需要确定设计要求和参数,如允许应力、构件尺寸、混凝土和钢筋的性能参数等。

这些参数将影响配筋的计算和选择。

5.进行配筋计算PKPM根据输入的SATWE计算结果和设计要求参数,进行配筋计算。

根据结构的受力情况和荷载要求,计算得出满足安全和强度要求的钢筋配筋方案。

配筋计算包括梁柱的弯矩配筋、剪力配筋、受力箍筋等。

6.结果分析和优化配筋计算完成后,可以分析计算结果,对配筋方案进行评估和优化。

根据设计要求和实际情况,可以对钢筋的直径、数量、位置等进行调整和优化,以提高结构的性能和经济性。

7.输出配筋结果最后,PKPM可以输出配筋计算结果,生成图纸或报告。

这些结果包括钢筋的布置图、加强钢筋数量和尺寸、构件截面图等。

这些结果将作为施工的基础和参考,确保结构设计的合理性和施工的可行性。

总结:PKPM可以根据SATWE计算结果进行配筋设计。

通过输入SATWE计算结果和设计要求参数,PKPM进行配筋计算,并分析和优化配筋方案。

pkpm墙体配筋说明

pkpm墙体配筋说明

pkpm墙体配筋说明墙体配筋是指在墙体结构中加入钢筋,以提高墙体的抗震、抗裂性能,确保墙体的稳定性和安全性。

本文将从墙体配筋的基本原理、常用的配筋形式、墙体配筋设计的相关要素以及施工注意事项等方面进行详细阐述。

1.墙体配筋的基本原理墙体配筋的基本原理是通过在墙体中加入纵向和横向的钢筋,形成钢筋混凝土构件,使墙体能够承担荷载和抵抗地震作用的能力。

钢筋的主要作用是提高墙体的抗拉强度,增强墙体的刚性和延性,防止墙体出现裂缝和破坏。

2.常用的墙体配筋形式(1)纵向配筋:纵向配筋是指沿着墙体长度方向布置的钢筋,一般用于承受墙体竖向荷载的作用。

根据墙体的不同要求,纵向配筋可以采用单排、双排或多排的形式。

纵向配筋的间距和钢筋直径的选择需根据设计要求和钢筋的屈服强度来确定。

(2)横向配筋:横向配筋是指垂直于墙体长度方向布置的钢筋,主要用于增强墙体的抗剪和抗扭刚度。

横向配筋一般分为水平配筋(墙体上下方向的横筋)和竖向配筋(墙体内外表面方向的横筋)。

水平配筋一般采用等距配筋,间距的选择需根据设计要求来确定。

竖向配筋一般采用平行配筋或环形配筋,以增加墙体的抗裂能力。

3.墙体配筋设计的相关要素(1)荷载:墙体配筋设计需要根据预计的荷载来确定合理的钢筋布置。

荷载包括墙体自重荷载、附加荷载(如墙上悬挂物的荷载)、地震荷载等。

根据不同的荷载和使用要求,墙体配筋的布置和钢筋直径的选择都会有所不同。

(2)墙体尺寸:墙体尺寸是墙体配筋设计的另一个重要要素。

墙体的厚度、高度和长度等尺寸参数会影响到墙体的受力性能和配筋布置。

一般情况下,墙体的厚度不应小于150mm,高度不宜超过3.5m。

(3)材料选择:墙体配筋设计需要选择合适的钢筋和混凝土材料。

钢筋具有较高的抗拉强度和抗震性能,常用的钢筋规格有HPB300、HRB335、HRB400等。

混凝土材料需要具备良好的抗压和抗裂性能,一般采用C30或C35的混凝土。

4.施工注意事项(1)墙体配筋施工一般在墙体砌筑时进行,需要保证墙体砌筑的质量和准确度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功能说明这项菜单主要以图形方式显示各构件设计及验算结果,可以直接输出DWG 图形文件。

图8.6.4 构件计算配筋简图各构件设计及验算结果功能说明简图上各构件的配筋结果表达方式如下:(1)钢筋混凝土梁和型钢混凝土梁(RC-Beam、SRC-Beam)图中:Asul-Asum-Asur:为梁上部左端、跨中、右端配筋面积(cm2);Asdl-Asdm-Asdr:为梁下部左端、跨中、右端配筋面积(cm2);GAsv:为梁加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);GAsvm:为梁非加密区抗剪箍筋面积和剪扭箍筋面积的较大值(cm2);VTAst :为梁受扭纵筋面积(cm2);VTAst1 :为梁抗扭箍筋的单肢箍面积(cm2);G、VT :为箍筋及剪扭配筋标志。

注意事項(1)梁配筋简图如下:图8.6.4.1-1 梁配筋示意图(2)加密区和非加密区箍筋都是按用户输入的箍筋间距计算的,当输入的箍筋间距为加密区间距时,梁端箍筋加密区的计算结果可直接使用;如果非加密区与加密区的箍筋间距不同时,需要对非加密区的箍筋面积按非加密区的间距进行换算后再使用。

当梁受扭时,配置的箍筋单肢面积不应小于VTAst1。

(3)输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。

(4)输出的纵筋及箍筋面积都满足规范要求的最小配筋率要求,如果计算出的配筋面积小于最小配筋率时,按最小配筋面积来输出。

(5)VTAst和VTAst1都为零时,该行不输出。

功能说明(2)矩形钢筋混凝土柱和型钢混凝土柱(RC-Column、SRC-Column)图中:Asc :为柱1根角筋的总面积(cm2);Asy、Asz:分别为柱B边和H边的单边面积,包括两根角筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv :为柱加密区抗剪箍筋面积(cm2);GAsvm :为柱非加密区抗剪箍筋面积(cm2);Uc :为非地震作用效应荷载组合下柱的轴压比;Ucs :为地震作用效应荷载组合下柱的轴压比;G :为箍筋配筋标志。

注意事項(1)柱配筋简图如下:图8.6.4.1-2 柱纵筋简图图8.6.4.1-3 柱箍筋简图(2)柱子全截面配筋面积计算方法:As=2*( Asx + Asy)-4*Asc(3)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积配箍率的要求控制。

柱子的体积配箍率是按普通箍和复合箍的要求取值的。

输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数。

(4)Asvj取计算的Asvjy与Asvjz的大值;Asv取计算的Asvy和Asvz的大值;Asvm取Asvym与Asvzm的大值;(5)输出的柱子纵筋面积满足规范规定的最小配筋率要求。

功能说明(3)钢筋混凝土圆柱(RC-Column)图中:As:为圆柱全截面配筋面积(cm2);Asvj:为柱节点域抗剪箍筋面积(cm2);GAsv:为柱加密区抗剪箍筋面积(cm2);GAsvm:为柱非加密区抗剪箍筋面积(cm2);Uc:为非地震作用效应荷载组合下柱的轴压比;Ucs:为地震作用效应荷载组合下柱的轴压比;G:为箍筋配筋标志。

注意事項(1)圆柱是按等效矩形截面来计算箍筋面积的;(2)柱子的箍筋是按用户输入的箍筋间距计算的,并满足加密区内最小体积配箍率的要求控制。

柱子的体积配箍率是按普通箍和复合箍的要求取值的。

输出的箍筋面积为箍筋间距范围内所有肢的总面积,在确定单肢箍筋的面积时,需要除以箍筋肢数;(3)Asvj取计算的Asvjz与Asvjy的大值;Asv取计算的Asvz和Asvy的大值;Asvm取Asvzm与Asvym的大值;(4)输出的柱子纵筋面积满足规范规定的最小配筋率要求。

功能说明(4)墙柱(RC Wall-Column)图中:Asw:为墙柱端部边缘构件Lc范围内配筋面积(cm2);Aswh:为墙柱水平分布筋间距范围内水平分布筋面积(cm2);Aswv1:为地下室外墙或人防临空墙,每延米单侧竖向分布筋面积(cm2/m)。

功能说明(5)墙梁(RC Wall-Beam)墙梁的配筋及输出格式与框架梁一致。

需要特别说明的是:墙梁除混凝土强度等级与剪力墙一致外,其它参数:主筋强度、箍筋强度、墙梁的箍筋间距等均与框架梁一致。

注意事項当墙梁的跨高比ln/h≥5时,墙梁按框架梁来设计;墙梁的跨高比ln/h<5时,墙梁按连梁来设计;墙梁的抗震等级同剪力墙。

功能说明(6)混凝土异形柱图中:As:异形柱全截面总配筋面积(cm2);Asv:异形柱加密区斜截面抗剪箍筋面积(cm2);Asv0:异形柱非加密区斜截面抗剪箍筋面积(cm2);Uc:为非地震作用效应荷载组合下柱的轴压比;Ucs:为地震作用效应荷载组合下柱的轴压比。

注意事項异形柱按双偏压计算配筋,斜截面受剪配筋按双剪计算,分别求出两个相互垂直方向的箍筋面积,最后输出二者的较大值。

功能说明(7)斜向构件(如混凝土支撑)图中:Asx、Asy:支撑xy边单边配筋面积(含两根角筋)(cm2);GAsv:支撑箍筋面积(取Asvx与Asvy两者的大值)(cm2);G:箍筋配筋标志。

注意事項支撑按偏心受压(拉)或轴心受拉(压)混凝土构件计算配筋,支撑配筋形式及构造同柱配筋。

功能说明(8)钢梁图中:R1:表示钢梁正应力强度与钢材的抗拉、抗压强度设计值的比值F1/f;R2:表示钢梁整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F2/f;R3:表示钢梁剪应力强度与钢材的抗剪强度设计值的比值F3/fv;Steel:表示此构件是钢梁。

注意事項F1、F2、F3的具体含义参见第8.7节文本结果内容。

功能说明(9)钢柱和方钢管混凝土柱图中:R1:表示钢柱正应力强度与钢材的抗拉、抗压强度设计值的比值F1/f;R2:表示钢柱y向整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F2/f;R3:表示钢柱z向整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F3/f;Uc:为非地震作用效应荷载组合下柱的轴压比;Ucs:为地震作用效应荷载组合下柱的轴压比。

注意事項F1、F2、F3的具体含义参见第8.7节文本结果内容。

功能说明(10)圆钢管混凝土柱图中:R1:表示圆钢管混凝土柱的轴力设计值与其承载力的比值N/Nu,当R1<1.0时代表满足规范要求;Uc:为非地震作用效应荷载组合下柱的轴压比;Ucs:为地震作用效应荷载组合下柱的轴压比。

(11)钢支撑R1:表示钢支撑正应力强度与钢材的抗拉、抗压强度设计值的比值F1/f;R2:表示钢支撑X向整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F2/f;R3:表示钢支撑Y向整体稳定应力强度与钢材的抗拉、抗压强度设计值的比值F3/f;注意事項F1、F2、F3的具体含义参见第8.7节文本结果内容。

墙边缘构件设计配筋图8.6.4.2 墙边缘构件设计配筋可以输出墙边缘构件的主筋面积、箍筋配箍率及边缘构件的配筋范围尺寸等。

No.:边缘构件编号;Psv:边缘构件体积配箍率;As:边缘构件主筋配筋面积(mm2);Lc:边缘构件的长度(mm);Ls:边缘构件主肢的配筋核心区长度(mm);Lt:边缘构件副肢的配筋核心区长度(mm);注意事項(1)边缘构件的主肢就是与Bw*Hw对应的一肢,垂直于主肢的为副肢。

配筋核心区为主筋和箍筋的配筋范围,即配箍特征值为λv的区域。

(2)边缘构件分为约束边缘构件和构造边缘构件,约束边缘构件为一、二级抗震时结构底部加强区及其上一层的剪力墙端部均设置约束边缘构件,其余情况设置构造边缘构件。

对于构造边缘构件Ls、Lt将不再输出,只输出边缘构件的长度Lc,Lc也即为配筋核心区长度。

(3)输出的As及Psv均满足规范规定的最小配筋率要求;边缘构件范围及配筋核心区范围均满足规范规定的要求。

(4)抗震规范第6.4.6条、高规第7.2.15条及混规第11.7.14条都明确规定了剪力墙端部应设置边缘构件的要求,但规范中只给出了常见的4种边缘构件形式,而实际工程中还会有另外一些形式的边缘构件,目前程序一共支持6种形式的边缘构件,这6种边缘构件形式如下:(5)当剪力墙的设计方法按考虑翼缘来设计时,输出的主筋面积计算原则如下:第一种(一字型):直接取用端部计算主筋;第二种(L型):取为两个端部计算主筋的较大值;第三种(T型):取为腹板剪力墙端部计算主筋;第四种(端柱):取为端部计算主筋与框架柱计算主筋的较大值;第五种(L端柱):取为两个方向端部计算主筋的较大值;第六种(T端柱):取为腹板剪力墙端部计算主筋。

当剪力墙的设计方法按直线段墙来设计时,输出的主筋面积计算原则如下:第一种(一字型):直接取用直线段墙肢的端部计算主筋;第二种(L型):取为两个直线段墙肢的端部计算主筋之和;第三种(T型):取为腹板直线段墙肢的墙端部计算主筋;第四种(端柱):取为剪力墙端部计算主筋与框架柱计算主筋二者之和;第五种(L端柱):取为两个直线段端部计算主筋与框架柱计算主筋三者之和;第六种(T端柱):取为腹板剪力墙端部计算主筋与框架柱计算主筋二者之和。

(6)图中标注的边缘构件尺寸对于约束和构造边缘构件都适用,区别在于:对于构造边缘构件,某些阴影尺寸参数的值可能取零。

梁设计配筋包络图图8.6.4.3 梁设计配筋包络图功能说明这项菜单可以以图形方式查看梁各截面的配筋结果,图面上梁上部负弯矩对应的配筋面积以负数表示,正弯矩对应的配筋面积以正数来表示。

一、 SATWE 配筋简图有关数字说明1.1 梁1.1.1砼梁和劲性梁1321321Ast VTAst Asm Asm Asm As As As GAsv-----其中: As1、As2、As3为梁上部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);Asm1、Asm2、Asm3表示梁下部(负弯矩)左支座、跨中、右支座的配筋面积(cm2);Asv表示梁在Sb范围内的箍筋面积(cm2),取抗剪箍筋Asv与剪扭箍筋Astv的大值;Ast表示梁受扭所需要的纵筋面积(cm2);Ast1表示梁受扭所需要周边箍筋的单根钢筋的面积(cm2)。

G,VT分别为箍筋和剪扭配筋标志。

梁配筋计算说明:(1)对于配筋率大于1%的截面,程序自动按双排筋计算,此时,保护层取60mm;(2)当按双排筋计算还超限时,程序自动考虑压筋作用,按双筋方式配筋;(3)各截面的箍筋都是按用户输入的箍筋间距计算的,并按沿梁全长箍筋的面积配箍率要求控制。

若输入的箍筋间距为加密区间距,则加密区的箍筋计算结果可直接参考使用,如果非加密区与加密区的箍筋间距不同,则应按非加密区箍筋间距对计算结果进行换算;若输入的箍筋间距为非加密区间距,则非加密区的箍筋计算结果可直接参考使用,如果加密区与非加密区的箍筋间距不同,则应按加密区箍筋间距对计算结果进行换算。

相关文档
最新文档