2020最新八年级下数学期中试题含答案
2020最新八年级下册期中数学试卷(含答案)

第二学期期中测试卷八 年 级 数 学(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.对于反比例函数xy 2=,下列说法不正确的是 A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小3.为了解我市老年人的健康状况,下列抽样调查最合理的是A.在公园调查部分老年人的健康状况B.在医院调查部分老年人的健康状况C.利用户籍网调查部分老年人的健康状况D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等 5.在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。
若120x x <<,12y y >,则k 取值范围是A. k>0B.2k >C.k<0D.2k <6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是A .()()()P C P A PB << B .()()()P B PC P A << C .()()()P C P B P A <<D .()()()P B P A P C << 7.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是8.如图,在ABC ∆中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为A. 1B.2C.2.5D. 39.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为A.4B.D.10.如图,在平面直角坐标系中,点(1,4)P 、(,)Q m n 在函数 的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 A.减小 B.增大 C.先减小后增大 D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数ky x=的图像经过点(1,6)和(,3)m -,则m = . 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240,则∠EDC= °.14.已知直线y =kx(k>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值k y x=为_______.15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.17.如图,一次函数y kx b =+图象与反比例函数my x=的图象都经过点(2,6)A -和点(4,)B n .则不等式mkx b x+≤的解集为 . 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆ 沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有 .(把你认为正确的结论的序号都填上) 三、解答题19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图. 根据以上信息,解答下列问题:(1)被调查的学生共有_______人,并补全条形统计图;(2)在扇形统计图中___,___m n ==,表示区域C 的圆心角为____度;(3)全校学生中喜欢篮球的人数大约有多少?20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE ∥AC ,AE ∥BD .(1)求证:四边形AODE 是矩形;(2)若AB=12,∠BCD=120°,求四边形AODE 的面积.21.(本题6分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象上,点D 的坐标为(4,3). (1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y = (k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1. 0 mg/L?为什么?23.(本题7分)如图,已知一次函数y kxb=+的图像与反比例函数my x=的图像交于点 (4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式.(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD ∆的面积.24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD =,//AB CD ,//CE DA ,//DF CB .(1)求证:四边形CDEF 是平行四边形; (2)填空:①当四边形ABCD 必须满足条件 时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件 时,四边形CDEF 是菱形.25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x=(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN .(1)当点M 是边BC 的中点时. ①求反比例函数的表达式; ②求OMN ∆的面积;(2)在点M 的运动过程中,试证明:MBNB是一个定值.26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为5,求点D 的纵坐标;(2)如图2,当k =2时,分别求出正方形A ′B ′C ′D ′的顶点A ′、B ′ 两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A ′B ′C ′D ′有重叠部分时,求k 的取值范围.初二数学答案1-10. ACCBB CCBDB11. -2 12. 20 13. 57 14. -6 15. 42 16. 53 17. -2≦x<0或x>4 18.④19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)363 21. (1)32 (2)320 22. (1)y=-2x+10 y=x12(2)能 23. (1)y=x4 y=-43x+4 (2) 621 24. (1)略 (2) AD=BC AD ⊥BC 25. (1)y=x4 3 (2 ) 2 26. (1)5 (2) 621y=k xBAC O x yDy=8x C'D'B'A'O xy。
2020年最新八年级下册期中考试数学试题有答案

y1x O A B C初二数学第二学期期中试卷考试时间120分钟 总分130分一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将你认为正确的答案填在答题卡相应的位置上)1.下列图形中,既是中心对称图形又是轴对称图形的是………………………………( ▲ )A. B. C. D.2.在代数式21332x xy x yπ++、 、 、1a m +中,分式的个数有………………………( ▲ )A .2个B .3个C .4个D .5个3.若将分式abba +中的字母b a ,的值分别扩大为原来的2倍,则分式的值…………( ▲ ) A .扩大为原来的2倍 B .缩小为原来的21 C .不变 D .缩小为原来的414.若二次根式3-x 有意义,则x 的取值范围是………………………………………( ▲ ) A .3x < B .3x ≠ C .3x ≤ D .3x ≥5.如果12与最简二次根式a 2-7是同类二次根式,那么a 的值是………………( ▲ ) A.-2 B.-1 C.1 D.2 6.已知反比例函数ky x=的图像经过点(-1,2),则这个函数的图像一定经过点……( ▲ ) A.(1,2) B.(2,1) C.(-1,-2) D.(-2,1) 7.若M(12-,)、N(14-,)、P(12,3y )三点都在函数k y x=(k>0)的图象上,则、2y 、3y 的大小关系是……………………………………………………………( ▲ )A.132y y y >>B.312y y y >>C.213y y y >>D.123y y y >> 8.矩形具有而菱形不具有的性质是………………………………………………………( ▲ ) A .对角线互相垂直 B .对角线互相平分C .对角线相等D .每条对角线平分一组对角9.如图,点D 、E 、F 分别是△ABC 三边的中点,则下列判断错误的是……………( ▲ ) A .四边形AEDF 一定是平行四边形 B .若AD 平分∠A ,则四边形AEDF 是正方形 C .若AD ⊥BC ,则四边形AEDF 是菱形 D .若∠A =90°,则四边形AEDF 是矩形10.如图,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分 别平行于x 轴、y 轴,若双曲线k y x=(k ≠0)与ABC ∆有交点,则k 的取值范围是………………………………………………( ▲ ) A 、12k << B 、13k ≤≤C 、14k ≤≤D 、14k <≤ 二、填空题(本大题共8题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.当=x 时,242--x x 的值为0.12. 若分式方程244x ax x =+--有增根,则a 的值为 . 13.已知函数()221ay a x -=-是反比例函数,则a14.已知函数5y x =+的图象与反比例函数2y x=-的图象的一个交点为A (),a b , 则11a b-= . 15.如图,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC+BD =24cm ,△OAB 的周长是18cm ,则 EF 的长为 .16.若分式方程2221-=--+x mx x 的解为非负数,则a 的取值范围是 . 17.如图,正方形ABCD 的面积是12,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PE PD +最小,则这个最小值为18. 如图:两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x =的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上)期中试卷 初二数学命题人:谢煜 校对:高东一、选择题:(每题3分,共30分)1 2 3 4 5 6 7 8 9 10二、填空题:(每题3分,共24分)11. 12. 13. 14. 15. 16. 17. 18.三、解答题:(共76分)19. (16分)计算: ①()27-3--2-32②53232b ab a b ba ⎛⎫•-÷ ⎪⎝⎭③21+1x x x -+ ④111a ⎛⎫+ ⎪-⎝⎭÷2111a ⎛⎫+ ⎪-⎝⎭.20.(8分)解方程:①31144x x x --=-- ②23193xx x +=--.21. (5分)先化简,再求值:⎪⎪⎭⎫⎝⎛-+÷-++1211222x x x x x ,其中2x =.22.(6分)如图,E ,F 是四边形ABCD 对角线AC 上的两点,AD ∥BC , DF ∥BE ,AE =CF .求证:(1)△AFD ≅△CEB ;(2)四边形ABCD 是平行四边形.23. (6分) 如图,在平面直角坐标系中,△ABC 和△A 1B 1C 1 关于点E 成中心对称.(1) 画出对称中心E ,并写出点E 的坐标 ; (2) 画出△A 1B 1C 1绕点O 逆时针旋转90°后的△A 2B 2C 2; (3) 画出与△A 1B 1C 1关于点O 成中心对称的△A 3B 3C 3.24.(5分)甲、乙两人每小时共做35个零件,甲做160个零件所用的时间与乙做120个零件所用的时间相等。
2020人教版八年级数学下册期中试卷含答案

2020人教版八年级数学下册期中试卷含答案八年级数学下册期中测试一、选择题1.若 $\frac{1}{2x-1}$ 在实数范围内有意义,则 $x$ 的取值范围是()A。
$x\geq \frac{1}{2}$ B。
$x\geq \frac{1}{2}$ C。
$x。
\frac{1}{2}$ D。
$x\neq \frac{1}{2}$2.一直角三角形的两直角边长为12和16,则斜边长为()A。
12 B。
16 C。
18 D。
203.如图,在▱ABCD 中,已知 $AD=5$ cm,$AB=3$ cm,$AE$ 平分∠$BAD$ 交 $BC$ 边于点 $E$,则 $EC$ 等于()A。
1 cm B。
2 cm C。
3 cm D。
4 cm4.下列计算错误的是()A。
$14\times 7=98$ B。
$60\div 5=12$ C。
$9a+25a=34a$ D。
$32-2=30$5.如图,点 $P$ 是平面直角坐标系内一点,则点 $P$ 到原点的距离是()A。
3 B。
2 C。
7 D。
56.下列根式中,是最简二次根式的是()A。
$0.2b$ B。
$12a-12b$ C。
$x^2-y^2$ D。
$5ab^2$7.如图,已知四边形 $ABCD$ 是平行四边形,下列结论中不正确的是()A。
当$AB=BC$ 时,它是菱形B。
当$AC\perp BD$ 时,它是菱形C。
当∠$ABC=90°$ 时,它是矩形 D。
当 $AC=BD$ 时,它是正方形8.已知菱形 $ABCD$ 中,对角线 $AC$ 与 $BD$ 交于点$O$,∠$BAD=120°$,$AC=4$,则该菱形的面积是()A。
16√3 B。
16 C。
8√3 D。
89.如图,在四边形 $ABCD$ 中,$AB=BC$,∠$ABC=\angle CDA=90°$,$BE\perp AD$ 于点 $E$,且四边形 $ABCD$ 的面积为8,则 $BE$ =()A。
2020年八年级下册数学期中试题带答案

2020年八年级下册期中考试数 学 试 题一、选择题(每小题3分,共30分)1.已知在Rt△ABC 中,∠C =90°,AC =1,BC =2,则AB 的长为( ) A .4 B. 5 C. 3 D .1 2.下列计算正确的是( )A .32+23=5 5 B.8=4 2C.27÷3=3D.(-2)2=-23.使代数式1x +3+4-3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个4.在平行四边形ABCD 中,∠A ∶∠B ∶∠C =2∶3∶2,则∠D 的度数为( ) A .36° B.108° C.72° D.60° 5.下列选项中的等式成立的是( )A.22=2 B.33=3C.44=4D.55=56.在下列命题中,正确的是( )A .有一组对边平行的四边形是平行四边形B .有一组邻边相等的平行四边形是菱形C .有一个角是直角的四边形是矩形D .对角线互相垂直平分的四边形是正方形7.如图,Rt△ABC 中,∠ACB =90°,斜边AB =9,D 为AB 的中点,F 为CD 上一点,且CF =13CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .12第7题图 第8题图8.如图,有一个由传感器A 控制的灯,要装在门上方离地高4.5m 的墙上,任何东西只要移至该灯5m 及5m 以内时,灯就会自动发光.请问一个身高1.5m 的学生要走到离墙多远的地方灯刚好发光( )A .4mB .3mC .5mD .7m9.如图,将边长为4的菱形纸片ABCD 折叠,使点A 恰好落在对角线的交点O 处,若折痕EF =23,则∠A 等于( )姓名:学号:A.120° B.100° C.60° D.30°第9题图第10题图10.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3.若S1=3,S3=9,则S2的值为( ) A.12 B.18 C.24 D.48二、填空题(每小题3分,共24分)11.计算:27+3=________.12.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=________.13.若a<2,化简(a-2)2+a-1=________.14.已知△ABC的三边长a、b、c满足a-1+|b-3|+(c-2)2=0,则△ABC一定是________三角形.第12题图第15题图第16题图15.如图,菱形ABCD的对角线AC,BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为________.16.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,3),则点C的坐标为________.17.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为________.第17题图第18题图18.如图,将▱ABCD沿EF对折,使点A落在点C处.若∠A=60°,AD=4,AB=8,则AE的长为________.三、解答题(共66分)19.(10分)计算:(1)48+1575-313; (2)(2-2)2+18-⎝ ⎛⎭⎪⎫13-1.20.(6分)已知a =3+1,求代数式(4-23)a 2+(1-3)a 的值.21.(8分)如图,在Rt△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15, (1)求AB 的长; (2)求CD 的长.22.(8分)如图,一架梯子AC 长2.5米,斜靠在一面墙上,梯子底端离墙0.7米. (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了0.4米到A ′,那么梯子的底端在水平方向滑动了几米?23.(10分)如图,在▱ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)若∠A =50°,则当∠BOD =________°时,四边形BECD 是矩形.24.(10分)如图,在矩形ABCD中,AB=6,BC=4,过对角线BD的中点O的直线分别交AB,CD于点E,F,连接DE,BF.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.25.(14分)阅读下面材料:小明遇到这样一个问题:如图①,在△ABC中,DE∥BC,分别交AB,AC于D,E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作EF∥DC,交BC的延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图②).请回答:BC+DE的值为________.参考小明思考问题的方法,解决问题:如图③,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.参考答案与解析1.B 2.C 3.B 4.B 5.A 6.B 7.A 8.A 9.A10.D 解析:∵S 1=3,S 3=9,∴AB =3,CD =3.如图,过A 作AE ∥CD 交BC 于E ,则∠AEB =∠DCB .∵AD ∥BC ,∴四边形AECD 是平行四边形,∴CE =AD ,AE =CD =3.∵∠ABC +∠DCB =90°,∴∠AEB +∠ABC =90°,∴∠BAE =90°,∴BE =AB 2+AE 2=23.∵BC =2AD ,∴BC =2BE =43,∴S 2=(43)2=48,故选D.11.4 3 12.5 13.1 14.直角 15.24 16.(-3,1) 17.1018.285解析:如图,过点C 作CG ⊥AB 交AB 的延长线于点G .在▱ABCD 中,∠D =∠EBC ,AD =BC ,∠A =∠DCB .由折叠性质得∠D ′=∠D =∠EBC ,∠D ′CE =∠A =∠DCB ,D ′C =AD =BC ,CE =AE ,∴∠D ′CF +∠FCE =∠FCE +∠ECB ,∴∠D ′CF =∠ECB .在△D ′CF 与△BCE中,⎩⎪⎨⎪⎧∠D ′=∠EBC ,D ′C =BC ,∠D ′CF =∠BCE ,∴△D ′CF ≌△BCE (ASA),∴D ′F =EB ,CF =CE .∵DF =D ′F ,CE =AE ,∴DF =EB ,AE =CF .设AE =x ,则EB =8-x ,CF =x .在Rt△CBG 中,∵BC =4,∠CBG =∠A =60°,∴BG =12BC =2,由勾股定理可知CG =23,∴EG =EB +BG =8-x +2=10-x .在Rt△CEG 中,由勾股定理可知EG 2+CG 2=CE 2,即(10-x )2+(23)2=x 2,解得x =285,即AE =285.19.解:(1)原式=43+15×53-3=4 3.(5分)(2)原式=6-42+32-3=3- 2.(10分)20.解:原式=(4-23)(3+1)2+(1-3)(3+1)=(4-23)(4+23)-2=16-12-2=2.(6分)21.解:(1)在Rt△ABC 中,∠ACB =90°,BC =15,AC =20,∴AB =AC 2+BC 2=202+152=25.(4分)(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD ,(6分)∴20×15=25CD ,∴CD =12.(8分)22.解:(1)由题意得AC =2.5米,BC =0.7米.在Rt△ABC 中,由勾股定理得AB =AC 2-BC2= 2.52-0.72=2.4(米).答:这个梯子的顶端距地面有2.4米.(3分)(2)由题意得A ′C ′=AC =2.5米,AA ′=0.4米,∴BA ′=AB -AA ′=2米.在Rt△A ′BC ′中,由勾股定理得BC ′=A ′C ′2-A ′B 2= 2.52-22=1.5(米),∴CC ′=BC ′-BC =1.5-0.7=0.8(米).(7分)答:梯子的底端在水平方向滑动了0.8米.(8分)23.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥DC ,AB =CD ,∴∠OEB =∠ODC .又∵O 为BC 的中点,∴BO =CO .(2分)在△BOE 和△COD 中,⎩⎪⎨⎪⎧∠OEB =∠ODC ,∠BOE =∠COD ,BO =CO ,∴△BOE ≌△COD (AAS),∴OE =OD ,(4分)∴四边形BECD 是平行四边形.(5分)(2)100(10分) 解析:∵四边形ABCD 是平行四边形,∴∠BCD =∠A =50°.∵∠BOD =∠BCD +∠ODC ,∴∠ODC =100°-50°=50°=∠BCD ,∴OC =OD .∵BO =CO ,OD =OE ,∴DE =BC .∵四边形BECD 是平行四边形,∴四边形BECD 是矩形.故答案为100.24.(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD ,∴∠OBE =∠ODF .(2分)在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF (ASA),∴EO =FO ,∴四边形BEDF 是平行四边形.(4分)(2)解:当四边形BEDF 是菱形时,BD ⊥EF ,设BE =x ,则DE =x ,AE =6-x .在Rt△ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得x =133,即BE =133.(6分)∵BD =AD 2+AB 2=213,∴OB =12BD =13.(8分)∵BD ⊥EF ,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.(10分)25.解:34(5分) 解析:∵DE ∥BC ,EF ∥DC ,∴四边形DCFE 是平行四边形,∴EF=CD =3,CF =DE .∵CD ⊥BE ,∴EF ⊥BE ,∴BC +DE =BC +CF =BF =BE 2+EF 2=52+32=34,故答案为34.解决问题:连接AE ,CE ,如图所示.∵四边形ABCD 是平行四边形,∴AB ∥DC 且AB =DC .∵四边形ABEF 是矩形,∴AB ∥FE ,AB =EF ,BF =AE ,∴DC ∥FE ,DC =EF ,∴四边形DCEF 是平行四边形,(9分)∴CE ∥DF ,CE =DF .∵AC =BF =DF ,∴AC =AE =CE ,∴△ACE 是等边三角形,∴∠ACE =60°.(12分)∵CE ∥DF ,∴∠AGF =∠ACE =60°.(14分)。
2020年初二数学下期中试题(附答案)(1)

2020年初二数学下期中试题(附答案)(1)一、选择题1.下列运算中,正确的是( )A .235+=;B .2(32)32-=-;C .2a a =;D .2()a b a b +=+. 2.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米3.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3554.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是( )A .10尺B .11尺C .12尺D .13尺5.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②6.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 7.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140° 8.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k <3B .k <0C .k >3D .0<k <3 9.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .610.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC 沿A ﹣D 的方向平移AD 长,得△DEF (B 、C 的对应点分别为E 、F ),则BE 长为( )A .1B .2C .5D .311.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .412.要使代数式23x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x > C .3x ≥ D .3x ≤二、填空题13.比较大小:52_____13.14.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.15.如图,已知正方形ABCD ,以BC 为边作等边△BCE ,则∠DAE 的度数是_____.16.菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.17.已知菱形ABCD 的两条对角线长分别为12和16,则这个菱形ABCD 的面积S=_____.18.已知:如图,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,AC =10,BD =8,则MN =_____.19.如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .20.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是_____________。
新人教版2020学年八年级(下)期中数学试卷(含解析)

2020学年八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)1.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣32.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.3.(3分)下列各组数能构成勾股数的是()A.2,,B.12,16,20C.,,D.32,42,524.(3分)下列选项中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AB∥CD B.AB∥CD,AB=CDC.AD∥BC,AB=DC D.AB=DC,AD=BC5.(3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.6.(3分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题(本大题共6小题,每小题3分,共18分)20n7.(3分)已知是整数,则满足条件的最小正整数n为.8.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.9.(3分)如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则AB的长为.10.(3分)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…请写出下一数组:.11.(3分)如图,四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=4,CD=4,则该四边形的面积是.12.(3分)如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A、C同时出发,点P以3cm/S的速度向B移动,一直到达B为止;点Q以2cm/s的速度向D移动.当P、Q两点从出发开始到秒时,点P和点Q的距离是10cm.三、(本大题共5小题,每小题6分,共30分)13.(6分)计算:(1)+﹣﹣;(2)(3﹣2+)÷2.14.(6分)已知a=+2,b=﹣2,求下列代数式的值:(1)a2﹣2ab+b2;(2)a2﹣b2.15.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.16.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.17.(6分)矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接DE,把△DCE沿DE折叠,使点C落在点C′处,当△BEC′为直角三角形时,求BE的长.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图方式摆放矩形纸片ABCD和矩形纸片ECGF,其中B,C,G三点共线,CE在CD上,连接AF,若M为AF的中点,连接DM,ME.(1)DM与ME的数量关系是.(2)请证明上面的结论.19.(8分)阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时,∵(﹣)2=a﹣2+b≥0,∴a+b≥2,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)当x>0时,求x+的最小值;(2)当x<0时,求x+的最大值;(3)当x>0时,求y=的最小值.20.(8分)已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.五、(本大题共2小题,每小题9分,共18分)21.(9分)阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:===方法二:====(1)请用两种不同的方法化简:;(2)化简:.22.(9分)某超市分两次购进A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A商品以每件45元出售,B商品以每件75元出售.为满足市场需求,需购进A、B两种商品共1000件,且A商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.购进数量(件)购进所需费用(元)A B第一次30402900第二次40302700六、(本大题共12分)23.(12分)直线EF分别平行四边形ABCD边AB、CD于直E、F,将图形沿直线EF对折,点A、D分別落在点A′、D′处.(1)如图1,当点A′与点C重合时,连接AF.求证:四边形AECF是菱形;(2)若∠A=60°,AD=4,AB=8,①如图2,当点A′与BC边的中点G重合时,求AE的长;②如图3,当点A′落在BC边上任意点时,设点P为直线EF上的动点,请直接写出PC+P A′的最小值.参考答案一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)1.【解答】解:依题意得x+3≥0,解得x≥﹣3.故选:A.2.【解答】解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.3.【解答】解:A、22+()2=()2,但不是正整数,故选项错误;B、122+162=202,能构成直角三角形,是整数,故选项正确;C、()2+()2≠()2,不能构成直角三角形,故选项错误;D、(32)2+(42)2≠(52)2,不能构成直角三角形,故选项错误.故选:B.4.【解答】解:A、由AD∥BC,AB∥CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;B、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;C、由AD∥BC,AB=DC不能判断四边形ABCD是平行四边形;故本选项符合题意;D、由AB=DC,AD=BC可以判断四边形ABCD是平行四边形;故本选项不符合题意;故选:C.5.【解答】解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选:D.6.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∵MP=AE=2∴S△DFP=S△PBE=×2×6=6,∴S阴=6+6=12,故选:B.二、填空题(本大题共6小题,每小题3分,共18分)20n7.【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案是:5.8.【解答】解:如下图,∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°∴∠ACB=∠DEC∵∠ABC=∠CDE,AC=CE,在△ABC和△CDE中,∴△ABC≌△CDE(AAS),∴BC=DE(如上图),根据勾股定理的几何意义,∵AB2+BC2=AC2,∴b的面积=a的面积+c的面积=5+11=16.9.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.10.【解答】解:∵(3,4,5):3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;(5,12,13):5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;(7,24,25):7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;(9,40,41):9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;∴下一组数为:11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,故答案为:(11,60,61).11.【解答】解:如图,延长CA、DB交于点E,∵四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,∴∠C=60°,∴∠E=30°.在Rt△ABE中,∵AB=4,∠E=30°,∴BE=2AB=8,∴AE==4.在Rt△DEC中,∵∠E=30°,CD=4,∴CE=2CD=8,∴DE==12,∴S△ABE=×4×4=8,S△CDE=×4×12=24,∴S四边形ABDC=S△CDE﹣S△ABE=16.故答案为16.12.【解答】解:设当P、Q两点从出发开始到x秒时,点P和点Q的距离是10cm,此时AP=3xcm,DQ=(16﹣2x)cm,根据题意得:(16﹣2x﹣3x)2+82=102,解得:x1=2,x2=.答:当P、Q两点从出发开始到2秒或秒时,点P和点Q的距离是10cm.故答案为:2或.三、(本大题共5小题,每小题6分,共30分)13.【解答】解:(1)原式=3+2﹣2﹣3=﹣;(2)原式=(6﹣+4)÷2=÷2=.14.【解答】解:∵a=+2,b=﹣2,∴a+b=+2+﹣2=2,a﹣b=(+2)﹣(﹣2)=4,(1)a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)=2×4=8.15.【解答】证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.16.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.17.【解答】解:如图1,当∠BC′E=90°时,如图1,矩形ABCD中,AB=6,AD=BC=8,∴BD=10,∵把△DCE沿DE折叠,使点C落在点C′处,∴∠DC′E=∠C=90°,∵∠BC′E=90°,∴B,C′,D三点共线,∴DC′=DC=6,∴BC′=4,BE=8﹣C′E,∵BC′2+EC′2=BE2,∴42+C′E2=(8﹣C′E)2,解得C′E=3,∴BE=8﹣3=5;如图2,当∠BEC′=90°时,矩形ABCD中,AB=6,AD=BC=8,∴BD=10,∵把△DCE沿DE折叠,使点C落在点C′处,∴∠DC′E=∠C=90°,∵∠BEC′=90°,∴∠CEC′=90°,∴四边形ECDC′是正方形,∴C′E=CE=CD=6,∴BE=2.综上所述,当△BEC′为直角三角形时,BE的长为2或5.四、(本大题共3小题,每小题8分,共24分)18.【解答】(1)解:猜想:DM=ME;故答案为:DM=ME;(2)证明:延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,∴在△FME和△AMH中,,∴△FME≌△AMH(ASA)∴HM=EM,在Rt△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.19.【解答】解:(1)当x>0时,x+≥2=2,∴当x>0时,x+的最小值是2;(2)当x<0时,x+=﹣(﹣x﹣),﹣x﹣≥2=2,∴﹣(﹣x﹣)≤﹣2,∴当x<0时,x+的最大值是﹣2;(3)y==x+3+,x+≥2=8,∴x+的最小值是8,∴x+3+的最小值是11,∴当x>0时,y=的最小值是11.20.【解答】解:过P作PM⊥OA于M.(1)当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP′=8,∴P(2,4)或(8,4);(3)当OP=PD时,P(,4),此时腰长为:≠5,故这种情况不合题意,舍去.综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4).五、(本大题共2小题,每小题9分,共18分)21.【解答】解:(1)方法一:原式==﹣;方法二:原式==﹣;(2)原式=(﹣+﹣+…+﹣)=(﹣)=﹣.22.【解答】解:设A、B两种商品每件的进价分别是x元,y元根据题意得:解得:答:A、B两种商品每件的进价分别是30元,50元.(2)设A商品a件,B商品(1000﹣a)件,利润为m元根据题意得:解得:800≤a≤1000m=(45﹣30)a+(75﹣50)(1000﹣a)=25000﹣10a∵k=﹣10<0,∴m随a的增大而减小∴a=800时,m的最大值为17000元.∴A商品800件,B商品200件.六、(本大题共12分)23.【解答】(1)证明:如图1,连接AC,AC交EF于点O,∵四边形ABCD是矩形,∴AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△OBF≌△ODE,∴AE=CF,∵AE∥CF∴四边形AFCE是平行四边形,由翻折得,AF=CF,∴四边形AFCE是菱形.(2)解:①如图2中,作A′H⊥AB交AB的延长线于H.在Rt△GBH中,GB=2,∠GBH=60°,∴BH=BG=1,GH==,设AE=EG=x,在Rt△EGH中,∵EG2=EH2+GH2,∴x2=(9﹣x)2+()2,∴x=,∴AE=.②如图3中,连接AC交EF于P′,连接P′A′,作CH⊥AB交AB的延长线于H.∵A、A′关于直线EF对称,∴P′A′=P′A,∴P′A′+P′C=P′A+P′C=AC,∴当点P与P′重合时,P A′+PC的值最小,最小值=AC的长.在Rt△BCH中,∵BC=4,∠CBH=60°,∴BH=2,CH=2,∴AH=10,在Rt△ACH中,AC===4.∴PC+P A′的最小值为4,故答案为4.。
2020年八年级下册期中数学试卷(有答案)

八年级(下)期中数学试卷一、选择题(共10小题,每题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,234.在▱ABCD中,∠B﹣∠A=30°,则∠A,∠B,∠C,∠D的度数是()A.95°,85°,95°,85°B.85°,95°,85°,95°C.105°,75°,105°,75°D.75°,105°,75°,105°5.下列各式计算正确的是()A.8•2=16B.5•5=5C.4•2=8D.4•2=86.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm7.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直且相等的四边形是正方形8.化简等于()A.B.C.D.9.两条对角线互相垂直平分且相等的四边形是()A.矩形B.菱形C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12二、填空题(共10小题,每题3分,共30分)11.若二次根式有意义,则自变量x的取值范围是.12.已知菱形两条对角线的长分别为5cm和12cm,则这个菱形的面积是cm2.13.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.14.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.15.如图,一只蚂蚁从长为2cm,宽为2cm,高为3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线长是cm.16.已知实数a、b满足+(b+12)2=0,则=.17.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.18.实数a在数轴上的位置如图所示,则|a﹣1|+=.19.若最简二次根式和是同类二次根式,则=.20.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.三、解答题(共9小题,共60分)21.(10分)计算(1)(2)22.(9分)在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm.(1)求△ABC的面积;(2)求斜边AB的长;(3)求高CD的长.23.(9分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.24.(9分)如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.25.(9分)如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.26.(10分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.27.(10分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.28.(12分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,.求证:.29.(12分)如图,Rt△OA1A2中,过A2作A2A3⊥OA2,以此类推.且OA1=A1A2=A2A3=A3A4…=1,记△OA1A2的面积为S1,△OA2A3面积为S2,△OA3A4面积为S3,…,细心观察图,认真分析各题,然后解答问题:①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…(1)请写出第n个等式:;(2)根据式子规律,线段OA10=;(3)求出S12+S22+S32+…+S102的值.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每题3分,共30分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.【解答】解:A、=,故不是最简二次根式,不合题意;B、,是最简二次根式,符合题意;C、=2,故不是最简二次根式,不合题意;D、=5,故不是最简二次根式,不合题意;故选:B.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.2.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.4.在▱ABCD中,∠B﹣∠A=30°,则∠A,∠B,∠C,∠D的度数是()A.95°,85°,95°,85°B.85°,95°,85°,95°C.105°,75°,105°,75°D.75°,105°,75°,105°【分析】根据平行四边形中,对角相等,邻角互补的性质,可以设出未知数,列出方程,进而可求解四个角的度数.【解答】解:设∠A度数为x,则有:(180﹣x)﹣x=30,解得:x=75,所以∠A,∠B,∠C,∠D分别是75°,105°,75°,105°.故选:D.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对角相等,邻角互补的性质是解题的关键.5.下列各式计算正确的是()A.8•2=16B.5•5=5C.4•2=8D.4•2=8【分析】根据二次根式的乘法法则,进行判断即可.【解答】解:A、8•2=48,原式计算错误,故本选项错误;B、5•5=25,原式计算错误,故本选项错误;C、4•2=8,原式计算正确,故本选项正确;D、4•2=8,原式计算错误,故本选项错误;故选:C.【点评】本题考查了二次根式的乘法运算,解答本题的关键是掌握二次根式的乘法法则.6.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【分析】由平行四边形的性质和角平分线定义得出∠AEB=∠BAE,证出BE=AB=3cm,得出EC =BC﹣BE=2cm即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=5cm,AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AEB=∠BAE,∴BE=AB=3cm,∴EC=BC﹣BE=5﹣3=2cm;【点评】本题看成了平行四边形的性质、等腰三角形的判定与性质、角平分线定义;熟练掌握平行四边形的性质,证出BE=AB是解决问题的关键.7.下列命题中,正确的是()A.对角线相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直且相等的四边形是正方形【分析】根据矩形、菱形、平行四边形、正方形的判定方法逐一进行判定.【解答】解:A、对角线相等的平行四边形是矩形,故本选项错误;B、对角线互相平分的四边形是平行四边形,正确;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、对角线互相垂直平分且相等的四边形是正方形,故本选项错误.故选:B.【点评】本题考查了矩形、菱形、平行四边形、正方形的判定方法.熟练掌握特殊四边形的判定方法是解决此类问题的关键.8.化简等于()A.B.C.D.【分析】先将被开方数化为假分数,再转化为二次根式的商,然后分母有理化.【解答】解:原式====.故选:D.【点评】解答此题不仅要熟悉最简二次根式和算术平方根的定义,还要熟悉二次根式的除法运算.9.两条对角线互相垂直平分且相等的四边形是()A.矩形B.菱形C.正方形D.都有可能【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选:C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故选:C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(共10小题,每题3分,共30分)11.若二次根式有意义,则自变量x的取值范围是x≥﹣3且x≠0.【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x+3≥0,x≠0,解得x≥﹣3且x≠0,故答案为:x≥﹣3且x≠0.【点评】本题考查的是二次根式有意义和分式有意义的条件,掌握二次根式中的被开方数是非负数、分式分母不为0是解题的关键.12.已知菱形两条对角线的长分别为5cm和12cm,则这个菱形的面积是30cm2.【分析】根据菱形的面积公式即可解决问题.【解答】解:菱形的面积=×12×5=30(cm2).故答案为:30.【点评】本题考查菱形的性质、解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直,属于中考常考题型.13.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.14.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.【分析】本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解.【解答】解:观察图形AB==,AC==3,BC==2∴AC2+BC2=AB2,∴三角形为直角三角形,∵直角三角形中斜边上的中线等于斜边的一半∴CD=.【点评】解决此类题目要熟记斜边上的中线等于斜边的一半.注意勾股定理的应用.15.如图,一只蚂蚁从长为2cm,宽为2cm,高为3cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线长是5cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.【解答】解:如图(1),AB=;如图(2),AB=.故答案为:5.【点评】此题考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.16.已知实数a、b满足+(b+12)2=0,则=13.【分析】直接利用偶次方的性质以及二次根式的性质得出a,b的值,再利用算术平方根的定义化简得出答案.【解答】解:∵+(b+12)2=0,∴a=5,b=﹣12,∴==13.故答案为:13.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.17.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为2 cm2.【分析】因为DE丄AB,E是AB的中点,所以AE=1cm,根据勾股定理可求出DE的长,菱形的面积=底边×高,从而可求出解.【解答】解:∵E是AB的中点,∴AE=1cm,∵DE丄AB,∴DE==cm.∴菱形的面积为:2×=2cm2.故答案为:2.【点评】本题考查菱形的性质,四边都相等,菱形面积的计算公式以及勾股定理的运用等.18.实数a在数轴上的位置如图所示,则|a﹣1|+=1.【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.19.若最简二次根式和是同类二次根式,则=5.【分析】直接利用最简二次根式以及同类二次根式的定义分析得出答案.【解答】解:∵最简二次根式和是同类二次根式,∴,解得:,∴=5.故答案为:5.【点评】此题主要考查了最简二次根式以及同类二次根式的定义,正确得出x,y的值是解题关键.20.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10m.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.三、解答题(共9小题,共60分)21.(10分)计算(1)(2)【分析】(1)二次根式的加减运算先化为最简二次根式,再将被开方数相同的二次根式进行合并.(2)注意分母有理化的方法、平方差公式的运用.【解答】解:(1)原式=4+2﹣﹣=;(2)原式=4﹣+3+﹣﹣1=4﹣+2.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.22.(9分)在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm.(1)求△ABC的面积;(2)求斜边AB的长;(3)求高CD的长.【分析】(1)根据三角形的面积公式进行计算即可;(2)利用勾股定理可得出斜边AB的长;(3)利用面积的两种表达式可得出CD.【解答】解:如图所示:=AC×BC=2.94;(1)S△ABC(2)AB==3.5;(3)BC×AC=AB×CD,解得:CD=1.68.【点评】本题考查了勾股定理及直角三角形的面积,注意掌握三角形面积的不同表示方法.23.(9分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC =x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.24.(9分)如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.【分析】先在△ABC中,根据勾股定理求出AB2的值,再在△ABD中根据勾股定理的逆定理,判断出AD⊥AB,即可得到△ABD为直角三角形.【解答】解:△ABD为直角三角形.理由如下:∵在△ABC中,∠C=90°,∴AB2=CB2+AC2=42+32=52,∴在△ABD中,AB2+AD2=52+122=132,∴AB2+AD2=BD2,∴△ABD为直角三角形.【点评】本题考查勾股定理与其逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.25.(9分)如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD 的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,=BC•AC=8×6=48.∴S平行四边形ABCD【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.26.(10分)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用特殊四边形的性质解决问题.27.(10分)已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.【分析】根据正方形的性质得出∠AED=∠AFB,所以得到△AED≌△ABF,利用全等的性质得到AE=BF.【解答】证明:∵四边形ABCD是正方形,AE⊥BF,∴∠DAE+∠AED=90°,∠DAE+∠AFB=90°,∴∠AED=∠AFB,又∵AD=AB,∠BAD=∠D,∴△AED≌△ABF,∴AE=BF.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.28.(12分)求证:对角线互相垂直的平行四边形是菱形.小红同学根据题意画出了图形,并写出了已知和求证的一部分,请你补全已知和求证,并写出证明过程.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD.求证:四边形ABCD是菱形.【分析】由命题的题设和结论可填出答案,由平行四边形的性质可证得AC为线段BD的垂直平分线,可求得AB=AD,可得四边形ABCD是菱形.【解答】已知:如图,在▱ABCD中,对角线AC,BD交于点O,AC⊥BD,求证:四边形ABCD是菱形.证明:∵四边形ABCD为平行四边形,∴BO=DO,∵AC⊥BD,∴AC垂直平分BD,∴AB=AD,∴四边形ABCD为菱形.故答案为:AC⊥BD;四边形ABCD是菱形.【点评】本题主要考查菱形的判定及平行四边形的性质,利用平行四边形的性质证得AB=AD是解题的关键.29.(12分)如图,Rt△OA1A2中,过A2作A2A3⊥OA2,以此类推.且OA1=A1A2=A2A3=A3A4…=1,记△OA1A2的面积为S1,△OA2A3面积为S2,△OA3A4面积为S3,…,细心观察图,认真分析各题,然后解答问题:①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…(1)请写出第n个等式:()2+1=n+1,S n=;(2)根据式子规律,线段OA10=;(3)求出S12+S22+S32+…+S102的值.【分析】(1)根据前三个等式得到规律,根据规律解答;(2)根据勾股定理计算即可;(3)根据(1)中得到的规律、有理数的运算法则计算.【解答】解:(1)①()2+1=2,S1=;②()2+1=3,S2=;③()2+1=4,S3=…则第n个等式为:③()2+1=n+1,S n=,故答案为:()2+1=n+1,S n=;(2)OA1=1OA2=,OA3=,…则OA10=,故答案为:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2==.【点评】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.。
2020年八年级数学下期中试卷附答案

解析:
【解析】
【分析】
根据三角形中位线定理得到DE= BC,DF= AC,EF= AB,根据三角形的周长公式计算,得到答案.
由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定口ABCD是矩形.
故选答案为C.
【点睛】
本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.
二、填空题
13.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排
6.D
解析:D
【解析】
分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.
详解:根据函数图像可得:当x>2时,kx+b<ax,故选C.
点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.
7.B
解析:B
【解析】
【分析】根据被开方数大于源自于0,分母不等于0列式计算即可得解.
A.AC=BDB.AB⊥BC
C.1=2D.ABC=BCD
二、填空题
13.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:
植树棵数(单位:棵)
4
5
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下学期期中质量检测试卷八年级数学(考试时间:120分钟,满分100分)题号 .一二三总分1~1213~181920 212223242526得分一、选择题(本大题共12小题,每小题2分,共24分.在每小题给出的的四个选项中,只有一项是正确的,请将正确答案的字母代号填入对应题目后的括号内)1.下列图案中,不是中心对称图形的是( )2.如果一个多边形的内角和等于它的外角和的2倍,则这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形3.在Rt△ABC中,∠C=90°,AC=3,BC=4,CD是中线,则CD的长为( )A. 2.5B. 3C. 4D. 54.正方形是轴对称图形,它的对称轴共有( )A. 1条B. 2条C. 3条D. 4条5.一个直角三角尺和一把直尺如图放置,如果∠ =47°,则∠β的度数是 ( )A. 43°B. 47°C. 30°D. 60°6.下列说法正确的是( )A. 对角线相等的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 对角线互相垂直的四边形是平行四边形D. 对角线互相垂直且相等的四边形是平行四边形7.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形8.如图,正方形小方格边长为1,则网格中的△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9., ABCD的周长为16 cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( )A.4cmB.6cmC.8cmD.10cm10.下列命题中错误的是( )A.平行四边形的对角线互相平分 B.菱形的对角线互相垂直C.同旁内角互补 D.矩形的对角线相等11.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点, 且∠ACB=( )时,则四边形AECF是正方形.A.30°B.45°C.60°D.90°12. 如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2017=( )A. 2015B. 2016C.2017D. 2018二、填空题(本大题共6小题,每小题3分,共18分)请将答案填在题中的横线上.13.如右图,直角三角形ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4,则BD= 。
14.某正n边形的一个内角为108°,则n= 。
15.直角三角形两锐角平分线相交所成的角的度数为。
16.如右图,在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD= 。
17. 如右图,在矩形ABCD中,对角线AC,BD相交于点O,E、F分别是AO,AD的中点.若AB=6cm,BC=8cm,则△AEF的周长= 。
18.如下图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位,…,以此类推,这样连续旋转2017次后,顶点A在整个旋转过程中所经过的路程之和是。
三、解答题(本大题共8题,共58分。
在题下的空白处书写解答过程)19.(6分)如图,在ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE。
20.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高。
21.(6分) 如图是4×4正方形网格,请在其中选取一个白色 的单位正方形并涂黑,使图中黑色部分是一个中心对称图形。
22.(6分)如图,点D ,B 分别在∠A 的两边上,C 是∠A 内一点,且AB=AD ,BC=DC ,CE ⊥AD ,CF ⊥AB ,垂足分别为E ,F.求证:CE=CF.23.(8分) 如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO=∠DCO.24.(8分) 如图,∠A=∠B=90°,E 是AB 上的一点,且AE=BC ,∠1=∠2。
(1)求证:Rt △ADE 与Rt △BEC 全等; (2)求证:△CDE 是直角三角形.25.(8分)如图,等边△ABC 的边长是2,D 、E 分别为AB 、AC 的中点,延长BC 至点F ,使CF=21BC ,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.26.(10分)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.(1)试探究AP与BQ的数量关系,并证明你的结论;(2)当AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.参考答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDADABCACCDD13.1; 14.5 15. 45°或135°; 16.22; 17.9 18. 3026π18.解:转动一次A 的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是0,转动第五次A 的路线长是:,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:23252πππ++=6π,因2017÷4=504余1,所以顶点A 转动连续旋转2017次所经过的路线长为: 6π×504+2π=3026π19.证明: ∵ 四边形ABCD 是平行四边形∴ AD=BC,AD ∥BC. ………… 2分 ∵ 点E,F 分别是边AD,BC 的中点,∴ AE=CF. ………… 3分 ∴ 四边形AECF 是平行四边形 ………… 4分 ∴AF=CE. ………… 6分20.解:设旗杆的高AB 为x m,则绳子AC 的长为(x+1) m. ………… 1分 在Rt △ABC 中, AB 2+BC 2=AC 2,即x 2+52=(x+1)2. ………… 4分 解得x=12.∴AB=12 m. ………… 5分 ∴ 旗杆高12 m. ………… 6分21.解:如图所示:(6分) 22.。
证明:连接AC. ………… 1分∵AB=AD,BC=DC,AC=AC,∴△ABC ≌△ADC(SSS). ………… 3分 ∴∠DAC=∠BAC ………… 4分 .又CE ⊥AD,CF ⊥AB,∴CE=CF(角平分线上的点到角两边的距离相等). ………… 6分 23. 证明:∵四边形ABCD 是菱形,∴OD=OB,∠COD=90° ………… 2分 .∵DH ⊥AB,∴∠DHB=90°, ∴OH=OB∴∠OHB=∠OBH. ………… 4分 又∵AB ∥CD, ∴∠OBH=∠ODC.∴∠OHB=∠ODC. ………… 6分 在Rt △COD 中,∠ODC+∠DCO=90°, 在Rt △DHB 中,∠DHO+∠OHB=90°, ∴∠DHO=∠DCO. ………… 8分24. 解: (1)全等.理由是:∵∠1=∠2,∴DE=CE ………… 2分.∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC(HL). ………… 4分(2)是直角三角形.理由是:∵Rt△ADE≌Rt△BEC,∴∠A ED=∠BCE. ………… 6分∵∠ECB+∠BEC=90°,∴∠AED+∠BEC=90°.∴∠DEC=90°,∴△CDE是直角三角形………… 8分25. 三角形中位线定理;等边三角形的性质;平行四边形的判定与性质(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.(1)证明:∵D、E分别为AB、AC的中点,∴DE BC,………… 2分∵延长BC至点F,使CF=BC,∴DE FC,即DE=CF;………… 4分(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,………… 5分∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,………… 6分∴DC=EF=.………… 8分26.分析:;四边形综合题;全等三角形的判定与性质;勾股定理;正方形的性质;轴对称的性质(1)要证AP=BQ,只需证△PBA≌△QCB即可;(2)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中运用勾股定理就可解决问题;(3)过点Q作QH⊥AB于H,如图,同(2)的方法求出QM的长,就可得到AM的长.解:(1)AP=BQ.理由:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠ABQ+∠CBQ=90°.∵BQ⊥AP,∴∠PAB+∠QBA=90°,∴∠PAB=∠CBQ.………… 2分在△PBA和△QCB中,,∴△PBA≌△QCB,∴AP=BQ;………… 3分(2)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,∴QH=BC=AB=3.∵BP=2PC,∴BP=2,PC=1,∴BQ=AP===,∴BH===2.∵四边形ABCD是正方形,∴DC∥AB,∴∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,∴∠QBA=∠C′QB,∴MQ=MB.………… 4分设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中,根据勾股定理可得x2=(x﹣2)2+32,解得x=.∴QM的长为;………… 6分(3)过点Q作QH⊥AB于H,如图.∵四边形ABCD是正方形,BP=m,PC=n,∴QH=BC=AB=m+n.∴BQ2=AP2=AB2+PB2,∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2,∴BH=PB=m.………… 8分设QM=x,则有MB=QM=x,MH=x﹣m.在Rt△MHQ中,根据勾股定理可得x2=(x﹣m)2+(m+n)2,解得x=m+n+,∴AM=MB﹣AB=m+n+﹣m﹣n=.∴AM的长为.………… 10分。