2019-2020年九年级数学期中测试卷及答案
2019-2020年第一学期九年级期中数学考试试卷含答案

2019-2020年第一学期九年级期中数学考试试卷一、精心选一选(本大题有10小题,每小题4分,共40分) 1. 已知⊙O 的半径为4cm ,点P 在⊙O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm2.若37a b =,则b aa -等于( ) A .43 B.34 C. 37 D. 733.抛物线y =x 2-2x +3的对称轴为( )A .直线x =1B .直线x =-1C .直线x =2D .直线x =-24. 如图,在⊙O 中,点M 是︵AB 的中点,连结MO 并延长,交⊙O 于点N ,连结BN .若∠AOB =140°,则∠N 的度数为( )A .70°B .40°C .35°D .20°第4题 第6题 第8题5.在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是( ) A .12B .38C .13D .146. 如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA =OB =OC =2,则这朵三叶花的面积为( ) A .33-πB .63-πC .36-πD .66-π7. 已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A .AB 2=AC•BCB .BC 2=AC•BC C .AC=BC D .BC=AC8. 如图,AB 是半圆的直径,点C 是弧AB 的中点,点E 是弧AC 的中点,连结EB 、CA 交于点F ,则BF EF的值为( ) A.41 B.422- C.221- D.212- O N MBA9. 如图,抛物线y =x 2+b x +c 与直线y=x 交于(1,1)和(3,3)两点,以下结论:①b 2﹣4c >0;②3b+c+6=0;③当x 2+b x +c >时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( ) A .①②④B .②③④C .②④D .③④10. 若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线 y =mx 2-2mx +m -1(m >0)与 x 轴交于 A 、 B 两点,若该抛物线在 A 、B 之间的部分与线段 A B 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是( ) A .18≤ m ≤ 14 B .19< m ≤ 14 C .19 ≤ m < 12 D .19 < m < 14二、细心填一填(本大题有6小题,每小题5分,共30分)11.已知线段c 是线段a 、b 的比例中项,且a =4,b =9,则线段c 的长度为 . 12.小颖在二次函数y=2x 2+4x+5的图象上找到三点(-1,y 1),(21,y 2),(-321,y 3),则你认为y 1,y 2,y 3的大小关系应为___________.(用 < 号连接)13. 如图水库堤坝的横断面是梯形,BC 长为30m ,CD 长为20m ,斜坡AB 的坡比为1:3,斜坡CD 的坡比为1:2,则坝底的宽AD 为 m 。
2019-2020学年福建省福州九年级上学期期中考试数学试卷及答案解析

第 1 页 共 21 页
2019-2020学年福建省福州九年级上学期期中考试数学试卷
一.选择题:共10小题,每小题4分,共40分.每小题只有一项是符合题目要求的.
1.(4分)在平面直角坐标系中,若点A 在第一象限,则点A 关于原点的中心对称点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.(4分)方程x 2=4的解是( )
A .x =2
B .x =﹣2
C .x =0
D .x =2或x =﹣2
3.(4分)抛物线y =﹣x 2+2019的对称轴是( )
A .直线x =2019
B .直线x =﹣2019
C .x =﹣1
D .y 轴
4.(4分)如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( )
A .8
B .4
C .10
D .5
5.(4分)袋子中有2019个黑球、1个白球,他们除颜色外无其它差别.随机从袋子中摸出
一个球,则( )
A .摸到黑球、白球的可能性大小一样
B .这个球一定是黑球
C .事先能确定摸到什么颜色的球
D .这个球可能是白球
6.(4分)如图,一支反比例函数y =k x 的图象经过点A ,作AB ⊥x 轴于点B ,连接OA ,若
S △AOB =3,则k 的值为( )
A .﹣3
B .3
C .﹣6
D .6
7.(4分)国旗上大、小五角星的边长比是5:3,若大五角星的面积为50,则小五角星的
面积为( )。
2019-2020学年河北省保定十七中九年级(上)期中数学试卷(附答案详解)

2019-2020学年河北省保定十七中九年级(上)期中数学试卷一、选择题(本大题共17小题,共45.0分)1.下列方程中,是关于x的一元二次方程的是()A. 1x2+1x−2=0 B. ax2+bx+c=0C. 3x2+3x+7=3x2D. 5x2=42.如果2x=3y(x、y均不为0),那么下列各式中正确的是()A. xy =23B. xx−y=3 C. x+yy=53D. xx+y=253.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A.B.C.D.4.用配方法解一元二次方程x2−6x−10=0时,下列变形正确的为()A. (x+3)2=1B. (x−3)2=1C. (x+3)2=19D. (x−3)2=195.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A. 20B. 300C. 500D. 8006.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A. 12.36cmB. 13.6cmC. 32.36cmD. 7.64cm7.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A. 25B. 36C. 25或36D. −25或−368.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. OBCD =32B. αβ=32C. S1S2=32D. C1C2=329.若关于x的一元二次方程mx2+6x−9=0有两个实数根,则m的取值范围是()A. m≤1B. m≥−1C. m≤1且m≠0D. m≥−1且m≠010.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是()A. 1个B. 2个C. 3个D. 4个11.如图,在△ABC中,点D,E,F分别是AB,AC,BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于()A. 5:8B. 3:8C. 3:5D. 2:512.有长为24米的篱笆,一边利用墙(墙的最大可用长度为a=10米),围成如图所示的花圃,则能围成的花圃的最大面积为()平方米.A. 40B. 48C. 1003D. 140313.一个等腰三角形的两条边长分别是方程x2−7x+10=0的两根,则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或914.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEF=3,则S△BCF为()A. 3B. 6C. 9D. 1215.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a−b+ c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程2x2+mx+n=0既是“和谐”方程又是“美好”方程,则mn值为()A. 2B. 0C. −2D. 316.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N.设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A. 6B. 8C. 10D. 1217.如图,若干个正三角形的一边在同一条直线a上,这边对的顶点也在同一条直线b上,它们的面积依次为S1,S2,S3,S4…若S1=1,S2=2,则S6等于()A. 16B. 24C. 32D. 不能确定二、填空题(本大题共3小题,共10.0分)18.已知x=1是一元二次方程x2+mx+n=0的一个根,则2−m−n的值为______.19.如图,当太阳在A处时,小明测得某树的影长为2米,当太阳在B处时又测得该树的影长为8米.若两次日照的光线互相垂直,则这棵树的高度为______ 米.20.如图,已知在Rt△ABC中,AB=AC=3√2,在△ABC内作第一个内接正方形DEFG,则第1个内接正方形的边长______;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2020个内接正方形的边长为______.三、解答题(本大题共8小题,共76.0分)21.用适当的方法解方程:(1)2x2+3x=1;(2)(x−2)(x+5)=18;(3)(x−1)2=4;(4)x(3x−6)=(x−2)2.22.定义新运算“⊕”如下:当a≥b时,a⊕b=ab−a;当a<b时,a⊕b=ab+b.);(1)计算:(−2)⊕(−12(2)若2x⊕(x+1)=8,求x的值.23.如图,已知O是坐标原点,B、C两点的坐标分别为(3,−1)、(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)B点的对应点B′的坐标是______;C点的对应点C′的坐标是______(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标是______.24.小明正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题小明都不会,不过小明还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,随机选择一个选项,那么小明答对第一道题的概率是多少?(2)如果小明将“求助”留在第二题使用,请用画树状图或列表法求小明能顺利过关的概率.(3)请你从概率的角度分析,建议小明在第几题使用“求助”,才能使他过关的概率较大.25.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入−维护费用)26.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数分别是______、______.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第6个点阵中有______个圆圈;第n个点阵中有______个圆圈.(2)小圆圈的个数会等于331吗?请求出是第几个点阵.27.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF//AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2−7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S△AOE=16,试判断△AOE与△AOD是否相似?并说明理3由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.答案和解析1.【答案】D【解析】解:A、不是一元二次方程,故本选项不符合题意;B、当a=0时,不是一元二次方程,故本选项不符合题意;C、是一元一次方程,不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选:D.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键.2.【答案】B【解析】【分析】此题主要考查了比例的性质和应用,根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:A.∵2x=3y,∴xy =32,∴选项A不正确;B.∵2x=3y,∴xy =32,∴xx−y =33−2=3,∴选项B正确;C.∵2x=3y,∴xy =32,∴x+yy =3+22=52,∴选项C不正确;D.∵2x=3y,∴xy =32,∴xx+y =33+2=35,∴∴选项D不正确.故选B.3.【答案】C【解析】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选:C.根据左视图的定义,画出左视图即可判断.本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.4.【答案】D【解析】【分析】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.方程移项变形后,利用完全平方公式配方得到结果,即可做出判断.【解答】解:方程移项得:x2−6x=10,配方得:x2−6x+9=19,即(x−3)2=19.故选:D.5.【答案】C【解析】【分析】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中频率可以估计概率,难度不大.随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:C.6.【答案】A【解析】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比.理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.7.【答案】C【解析】解:设这个两位数的个位数字为x,那么十位数字应该是x−3,由题意得10(x−3)+x=x2,解得x1=5,x2=6;那么这个两位数就应该是25或36.故选:C.可设这个数的个位数为x,那么十位数字应该是x−3,由一个两位数等于它的个位数的平方,列出一元二次方程求解.本题要注意两位数的表示方法,然后根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.8.【答案】D【解析】【分析】根据相似三角形的性质判断即可.本题考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴OBOD =32,A错误;∴S1S2=94,C错误;∴C 1C 2=32,D 正确; 不能得出αβ=32,B 错误;故选:D . 9.【答案】D【解析】解:∵关于x 的一元二次方程mx 2+6x −9=0有两个实数根,∴△≥0且m ≠0,∴36+36m ≥0且m ≠0,∴m ≥−1且m ≠0,故选:D .根据一元二次方程的定义以及根的判别式的意义可得△=36+36m ≥0且m ≠0,求出m 的取值范围即可.本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a,b,c 为常数)根的判别式△=b 2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.【答案】C【解析】【分析】本题考查了相似三角形及相似多边形的判定,以及位似图形的概念;解题关键是熟练掌握相似三角形及相似多边形的性质及判定.解题时,根据相似三角形和相似多边形的判定方法进行判定即可.注意:对于菱形,矩形等多边形,即使角度对应相等,但边长的比例不确定,不能判断其相似.【解答】解:①中两个角对应相等,为相似三角形,故①正确;②顶角相等且为等腰三角形,即底角也相等,是相似三角形,故②正确;③菱形的角不确定,所以不一定相似,故③错误;④如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,题中所述正确,故④正确;所以①②④正确,故选C.11.【答案】A【解析】【分析】先由AD:DB=3:5,求得BD:AB的比,再由DE//BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF//AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.【解答】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE//BC,∴CE:AC=BD:AB=5:8,∵EF//AB,∴CF:CB=CE:AC=5:8.故选:A.12.【答案】D【解析】解:由题可知,花圃的宽AB为x米,则BC为(24−3x)米.24−3x≤10,x≥143,这时面积S=x(24−3x)=−3x2+24x=−3(x−4)2+48(143≤x<8),当x=143时,S有最大值是1403,∴能围成的花圃的最大面积为1403平方米,故选:D.可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式,求出最大值即可.本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.13.【答案】A【解析】【分析】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.求出方程的解,即可得出三角形的边长,再求出即可.【解答】解:x2−7x+10=0,(x−2)(x−5)=0,x−2=0,x−5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+ 5=12;即等腰三角形的周长是12.故选A.14.【答案】D【解析】【解析】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.利用平行四边形的性质得到AD//BC,AD=BC,则DE=1BC,再证明△DEF∽△BCF,然后根据相似三角形的性质计算S△BCF的值.2【答案】解:∵四边形ABCD为平行四边形,∴AD//BC,AD=BC,∵点E是边AD的中点,∴DE=1BC,2∵DE//BC,∴△DEF∽△BCF,∴S△DEFS△BCF =(DEBC)2=14,∴S△BCF=4×3=12.故选:D.15.【答案】B【解析】解:根据题意得“和谐”方程的一个根为1,“美好”方程的一个根为−1,所以一元二次方程2x2+mx+n=0的根为1和−1,所以2+m+n=0,2−m+n=0,解得m=0,n=−2,所以mn=0.故选:B.根据一元二次方程的定义,可判定“和谐”方程的一个根为1,“美好”方程的一个根为−1,则2+m+n=0,2−m+n=0,然后求出m、n的值后计算mn的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【答案】B【解析】【分析】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法及相似三角形的面积比等于相似比的平方是解题的关键.由条件可证明△BPQ∽△DKM∽△CNH,且能求得其相似比,再根据相似三角形的面积比等于相似比的平方,结合条件可求得S2.【解答】解:∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE//BF//DG//CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE//DF//CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴ABAD =BQMD=12,BQCH=ABAC=13,∴△BPQ∽△DKM∽△CNH,∴QBMD =12,∴S1S2=14,S1S3=19,∴S2=4S1,S3=9S1,∵S1+S3=20,∴S1=2,∴S2=8.故选:B.17.【答案】C【解析】解:∵△AEF、△BFG、△CGH 都是等边三角形,∴∠AFE=∠BGF=60°,∠BFG=∠CGH=60°,∴AF//BG,BF//CG,∴∠BAF=∠CBG,∠ABF=∠BCG,∴△ABF∽△BCG,∴AFBG =BFCG.∵△AEF、△BFG、△CGH都是等边三角形,∴△AEF∽△BFG∽△CGH,∴S△AEFS△BFG =(AFBG)2,S△BFGS△CGH=(BFCG)2,∴S△AEFS△BFG =S△BFGS△CGH,∴S1S2=S2S3,∴S22=S1⋅S3.∵S1=1,S2=2,∴S3=4.同理S32=S2⋅S4,则有S4=8;S42=S3⋅S5,则有S5=16;S52=S4⋅S6,则有S6=32.故选:C.易证△ABF∽△BCG,则有AFBG =BFCG.易得△AEF∽△BFG∽△CGH,则有S△AEFS△BFG=(AFBG)2,S△BFG S△CGH =(BFCG)2,从而可得S22=S1⋅S3,同理S32=S2⋅S4,S42=S3⋅S5,S52=S4⋅S6,就可求出S6,从而解决问题.本题主要考查了等边三角形的性质、相似三角形的判定与性质、三角形的面积等知识,运用相似三角形的面积比等于相似比的平方是解决本题的关键.18.【答案】3【解析】【分析】本题考查了一元二次方程的解.正确理解方程的解的含义是解答此类题目的关键.根据一元二次方程的解的定义,将x=1代入一元二次方程x2+mx+n=0,求得m+n 的值,即可得出答案.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴x=1满足一元二次方程x2+mx+n=0,∴1+m+n=0,∴m+n=−1,∴2−m−n=2−(m+n)=2+1=3.故答案是:3.19.【答案】4【解析】解:如图,∵两次日照的光线互相垂直,∴∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,又∵∠CDE=∠FDC=90°,∴△CDE∽△FDC,∴CDDF =DECD,由题意得,DE=2,DF=8,∴CD8=2CD,解得CD=4,即这颗树的高度为4米.故答案为:4.在图形标注字母,然后求出△CDE和△FDC相似,根据相似三角形对应边成比例可得CD DF =DECD,然后代入数据进行计算即可得解.本题考查了相似三角形的应用,平行投影,确定出相似三角形是解题的关键,标注字母更便于叙述.20.【答案】2122018【解析】解:∵在Rt△ABC中,AB=AC=3√2,∴∠B=∠C=45°,BC=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=13BC,∴DE=2,即第1个内接正方形的边长为2.∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴EIKI =PFEF=12,∴EI=12KI=12HI,∵DH=EI,∴HI=12DE=(12)2−1×2,第n个内接正方形的边长为:2×(12)n−1,则第n个内接正方形的面积为14n−2.∴第2020个内接正方形的边长为122018.故答案为:2;122018.首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出EI KI =PF EF =12,即可得出正方形边长之间的变化规律,得出答案即可.此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.21.【答案】解:(1)2x 2+3x −1=0,∵a =2,b =3,c =−1,∴Δ=b 2−4ac =32−4×2×(−1)=17>0,∴x =−b±√b 2−4ac 2a=−3±√174, ∴x 1=−3+√174,x 2=−3−√174;(2)(x −2)(x +5)=18;∵x 2+3x −28=0,∴(x +7)(x −4)=0,即x +7=0或x −4=0,∴x 1=−7,x 2=4;(3)∵x −1=±2,∴x −1=2或x −1=−2,∴x 1=3,x 2=−1;(4)x(3x −6)=(x −2)2,∵3x 2−6x =x 2−4x +4,∴x 2−x −2=0,∴(x −2)(x +1)=0,即x −2=0或x +1=0,∴x 1=2,x 2=−1.【解析】(1)先化为一般式2x 2+3x −1=0,可得a =2,b =3,c =−1,即可算出根的判别式△的值,根据求根公式计算即可得出答案;(2)先应用多项式乘法法则进行计算,再化为一般式,再应用十字相乘法进行分解即可得出答案;(3)应用直接开平方法进行求解即可得出答案;(4)先化为一般式,再应用十字相乘法进行求解即可得出答案.本题主要考查了解一元二次方程,熟练应用解一元二次方程的方法进行求解是解决本题的关键.22.【答案】解:(1)(−2)⊕(−12)=(−2)×(−12)+(−12)=1+(−12)=12;(2)当2x ≥x +1时,即:x ≥1时,2x(x +1)−2x =8,解得:x =±2,∵x ≥1,∴x =2;当2x <x +1时,即:x <1时,2x(x +1)+x +1=8,2x 2+3x −7=0解得:x 1=−3+√654,x 2=−3−√654, ∵x <1,∴x =−3−√654.【解析】(1)首先根据a ⊕b =ab −a ,认真分析找出规律,即可求出(−2)⊕(−12)的值;(2)首先分两种情况进行讨论,当2x ≥x +1和2x <x +1时,分别解出x 的取值范围,即可得出x 的值.此题考查了解一元二次方程−公式法,本题属于新定义题型,是近几年的考试热点之一.新定义题型需要依据给出的运算法则进行计算,这和解答实数或有理数的混合运算相同,其关键仍然是正确的理解与运用运算的法则.23.【答案】(1)如图,△OB′C′为所作;(2)(−6,2)(−4,−2)(3)(−2x,−2y)【解析】解:(1)见答案(2)B点的对应点B′的坐标是(−6,2);C点的对应点C′的坐标是(−4,−2);故答案为:(−6,2),(−4,−2)(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标为(−2x,−2y).故答案为:(−2x,−2y).(1)(2)把B、C点的横纵坐标都乘以−2得到B′、C′点的坐标,然后描点即可;(3)把P点的横纵坐标都乘以−2得到P′点的坐标.本题考查了作图−位似变换:利用关于原点为位似中心的对应点的坐标之间的关系先写出对应的坐标,然后描点画图.24.【答案】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:1;3;故答案为:13(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:19;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;∴建议小明在第一题使用“求助”.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】(1)60−x 10;200+x ;(60−x 10)×20;(2)依题意得:(200+x)(60−x 10)−(60−x 10)×20=14000,整理,得x 2−420x +32000=0,解得x 1=320,x 2=100.当x =320时,有游客居住的客房数量是:60−x 10=28(间).当x =100时,有游客居住的客房数量是:60−x 10=50(间).所以当x =100时,能吸引更多的游客,则每个房间的定价为200+100=300(元). 答:每间客房的定价应为300元.【解析】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为x 10,∴入住的房间数量=60−x 10,房间价格是(200+x)元,总维护费用是(60−x 10)×20.故答案为:60−x 10;200+x ;(60−x 10)×20;(2)见答案.(1)住满为60间,x 表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为x 10,入住量=60−房间空闲个数,列出代数式;(2)用每天的房间纯收入=每间房实际定价×入住量−总维护费用,每间房实际定价=200+x ,列出方程.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】48 6n 91 [n ×3(n −1)+1=3n 2−3n +1]【解析】解:图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以图8、图n 中黑点的个数分别是48,6n ;故答案为:48,6n ;(1)观察点阵可知:第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);发现规律:第n 个点阵中有圆圈个数为:n ×3(n −1)+1=3n 2−3n +1.故答案为:91;n ×3(n −1)+1=3n 2−3n +1.(2)会;第11个点阵.3n 2−3n +1=331整理得,n 2−n −110=0解得n 1=11,n 2=−10(负值舍去),答:小圆圈的个数会等于331,是第11个点阵.观察图形可得,图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数;(1)观察点阵可得,第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);进而发现规律:即可得第n个点阵中有圆圈个数;(2)3n2−3n+1=331,整理得,n2−n−110=0,解得n1=11,n2=−10(负值舍去),进而得结论.本题考查了规律型−图形的变化类,解决本题的关键是观察图形的变化,寻找规律,总结规律,运用规律.27.【答案】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO于点M,∴AM=12AO=52,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴APAC =AMAD,∴AP=t=258,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)如图2,过点O作OH⊥BC交BC于点H,则OH=12CD=12AB=3cm,由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE(ASA),∴BE=PD=8−t,则S△BOE=12BE⋅OH=12×3(8−t)=12−32t.∵FQ//AC,∴△DFQ∽△DOC,相似比为DQDC =t6,∴S△DFQS△DOC =t236,∵S△DOC=14S矩形ABCD=14×6×8=12cm2,∴S△DFQ=12×t236=t23,∴S五边形OECQF =S△DBC−S△BOE−S△DFQ=12×6×8−(12−32t)−t23=−13t2+32t+12;∴S与t的函数关系式为S=−13t2+32t+12;(3)存在,∵S△ACD=12×6×8=24,∴S五边形OECQF :S△ACD=(−13t2+32t+12):24=9:16,解得t=3,或t=32,∴t=3或32时,S五边形OECQF:S△ACD=9:16.【解析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)过点O作OH⊥BC交BC于点H,已知BE=PD,则可求△BOE的面积;可证得△DFQ∽△DOC,由相似三角形的面积比可求得△DFQ的面积,从而可求五边形OECQF的面积.(3)根据题意列方程得到t=3或t=32,可求解.本题是四边形综合题,考查了矩形的性质,角平分线的性质,相似三角形的判定和性质,图形面积的计算,全等三角形的判定和性质,正确的识别图形是解题的关键.28.【答案】解:(1)x2−7x+12=0,因式分解得,(x−3)(x−4)=0,由此得,x−3=0,x−4=0,所以,x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;(2)S△AOE=12×4⋅OE=163,解得OE=83,∵OEOA =834=23,OAOD=46=23,∴OEOA =OAOD,又∵∠AEO=∠OAD=90°,∴△AOE∽△AOD;(3)∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,∵OB=3,∴OC=6−3=3,由勾股定理得,AC=√OA2+OC2=√42+32=5,易求直线AB的解析式为y=43x+4,设点F的坐标为(a,43a+4),则AF2=a2+(43a+4−4)2=259a2,CF2=(a−3)2+(43a+4)2=259a2+143a+25,①若AF=AC,则259a2=25,解得a=±3,a=3时,43a+4=43×3+4=8,a=−3时,43a+4=43×(−3)+4=0,所以,点F的坐标为(3,8)或(−3,0);②若CF=AC,则259a2+143a+25=25,整理得,25a2+42a=0,解得a=0(舍去),a=−4225,4 3a+4=43×(−4225)+4=4425,所以,点F的坐标为(−4225,4425),③若AF=CF,则259a2=259a2+143a+25,解得a=−7514,4 3a+4=43×(−7514)+4=−4414,所以,点F的坐标为(−7514,−227),综上所述,点F的坐标为(3,8)或(−3,0)或(−4225,4425)或(−7514,−227)时,以A、C、F为顶点的三角形是等腰三角形.【解析】(1)利用因式分解法解一元二次方程即可;(2)利用三角形的面积求出OE,然后求出两个三角形夹直角的两边的比,再根据相似三角形的判定方法判定即可;(3)根据平行四边形的对边相等求出BC,再求出OC,然后利用勾股定理列式求出AC的长,再求出直线AB的解析式为y=43x+4,设出点F的坐标,然利用勾股定理列式求出AF2、CF2,再分三种情况列出方程求解即可.本题是四边形综合题型,主要利用了解一元二次方程,三角形的面积,相似三角形的判定与性质,等腰三角形的性质,难点在于(3)分情况讨论,利用勾股定理表示出△ACF的三条边求解更简便.。
2019-2020学年度第二学期期中检测九年级数学试题及答案

2019—2020学年度第二学期期中考试初三数学试题(考试时间:120分钟 试卷分值:150分) 命题、校对:一、选择题(每题只有一个是正确的,每题3分,共18分) 1、-12 的相反数是( )A 、12B 、-2C 、-12D 、22、在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A 、+2米B 、-2米C 、+18米D 、-18米 3、在下列四个几何体中,主视图与俯视图都是圆的为( )4、一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( )A 、4B 、5C 、6D 、7 5、如图,AB 、AC 是⊙O 的两条切线,B 、C 是切点,若∠A =70°, 则∠BOC 的度数为( )A 、130°B 、120°C 、110°D 、100°6.如图,在钝角△ABC 中,分别以AB 和AC 为斜边向△ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ,EM 平分∠AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN 、DE 、DF .下列结论: ①EM=DN ; ②S △CDN =31S 四边形ABDN ; ③DE=DF ; ④DE ⊥DF .其中正确的结论的个数是( )7、实数16的算术平方根是__________.8、在函数y = 1x -2中,自变量x 的取值范围是__________.9、今年一季度东台财政收入列江苏沿海各县市区财政收入前茅达3 230 000 000元,将这个数用科学计数法表示为________________________10、分解因式:2ax ax -= .11、抛物线y =x 2-bx +3的对称轴是直线x =1,则b 的值为__________. 12、已知圆锥的底面半径为3,高为4,则这个圆锥的侧面积为 . 13、如图,在2×2的网格中,每个小正方形的边长都是1,图中的阴影部分图案是由一个点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积为 .14、在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1), 将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的 坐标为(-2,2),则点N ′的坐标为 .15、质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子 一次,则向上一面的数字是偶数的概率为 . 16、如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣x +4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2019=. 三、解答题(共11大题,合计102分) 17、(8分)计算: 203(4)(π3)2|5|-+----18、(8分)解不等式组⎩⎨⎧-≥+>+14201x x x19、(8分) 化简)31(96922a a a a -÷++-,并选一个你喜欢的a 的值代入求值。
2019-2020年九年级下期中考试数学试题含解析

2019-2020年九年级下期中考试数学试题含解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内) 1、下面哪个数的倒数是15-( ) .A 15 B.-5 C.15- D.52.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333C .01=+-aa D . 933)(a a =--3.下面的图形中,既是轴对称图形又是中心对称图形的是( )A.B .C .D.4. 下列数据是2017年4月10日6点公布的中国六大城市的空气污染指数情况:城市 北京 合肥 南京 哈尔滨 成都 南昌 污染指数34216316545227163A .164和163B .105和163C .105和164D .163和1645. 将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )6. 如图,学校大门出口处有一自动感应栏杆,点A 是栏杆转动的支点,当车辆经过时,栏杆AE 会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB ⊥BC ,支架AB 高1.2米,大门打开的宽度BC 为2米,以下哪辆车可以通过?( )(栏杆宽度,汽车反光镜忽略不计) (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.车辆尺寸:长×宽×高)A .宝马Z4(4200mm×1800mm×1360mm )B .奔驰smart (4000mm×1600mm×1520mm )DCBAACBC .大众朗逸(4600mm×1700mm×1400mm )D .奥迪A6L (4700mm×1800mm×1400mm ) 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在题中横线上)7. 分解因式:822-x =________ 8. 在函数62-=x y 中使得函数值为0的自变量x 的值是________9. 江苏卫视《最强大脑》第三季正在热播,据不完全统计该节目又创收视新高,全国约有85600000人在收看,全国观看《最强大脑》第三季的人数用科学计数法表示为________人. 10. 已知点M(1-a ,2)在第二象限,则a 的取值范围是________11. 如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是第11题 第12题 第13题 第16题12. 如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是 13.如图,直线AB 与半径为2的⊙O 相切于点C D ,是⊙O 上点,且30EDC ∠=,弦E F A B ∥,则EF 的长度为14.已知正整数a 满足不等式组 ⎩⎨⎧-≤+≥232a x a x (x 为未知数)无解,则函数41)3(2---=x x a y 图象与x 轴的坐标为15.一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为 s .16. 如图,直线y =3x +43与x 轴、y 轴分别交于A 、B 两点, ∠ABC =60°,BC 与x 轴交于点C .动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿C -B -A 向点A 运动(不与C 、A 重合) ,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.若当△APQ 的面积最大时,y 轴上有一点M ,第二象限内存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形, 则点N 的坐标为三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤) 17. (本题满分6分)计算:12)12(40-++-18. (本题满分6分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-1. 19. (本题满分8分)如图,在△ABC 中,(1)在图中作出△ABC 的内角平分线AD.(要求:尺规作图,保留作图痕迹,不写证明过程)(2)若∠BAC = 2∠C ,在已作出的图形中,△ ∽△(3)画出△ABC 的高AE (使用三角板画出即可),若∠B=α,∠C=β,那么∠DAE= (请用含α、β的代数式表示)20. (本题满分8分)盐城是一让人打开心扉的城市,吸引了很多的国内外游客,春风旅行社对3月份本社接待的外地游客来盐城旅游的首选景点作了一次抽样调查. 调查结果如下图表:(1)此次共调查了多少人?BAC景点 频数频率 丹顶鹤 8729%麋鹿75盐渎公园 6321% 息心寺4715.7% 后羿公园 28 9.3%_ 0_ 80 _ 20 _ 100 _ 10_ 30 _ 70 _ 60 _ 40 _ 90 _ 50(2)请将以上图表补充完整.(3)该旅行社预计4月份接待外地来杭的游客2500人,请你估计首选去丹顶鹤的人数约有多少人.21.(本题满分8分)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等...但面积相等的三角形是 (只需要填一个三角形);(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表格求解).22.(本题满分10分)如图,点A (1,a )在反比例函数(x >0)的图象上,AB垂直于x 轴,垂足为点B ,将△ABO 沿x 轴向右平移2个单位长度,得到Rt △DEF ,点D 落在反比例函数(x >0)的图象上.(1)求点A 的坐标; (2)求k 值.23.(本题满分10分)如图,在东西方向的海岸线上有一个码头M ,在码头M 的正西方向有一观察站O .某时刻测得一艘匀速直线航行的轮船位于O 的北偏西30°方向,且与O 相距360千米的A 处;经过3小时,又测得该轮船位于O 的正北方向,且与O 相距60千米的B 处.(1)求该轮船航行的速度;(2)当该轮船到达B 处时,一艘海监船从O 点出发以每小时16千米的速度向正东方向行驶,请通过计算说明哪艘船先到达码头M .(参考数据:41.12,73.13≈≈)24.(本题满分10分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C .(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为2,求BC 的长.25.(本题满分10分)五一期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中第21题一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元(优惠券在购买该物品时就可使用);不少于600元的,所赠优惠劵是购买电器金额的14,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x (x≥400)元,优惠券金额为y 元,则:①当x =500时,y = ;②当x≥600时,y = ;(2)如果小张想一次性购买原价为x (400≤x <600)元的电器,可以使用优惠劵,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠券金额累计达800元,设他购买电器的金额为W 元,W 至少..应为多少?(W =支付金额-所送现金金额) 26.(本题满分12分)阅读材料并解答问题:关于勾股定理的研究有一个很重要的内容是勾股数组,在数学课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m 为奇数(m≥3),则a=m ,b=(m 2﹣1)和c=(m 2+1)是勾股数. 方法2:若任取两个正整数m 和n (m >n ),则a=m 2﹣n 2,b=2mn ,c=m 2+n 2是勾股数. (1)在以上两种方法中任选一种,证明以a ,b ,c 为边长的△ABC 是直角三角形;(2)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树 棵.(3)某家俱市场现有大批如图所示的梯形边角余料(单位:cm),实验初中数学兴趣小组决定将其加工成等腰三角形,且方案如下:①三角形中至少有一边长为10 cm ;②三角形中至少有一边上的高为8 cm ,请设计出三种面积不同的方案并在图上画出分割线,求出相应图形面积.27.(本题满分14分)如图,抛物线b ax x y ++-=2与直线121+=x y 交于A 、B 两点,其中A 在y 轴上,点B 的横坐标为4,P 为抛物线上一动点,过点P 作PC 垂直于AB ,垂足为C. (1)求抛物线的解析式;(2)若点P 在直线AB 上方的抛物线上,设P 的横坐标为m ,用m 的代数式表示线段PC 的长,并求出线段PC 的最大值及此时点P 的坐标. (3)若点P 是抛物线上任意一点,且满足0°<∠PAB ≤45°。
2019-2020学年河南省洛阳市九年级(上)期中数学试卷(解析版)

2019-2020学年河南省洛阳市九年级(上)期中数学试卷一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .85.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x ==7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3600(1)12000x +=B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过() A .第一象限B .第二象限C .第三象限D .第四象限10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1CD 二、填空题(每小题3分,共15分)11.计算23--= .12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 .13.二次函数224y x x =-+的顶点坐标是 .14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 个.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根. 20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标; (4)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标;21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.23.如图,抛物线2y x bx c=-++交x轴于A,B两点,交y轴于点C直线122y x=-+经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求PBC∆面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.2019-2020学年河南省洛阳市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-【解答】解:224-=-, 则比22-小1的数是5-, 故选:D .2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯【解答】解:171亿17= 100 000 10000 1.7110=⨯. 故选:B .3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒【解答】解://AB CD ,B EFC ∴∠=∠,2E EFC D B D D D D ∴∠=∠-∠=∠-∠=∠-∠=∠,22E ∠=︒, 22D ∴∠=︒,故选:A .4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .8【解答】解:连接OE ,与DC 交于点F , 四边形ABCD 为矩形,OA OC ∴=,OB OD =,且AC BD =,即OA OB OC OD ===, //OD CE ,//OC DE , ∴四边形ODEC 为平行四边形,OD OC =,∴四边形ODEC 为菱形,DF CF ∴=,OF EF =,DC OE ⊥, //DE OA ,且DE OA =, ∴四边形ADEO 为平行四边形,2AD =,2DE =,OE ∴=,即OF EF ==在Rt DEF ∆中,根据勾股定理得:1DF ==,即2DC =,则11222ODEC S OE DC =⋅=⨯=菱形.故选:A .5.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)【解答】解:观察图象可知(4,2)O '-,故选:C .6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==- B .121x x ==C .11x =,21x =-D .120x x ==【解答】解:(1)10x x x +--=,(1)(1)0x x x ∴+-+=,则(1)(1)0x x +-=, 10x ∴+=或10x -=,解得11x =-,21x =, 故选:C .7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( ) A .3600(1)12000x += B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=【解答】解:根据题意列出方程,得236003600(1)3600(1)12000x x ++++=. 故选:D .8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<【解答】解:抛物线的对称轴为直线1x =,抛物线与x 轴的一个交点坐标为(1,0)-, ∴抛物线与x 轴的另一个交点坐标为(3,0), ∴抛物线的解析式可设为(1)(3)y a x x =+-,把(0,3)-代入得31(3)a -=-,解得3a =,∴抛物线的解析式为(1)(3)y x x =+-,即223y x x =--,2(1)4y x =--,1x ∴=时,y 有最小值4-, 2x =时,2233y x x =--=-,∴当12x -<<,y 的取值范围是40y -<.故选:D .9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:点(,)m n 在坐标系中的第四象限, 0m ∴>,0n <, 20m ∴+>,40n -<,∴一次函数(2)4y m x n =++-的图象经过第一、三、四象限.故选:B .10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1 CD【解答】解:由旋转的特性可知,BM BN =, 又60MBN ∠=︒, BMN ∴∆为等边三角形. MN BM ∴=,点M 是高CH 所在直线上的一个动点,∴当BM CH ⊥时,MN 最短(到直线的所有线段中,垂线段最短). 又ABC ∆为等边三角形,且2AB BC CA ===,∴当点M 和点H 重合时,MN 最短,且有112MN BM BH AB ====. 故选:B .二、填空题(每小题3分,共15分) 11.计算23--= 12- . 【解答】解:原式93=-- 12=-.故答案为:12-.12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 2x - .【解答】解:解不等式12x-,得:2x -,解不等式74x -+>,得:3x <, 则不等式组的解集为2x -, 故答案为:2x -.13.二次函数224y x x =-+的顶点坐标是 (1,3) .【解答】解:224y x x =-+,∴12ba-= 244144344ac b a -⨯⨯-==, 即顶点坐标为(1,3), 故答案为:(1,3).14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 3 个.【解答】解:①因为抛物线的对称轴1x =, 所以12ba-=,即20b a +=, 所以①正确;②因为(1,0)A -,对称轴1x =,所以设抛物线与x 轴的另一个交点为E , 所以(3,0)E ,所以3x =时,0y =,即3x =是20ax bx c ++=的一个根. 所以②正确; ③如图:过点B 作BD ⊥对称轴于点D ,设对称轴交x 轴于点C , AP BP ⊥, 90APB ∴∠=︒, 90APC BPD ∴∠+∠=︒, 90BPD PBD ∠+∠=︒, PBD APC ∴∠=∠,AP BP =,Rt APC Rt PBD(AAS)∴∆≅∆ 1PC BD ∴==,2DP AC ==, 3DC ∴=, 3OB ∴=,(0,3)B ∴.又(3,0)E ,(1,0)A -.设抛物线解析式为(1)(3)y a x x =+-, 把(0,3)B 代入,解得1a =-, ∴抛物线解析式为223x x -++,当1x =时,4y =, 即4a b c ++=. 所以③正确. 故答案为3.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的【解答】解:分两种情况: ①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形, 90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上, 1452BAE B AE BAD ∴∠=∠'=∠=︒,AB BE ∴=, ∴315a =, 53a ∴=; ②当点B '落在CD 边上时,如图2. 四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上, 90B AB E ∴∠=∠'=︒,1AB AB ='=,35EB EB a ='=,DB ∴'==,3255EC BC BE a a a =-=-=.90B AD EB C AB D ∠'=∠'=︒-∠', 90D C ∠=∠=︒,ADB ∴∆'∽△B CE ',∴DB AB CE B E ''='12355a =,解得1a =2a =. 综上,所求a 的值为53或故答案为53三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 【解答】解:解方程220x x -=得:0x =或2,2234(1)121x x x x x ---÷+++2(2)(2)(1)1(2)(2)x x x x x x +-+=++- 1x =+,当2x =时,原式没有意义,舍去; 当0x =时,原式1=.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 50 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:48%50÷=(人),最喜爱戏曲的人数为:506%3⨯=(人);“娱乐”类人数占被调查人数的百分比为:18100%36%50⨯=, ∴ “体育”类人数占被调查人数的百分比为:18%30%36%6%20%----=, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是36020%72︒⨯=︒;故答案为:50,3,72︒.(2)20008%160⨯=(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.【解答】解:(1)对于直线y =+,令0x =,则y = 令0y =,则1x =-,故点A 的坐标为,点B 的坐标为(1,0)-,则AO =1BO =, 在Rt ABO ∆中,tan AOABO BO∠==,60ABO ∴∠=︒;(2)在ABC ∆中, AB AC =,AO BC ⊥, AO ∴为BC 的中垂线,即BO CO =,则C 点的坐标为(1,0),设直线l 的解析式为:(y kx b k =+,b 为常数),则0b k b ==+⎪⎩,解得:k b ⎧=⎪⎨=⎪⎩即函数解析式为:y =+.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根.【解答】解:(1)关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根, ∴210(2)4(1)(2)0k k k k +≠⎧⎨=--+->⎩, 解得:2k >-且1k ≠-,∴实数k 的取值范围为2k >-且1k ≠-.(2)2k >-且1k ≠-,∴满足条件的k 的最小整数值为0,此时原方程为220x -=,解得:1x =,2x =.20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标;(4)在x轴上找一点P,使PA PB+的值最小,请直接写出点P的坐标;【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.222(3)如图,点M即为所求,点M的坐标(1,0)-.(4)如图,点P即为所求,点P的坐标(2,0).21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;【解答】解:(1)设每箱新红星a 元,每箱红富士b 元,由题意可得: 40600.943001000.9354950a b a b +⨯=⎧⎨⨯+=⎩, 解得4050a b =⎧⎨=⎩,答:每箱新红星40元,每箱红富士50元;(2)设购置新红星x 箱,则购置红富士(120)x -箱,所需的总费用为y 元, 由题意可得:1(120)2x x -, 解得:40x , 又60x ,所以新红星箱数x 的取值范围:4060x , 当4050x <时, 40500.8(120)y x x =+⨯- 804800x =+,所以40x =时,y 有最小值80000元,当5060x 时,0.840500.8(120)724800y x x x =⨯+⨯-=+, 所以50x =时,y 有最小值8400元, 80008400<,∴购买新红星40箱,红富士80块,费用最少,最少费用为8000元.22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: 12S S = . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.【解答】解:(1)结论:12S S =.理由:如图1中,作EH BA ⊥交BA 的延长线于H ,CM AD ⊥于M .由题意CA AE =,AD AB =,90CAE DAF ∠=∠=︒, EAH CAM ∴∠=∠, sin sin CAM EAH ∴∠=∠,111sin 22S AD CM AD AC CAM ==∠,211sin 22S AB EH AB AE EAH ==∠, 12S S ∴=.故答案为12S S =.(2)结论:2BE AM =.理由:如图2中,延长AM 到T ,使得MT AM =,连接CT ,DT .CM DM =,AM MT =,∴四边形ADTC 是平行四边形,//AC DT ∴,AC DT =,180CAD ADT ∴∠+∠=︒,90CAE BAD ∠=∠=︒,180BAE CAD ∴∠+∠=︒,BAE ADT ∴∠=∠,AE AC DT ==,BA AD =,()BAE ADT SAS ∴∆≅∆,BE AT ∴=,AM MT =,2BE AM ∴=.(3)作//DT AC 交AH 的延长线于T .连接DE .=,AC AEAB AD∠=∠=︒,=,90BAD CAE∴∠=∠=︒,BAC DAE∠=∠,ABD ADB45∴∆≅∆,BAC DAE SAS()BC DE==,∴∠=∠=︒,2ADE ABC45∴∠=∠+∠=︒,BDE BDA ADE90BE∴===,∠=∠=︒,BAD CAE90∴∠+∠=︒,180CAD BAEAC DT,//∴∠+∠=︒,CAD ADT180∴∠=∠,BAE ADTAH BE⊥,∠+∠=︒,ABE BAT90DAT BAT∴∠+∠=︒,90∴∠=∠,DAT ABE=,AB AD∴∆≅∆,()ABE DAT ASA=,∴=,AE DTBE AT=,AC AE∴=,AC DT∠=∠,∠=∠,AHC DHTCAH T∴∆≅∆,()AHC THD AAS∴=,AH HT12AH BE ∴==. 23.如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C 直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m . ①求PBC ∆面积最大值和此时m 的值; ②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【解答】解:(1)直线122y x =-+经过点B ,C ,则点B 、C 的坐标分别为:(4,0)、(0,2), 将点B 、C 的坐标代入抛物线表达式并解得:72b =,2c =, 故抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点27(,2)2P m m m -++,点1(,2)2H m m -+, PBC ∆面积2211714(22)282222PH OB m m m m m =⨯⨯=⨯⨯-+++-=-+, 20-<,∴面积存在最大值为8,此时,2m =;②设27(,2)2P m m m -++,点1(,2)2Q n n -+,当AB 是平行四边形的边时, 点A 向右平移92个单位得到B ,同样点()P Q 向右平移92个单位得到()Q P , 则92m n ±=,2712222m m n -++=-+,解得:m =,n =当AB 是平行四边形的对角线时, 由中点公式得:4m n +=,27122222m m n -++-+=,解得:0m =或4(舍去4);综上点P 的坐标为,或,或,或或(0,2).。
南京市玄武区2019-2020学年度第一学期九年级数学期中试题(含答案)

2019~2020学年第一学期九年级期中质量监测卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.已知⊙O的半径为4,点A和圆心O的距离为3,则点A与⊙O的位置关系是A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定2.一元二次方程y2-4y+3=0配方后可化为A.()y-22=3 B.()y-22=0 C.()y+22=2 D.()y-22=1 3.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A,从乙袋中摸出红球记为事件B,则A. P(A)>P(B)B.P(A)<P(B)C.P(A)=P(B)D.无法确定4.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15岁和16岁的人数看不清,则下列关于年龄的统计量可以确定的是A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差5.如图,点A、B、C在半径为6的⊙O上,AB⌒的长为2π,则∠C的度数是A.20°B.30°C.45°D.60°(第5题)(第6题)6.如图,一个半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是A.8π3B.8π3-2 3 C.4π3- 3 D.23-2π3A OCB二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.方程x2=2x的解为▲ .8.一组数据:-1,3,2,0,4的极差是▲ .9.若x1,x2是一元二次方程x2-2x-4=0的两个实数根,则x1+x2-x1x2=▲ .10.某种商品原来售价100元,连续两次降价后售价为64元,则平均每次降价的百分率是▲ .11.如图,点A、B、C在⊙O上,若∠A=105°,则∠BOC=▲°.12.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若圆锥的底面圆半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为▲ cm.13.如图,A、B、C、D为一个外角为40°的正多边形的顶点,O为正多边形的中心.连接AD,则∠OAD=▲ °.14.如图,某单位院内有一块长30m,宽20 m的长方形花园,计划在花园内修两条纵向平行和一条横向弯折的道路(所有道路的进出口宽度都相等,且每段道路的对边互相平行),其余的地方种植花草.已知种植花草的面积为532 m2,设道路进出口的宽度为x m,根据条件,可列出方程▲ .15.如图,在△ABC中,∠A=90°,∠B=36°,点D为斜边BC的中点,将线段DC绕着点D逆时针旋转任意角度得到线段DE(点E不与A、B、C重合),连接EA,EC,则∠AEC=▲ °.16.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=▲ 时,满足条件的点C恰有三个.(第14题)(第16题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(11分)解下列方程:(1)x 2+2x -1=0; (2)()x -22=x -2.(3)直接写出x 3-x =0的解是 ▲ .18.(7分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩如图所示.(1)甲射击成绩的众数为 ▲ 环,乙射击成绩的中位数为 ▲ 环; (2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(7分)某市有A 、B 两个公园,甲、乙、丙三位同学随机选择其中一个公园游玩. (1)甲去A 公园游玩的概率是 ▲ ;(2)求三位同学恰好在同一个公园游玩的概率.20.(8分)已知关于x 的一元二次方程x 2-2mx +2m -1=0(m 为常数). (1)若方程的一个根为0,求m 的值和方程的另一个根; (2)求证:不论m 为何值,该方程总有实数根.甲5次射击训练成绩条形统计图成绩/成绩/环乙5次射击训练成绩统计图②B 21.(8分)如图,在□ABCD 中,AD 是⊙O 的弦,BC 是⊙O 的切线,切点为B .(1)求证:AB ⌒=BD ⌒;(2)若AB =5,AD =8,求⊙O 的半径.22.(6分)已知⊙O ,请用无刻度的直尺完成下列作图.(1)如图①,四边形ABCD 是⊙O 的内接四边形,且AB =AD ,画出∠BCD 的角平分线; (2)如图②,AB 和AD 是⊙O 的切线,切点分别是B 、D ,点C 在⊙O 上,画出∠BCD 的角平分线.23.(7分)某商店销售一批小家电,每台成本40元,经市场调研,当每台售价定为52元时,可销售180台;若每台售价每增加1元,销售量将减少10台. (1)如果每台小家电售价增加2元,则该商店可销售 ▲ 台; (2)商店销售该家电获利2000元,那么每台售价应增加多少元?24.(8分)已知⊙O 经过四边形ABCD 的B 、D 两点,并与四条边分别交于点E 、F 、G 、H ,且 EF ⌒=GH ⌒.(1)如图①,连接BD ,若BD 是⊙O 的直径,求证:∠A =∠C ;(2)如图②,若EF ⌒的度数为θ,∠A =α,∠C =β,请直接写出θ、α和β之间的数量关系.(第21题)C②CB ①25.(9分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,与AC 、BC 分别交于点M 、N ,与AB 的另一个交点为E .过点N 作NF ⊥AB ,垂足为F .(1)求证:NF 是⊙O 的切线;(2)若NF =2,DF =1,求弦ED 的长.26.(8分)如图,已知正方形ABCD 的边长为4 cm ,点E 从点A 出发,以1cm/s 的速度沿着折线A →B →C 运动,到达点C 时停止运动;点F 从点B 出发,也以1cm/s 的速度沿着折线B →C →D 运动,到达点D 时停止运动.点E 、F 分别从点A 、B 同时出发,设运动时间为t (s ).(1)当t 为何值时,E 、F 两点间的距离为23cm ; (2)连接DE 、AF 交于点M ,①在整个运动过程中,CM 的最小值为 ▲ cm ;②当CM =4cm 时,此时t 的值为 ▲ .AB (第25题)(第26题)(备用图)27.(9分)【已有经验】我们已经研究过作一个圆经过两个已知点,也研究过作一个圆与已知角的两条边都相切,尺规作图如图所示:【迁移经验】(1)如图①,已知点M 和直线l ,用两种不同的方法完成尺规作图:求作⊙O ,使⊙O 过M点,且与直线l 相切.(每种方法作出一个..圆即可,保留作图痕迹,不写作法)①【问题解决】如图②,在Rt △ABC 中,∠C =90°,AC =8,BC =6.(2)已知⊙O 经过点C ,且与直线AB 相切.若圆心O 在△ABC 的内部,则⊙O 半径r 的取值范围为 ▲ .(3)点D 是边AB 上一点,BD =m ,请直接写出边AC 上使得∠BED 为直角时点E 的个数及相应的m 的取值范围.MlMl② C BA(备用图)C A2019~2020学年第一学期九年级期中质量监测卷数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分) 7.x 1=0 ,x 2=2 8.5 9.6 10.20% 11.150 12.6 13.30 14. (30-2x ) (20-x )=532 15.36或144 16.3或2 三、解答题(本大题共11小题,共88分) 17.(本题11分)(1)解:x 2 +2x -1=0x 2+2x +1=1+1 ................................................. 1分(x +1)2=2 ................................................ 2分 x +1=± 2 .................................... 3分∴x 1=-1+2,x 2=-1-2. ................................. 4分 (2)解:(x -2)2-(x -2)=0 ................................ 2分(x -2) (x -3)=0 ............................... 3分 ∴x 1=2,x 2=3. ................................ 4分(3)x 1=0,x 2=-1,x 3=1. .................................. 3分18.(本题7分)(1)① 7和8 ②8 .................................. 3分(2) _x 甲=_x 乙=8S 2甲=1.2,S 2乙=0.4 ................................ 5分(3)解:∵_x 甲=_x 乙,S 2乙<S 2甲∴选乙参赛更好,因为两人的平均成绩相同,但乙的方差较小,说明乙的成绩更稳定,所以选择乙参赛. ................................ 7分19.(本题7分)(1)12. ................................ 3分(2)解:共有8种可能的结果:(A ,A ,A )、(A ,A ,B )、(A ,B ,A )、(A ,B ,B )、(B ,A ,A )、(B ,A ,B )、(B ,B ,A )、(B ,B ,B ).(画树状图也可,共有8种可能的结果), ......................... 5分 它们是等可能的,记“三位同学恰好在同一个公园游玩”为事件A ,事件A 发生的可能有2种 ...................... 6分∴P (A)=14. .......................... 7分20.(本题8分)解:(1)把x =0代入原方程,得2m -1=0 ,解得:m =12. ............................ 2分∴x 2-x =0,x 1=1,x 2=0. ........................... 3分 ∴另一个根是1. ........................... 4分(2)b 2-4ac =4m 2-4(2m -1)=4m 2-8m +4, .......................... 5分∵4m 2-8m +4=4 (m -1)2≥0........................... 7分∴对于任意的实数m ,方程总有实数根. .......................... 8分 21.(本题8分)解:(1)连接OB,交AD 于点E.∵BC 是⊙O 的切线,切点为B ,∴OB ⊥BC . ................................................ 1分∴∠OBC =90°∵ 四边形ABCD 是平行四边形 ∴AD // BC∴∠OED =∠OBC =90°∴ OE ⊥BC .............................................. 2分 又 ∵ OE 过圆心O ∴ ⌒AB = ⌒BD .............................................. 4分(2)∵ OE ⊥BC ,OE 过圆心O∴ AE=12AD=4 .............................................. 5分在Rt △ABE 中,∠AEB =90°,BE =AB 2-AE 2=3, ...................................... 6分 设⊙O 的半径为r ,则OE=r -3 在Rt △ABE 中,∠OEA =90°,OE 2+AE 2 = OA 2即(r -3)2+42= r 2 ....................................... 7分 ∴r=256∴⊙O 的半径为256....................................... 8分22.(本题6分)∴射线CA 即为所求. ∴射线CE 即为所求.......... 6分①② AB23.(本题7分)解:(1) 160 ................................... 2分 (2)解:设每台家电增加x 元,根据题意得:(52-40+x )(180-10x )=2000. ..................... 4分 解得:x 1=8,x 2=-2. ................................... 5分 ∵增加的钱数不能为负,∴x 2=-2(舍). ...................................... 6分 则x =8. 答:每台家电增加8元. ......................................... 7分24.(本题8分) (1)连接DF 、DG∵BD 是⊙O 的直径 ∴∠DFB =∠DGB =90°, .............................................. 1分∵EF ⌒=GH ⌒∴∠EDF =∠HDG , ............................................. 3分 ∵∠DFB =∠EDF+∠A∠DGB =∠HDG+∠C , .............................................. 5分 ∴∠A =∠C ............................................... 6分 (2)α+β+θ =180° ................................................. 8分25.(本题9分)(1)证明:连接ON .∵在Rt △ACB 中,CD 是边AB 的中线,∴CD =BD , ................................... 1分 ∴∠DCB =∠B , ∵OC =ON ,∴∠ONC =∠DCB , ∴∠ONC =∠B ,∴ON // AB ................................. 3分 ∵ NF ⊥AB ∴∠NFB =90°∴∠ONF =∠NFB=90°, ................................. 4分 ∴ON ⊥NF又∵NF 过半径ON 的外端∴NF 是⊙O 的切线 .................................. 5分 (2)过点O 作OH ⊥ED,垂足为H ,设⊙O 的半径为r∵OH ⊥ED, NF ⊥AB , ON ⊥NF , ∴∠OHD =∠NFH=∠ONF=90°. .................................. 6分 ∴四边形ONFH 为矩形. ∴HF= ON=r ,OH=NF=2 ∴HD=HF-DF=r -1在Rt △OHD 中,∠OHD =90°∴OH 2+HD 2=OD 2即22+(r -1)2=r 2 ................................. 7分∴r =52.∴HD=32................................ 8分∵OH ⊥ED ,且OH 过圆心O∴ED=2HD=3 .................................. 9分 26.(本题8分)(1)解:当E 、F 两点分别在AB 、BC 上时,则AE = t ,EB=4-t ,BF= t ∵EB 2+BF 2=EF 2∴t 2+(4-t )2=(23)2 ....................................... 2分∴ t 1=2+2,t 2=2- 2. ....................................... 3分 当E 、F 两点分别在BC 、CD 上时,则CE =8-t ,EB=t -4∵CE 2+CF 2=EF 2∴(8-t )2+(t -4)2=(23)2 .................................. 4分∴ t 1=6+2,t 2=6- 2. .................................. 5分(2)① 25-2;② 2或8. ......................... 8分27.(本题9分) (4)分(2)2.43r ≤< .................................. 6分 (3)m 的范围 E 点的个数07.5m << 0个 7.510m m ==或 1个7.510m << 2个 ......................................9分。
2019-2020年九年级数学期中考试题及答案

2019-2020年九年级数学期中考试题及答案一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题卡上)1.已知一元二次方程x2-5x+3=0的两根为x1,x2,则x1x2=()A.5 B.-5 C.3 D.-32.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( ) A.6 B.5 C.4 D.33.已知2是关于x的方程x2-3x+a=0的一个解,则a的值是()A.5 B.4 C.3 D.24.如图,在菱形ABCD中,AC与BD相交于点O,AO=4,BO=3,则菱形的边长AB等于()A.10 B.7 C.6 D.55.如图,若要使平行四边形ABCD成为菱形,则可添加的条件是() A.AB=CD B.AD=BC C.AB=BC D.AC=BD 6.关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k≠0 D.k>-1且k≠07.已知ab=cd=ef=4,且a+c+e=8,则b+d+f等于()A.4 B.8 C.32 D.28.下列对正方形的描述错误的是()A.正方形的四个角都是直角B.正方形的对角线互相垂直C.邻边相等的矩形是正方形D.对角线相等的平行四边形是正方形9.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是()A.12 B.13 C.14 D.1810.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=90第2题图第4题图第5题图11x 3.23 3.24 3.253.26ax2+bx+c -0.06 -0.02 0.03 0.09判断方程( ) A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x <3.2612.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.94 B.214C.4 D.613.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为()A.13 B.14 C.15 D.1814.如图,点C是线段AB的黄金分割点,则下列各式正确的是()A.ACBC=ABAC B.BCAB=ACBC C.ACAB=ABBC D.BCAB=ACAB15.如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°,则下列结论正确的个数为()①DC=3OG;②OG=12BC;③△OGE是等边三角形;④S△AOE=16S矩形ABCD. A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.依次连接矩形各边中点所得到的四边形是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级数学期中测试卷及答案(考试时间:90分钟 满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
1、若将函数y=2x 2的图象向右平移1个单位,再向上平移5个单位,可得到的抛物线解析式是( )(A)y=2(x-1)2-5 (B)y=2(x-1)2+5 (C)y=2(x+1)2-5 (D)y=2(x+1)2+52、已知圆心角∠BOC=100°,则圆周角∠BAC 的大小是( ) (A)50° (B)100° (C)130° (D)200°(第2题 3、边长为3cm 、4cm 、5cm 的三角形的外接圆半径等于( )cm(A )1.5 (B )2 (C )2.5 (D )2.4 4、下列各点中,在函数y=x2-上的是( )(A )(1,2) (B ) (0,-2) (C )(2,2-) (D )( -4, -21 ) 5、已知扇形OBC 、OAD 的半径之间的关系是OB =21OA ,则BC ︵的长是AD ︵长的( ) (A )21倍 (B )2倍 (C )41倍 (D )4倍 第5题6、下列命题是真命题的有( )个。
①过弦的中点的直线必过圆心;②相等的圆心角所对的弧相等;③弦的垂线平分弦所对的弧;④若圆的一弦长等于圆半径,则其所对的圆周角是30°;⑤三点可以确定一个圆; (A) 1个 (B )2个 (C )0个 (D )3个 7、已知函数2y ax ax =+与函数(0)ay a x=<,则它们在同一坐标系中的大致图象是( )第7题A BC DOC8、人民广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管最大高度为3米,此时喷水水平距离为12米,在如图所示的坐标系中,这支喷泉的函数关系式是( )A.2132y x ⎛⎫=--+ ⎪⎝⎭B.21312y x ⎛⎫=-+ ⎪⎝⎭C.21832y x ⎛⎫=--+ ⎪⎝⎭D.21832y x ⎛⎫=-++ ⎪⎝⎭9、如图,P (x,y )是以坐标原点为圆心、5为半径的圆周上的点,若x,y 都是整数,则这样的点P 共有( )个(A ) 8 (B ) 10 (C ) 12 (D )16第9题10、如图,在Rt △ABC 中∠ACB =90º,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) (A )点P 在⊙O 内 (B )点P 在⊙O 上 (C )点P 在⊙O 外 (D )无法确定第10题二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、已知电灯电路两端的电压U 是220伏,设电灯内钨丝的电阻为R 欧,通过的电流强度为I 安,则I 关于R 的函数解析式为 ,自变量R 的取值范围是 。
12、函数y=-x 2+2x+3化成y=a(x+m)2+k 的形式是 。
13、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题: “今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE=1,AB=10,求CD 的长”。
根据题意可得CD 的长为 。
14、用半径为12厘米,圆心角为150度的扇形做一个圆锥模型的侧面,则此圆锥的底面半径是 。
15、设关于x 一次函数y=a 1x+b 1与y=a 2x+b 2,称函数y=m(a 1x+b 1)+n(a 2x+b 2)(其中m+n=1)为这两个函数的生成函数。
则当x=1时,函数y=x+2与y=3x 的生成函数的值为 。
第8题16、△ABC 的三个顶点在半径为2的圆上,BC=23,则∠A 的度数是 。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)已知反比例函数xky =的图象与一次函数m x y +=3的图象相交于点(1,5)。
(1)求这两个函数的解析式;(2)求这两个函数图象的另一个交点的坐标。
18、(本小题满分6分)已知∠ABC ,用直尺和圆规作⊙O ,使其经过A 、B 两点,且点O 到∠BAC两边的距离相等。
(写出作法,并保留作图痕迹)第18题19、(本小题满分6分)已知二次函数经过(0,6),(-1,-8),(1,0)三点,求此二次函数的解析式并求当x 取何值时,y 随着x 的增大而增大?20、(本小题满分8分)NBA 的一场篮球比赛中,一队员正在投篮,设篮球的运动的路线为抛物线(如图),其解析式为y=-51x 2+x+49。
(1)这次投篮中球在空中飞行的水平距离是多少米时高度达到最大,最大高度是多少米?(2)若投篮时出手地点与篮圈中心的水平距离为4米,篮圈距地面3.05米,问此球能否准确投中?(不考虑其它因素)第20题21、(本小题满分6分)已知:如图,等边△ABC 的三个顶点在圆上,D 是弧BC 上任意一点,在AD 上截取AE=BD ,连结CE 。
求证:(1)△ACE ≌△BCD ;(2)AD=BD+CD第21题22、(本小题满分8分)用长为8米的铝合金制成如图窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?第22题23、(本小题满分12分)如图,在平面直角坐标系中,以点M (0,2)为圆心,以4为半径作⊙M 交x 轴于A 、B 两点,交y 轴与C 、D 两点,连结AM 并延长交⊙M 于点P ,连结PC 交x 轴于E 。
(1)求直线CP 的解析式;(2)求弓形ACB 和△ACP 的面积。
第23题24、(本小题满分12分)如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交 抛物线与E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F , 使A 、C 、F 、G 这样的四个点为顶点的四边形是 平行四边形?如果存在,直接写出所有满足条件的F 点坐标;如果不存在,请说明理由.第24题2007学年第一学期九年级数学期中学业测试卷(考试时间:90分钟满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、、;12、; 13、;14、; 15、; 16、。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)18、(本小题满分6分) B.A C19、(本小题满分6分)20、(本小题满分6分)21、(本小题满分8分)22、(本小题满分8分)23、(本小题满分12分)24、(本小题满分12分)2007学年第一学期九年级数学期中学业测试卷(考试时间:90分钟 满分120分)一、仔细选一选(本题共10小题,每小题3分,共30分)请选出你认为正确的一个选项填入答题卷相应的空格内。
二、认真填一填(本题共6小题,每小题4分,共24分)要注意认真看清题目的条件和要求,把答案完整地填入相应的横线上。
11、RI 220=、 R ﹥0 ;12、 y=-(x-1)2+4 ; 13、 26 ;14、 5cm ; 15、 3 ; 16、 60°或120° 。
三、全面答一答(本题有8小题,共66分)尽可能完整地写出解答过程,有困难的题写出一部分解答也可以,解答过程写在答题卷相应的题号后。
17、(本小题满分6分)解:(1)∵ 点A (1,5)在反比例函数xky =的图象上 有15k =,即5=k ∴ 反比例函数的解析式为xy 5=(2分)又∵ 点A (1,5)在一次函数m x y +=3的图象上 有m +=35 ∴ 2=m∴ 一次函数的解析式为23+=x y (2分) (2)由题意可得⎪⎩⎪⎨⎧+==235x y x y 解得⎩⎨⎧==5111y x 或⎪⎩⎪⎨⎧-=-=33522y x ∴ 这两个函数图象的另一个交点的坐标为)3,35(--(2分) 18、(本小题满分6分)解:作法:(1)作线段AB 的中垂线l 1;(2)作∠ABC 的角平分线l 2,交于点O ; (3)以O 为圆心,OA 为半径作⊙O 。
∴如图 ⊙O 是所求的图形。
(图形基本准确得3分,作法2分,结论1分) 19、(本小题满分6分)解、设二次函数的解析式为y=ax 2+bx+c 把(0,6)(-1,-8)(1,0)分别代人得 C=6姓名 班级 试场号 座位号a-b+c=-8 (2分) a+b+c=0解得 a=-10b=4 (2分) c=6∴所求的解析式为y= -10x 2+4x+6 (1分) 当x ≦51时,y 随着x 的增大而增大. (1分) 20、(本小题满分6分) 解:(1)配方得y= -51(x-51)2+27 ∴这次投篮,球在空中飞行的水平距离为2.5米时,达到最大高度为3.5米。
(4分)(2)把x=4代入解析式得y=3.05 (1分)答:此球能准确投中。
(1分) 21、(本小题满分8分)证明:(1)∵⊿ABC 是等边三角形∴AC=BC∵∠DBC=∠DAC ,AE=BD∴⊿ACE ≌⊿BCD (3分) (2)∵⊿ACE ≌⊿BCD∴ EC=CD ,AE=BD ,∠DCB=∠ACE (1分) ∵∠ACB=60° ∴∠ECD=60°∴⊿DCE 是等边三角形 (2分) ∴DC=DE∴AD=AE+DE=BD+CD (2分)22、(本小题满分8分)解:设窗框的宽为x 米,面积为y 平方米 则由题意得窗框的高为238x- 米 (1分) ∴y=x ×238x -=-23x 2+4x (2分) =-23 (x-34)2+38(2分) ∵x=34在x 的允许值范围内∴当x=34时,y 最大值为38 (2分)答:当窗框的宽为34米,高2米时,窗户的透光面积最大,最大面积是38平方米。
(1分)23、(本小题满分12分)解:(1)连结BP先证OM 是⊿APB 的中位线所以PB=2OM=4 (2分) 由勾股定理求得AO=23 (2分)∴P (23,4)而C (0,-2)用代定系数法求得直线PC 的解析式为y=23 x-2(2分)(2)连结BM先求∠AMB=120°再求扇形MAB 的面积=316∏ (1分) ⊿ABM 的面积=43 (1分) ∴弓形ACB 的面积=316∏-43 (1分) 由AP 是直径得⊿ACP 是直角三角形 AC=2,PC=43 (2分)∴⊿ACP 的面积=83 (1分)24、(本小题满分12分)解:(1)令y=0,解得11x =-或23x =(1分) ∴A (-1,0)B (3,0);(1分)将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)(1分) ∴直线AC 的函数解析式是y=-x-1 (1分)(2)设P 点的横坐标为x (-1≤x ≤2)(注:x 的范围不写不扣分) 则P 、E 的坐标分别为:P (x ,-x-1),(1分) E (2(,23)x x x --(1分)∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++(1分) ∴当12x =时,PE 的最大值=94(1分)(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(4(4F F F F -(4分)解:(1)令y=0,解得11x =-或23x =(1分) ∴A (-1,0)B (3,0);(1分)将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)(1分) ∴直线AC 的函数解析式是y=-x-1 (1分)(2)设P 点的横坐标为x (-1≤x ≤2)(注:x 的范围不写不扣分) 则P 、E 的坐标分别为:P (x ,-x-1),(1分) E (2(,23)x x x --(1分)∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++(1分) ∴当12x =时,PE 的最大值=94(1分) (3)存在4个这样的点F,分别是1234(1,0),(3,0),(4(4F F F F -17、解:(1)∵ 点A (1,5)在反比例函数xky =的图象上 有15k =,即5=k ∴ 反比例函数的解析式为xy 5=(3分)又∵ 点A (1,5)在一次函数m x y +=3的图象上 有m +=35 ∴ 2=m∴ 一次函数的解析式为23+=x y (6分) (2)由题意可得⎪⎩⎪⎨⎧+==235x y x y 解得⎩⎨⎧==5111y x 或⎪⎩⎪⎨⎧-=-=33522y x ∴ 这两个函数图象的另一个交点的坐标为)3,35(--(8分)1723、解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000. ……………………3′⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ………………………6′⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. ………………………8′根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元. …………………10′2、如图,AC 是⊙O 的直径,BD 是⊙O 的弦,EC ∥AB 交⊙O 于E ,则图中与12∠BOC 相等的角共有( )A 、2个B 、3个C 、4个D 、5个 3、“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如图,CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE=1,AB=10,求CD 的长”。