中职升高职数学试题及答案(1--5套)(中职教学)

合集下载

中职升学数学试卷及答案

中职升学数学试卷及答案

中职升学数学试卷一、单项选择题(本大题共12小题,每小题4分,共48分.在下列每小题中,选出一个正确答案,请在答题卡上将所选的字母标号涂黑)1.若集合{1,2}M =,{2,3}N =,则M N 等于()A .{2}B .{1}C .{1,3}D .{1,2,3}2.若函数()cos()f x x ϕ=+(πϕ≤≤0)是R 上的奇函数,则ϕ等于()A .0B .4πC .2πD .π3.函数2()f x x mx n =++的图象关于直线1x =对称的充要条件是()A.2m =-B.2m =C.2n =-D.2n =4.已知向量(1,)a x = ,(1,)b x =- .若a b ⊥,则||a 等于()A .1B C .2D .45.若复数z 满足(1)1i z i +=-,则z 等于()A .1i+B .1i-C .iD .i-6.若直线l 过点(1,2)-且与直线2310x y -+=平行,则l 的方程是()A.3280x y ++=B.2380x y -+=C.2380x y --=D.3280x y +-=7.若实数x 满足2680x x -+≤,则2log x 的取值范围是()A.[1,2]B.(1,2)C.(,1]-∞D.[2,)+∞8.设甲将一颗骰子抛掷一次,所得向上的点数为a ,则方程012=++ax x 有两个不相等实根的概率为()A .32B .31C .21D .1259.设双曲线22221x y a b-=(0,0)a b >>的虚轴长为2,焦距为,则此双曲线的渐近线方程为()A.y =B.2y x=±C.22y x =±D.12y x =±10.若偶函数()y f x =在(,1]-∞-上是增函数,则下列关系式中成立的是()A .3()2f -<(1)f -<(2)f B .(1)f -<3()2f -<(2)f C .(2)f <(1)f -<3()2f -D .(2)f <3()2f -<(1)f -11.若圆锥的表面积为S ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为()B.D.12.若过点(3,0)A 的直线l 与圆C :22(1)1x y -+=有公共点,则直线l 斜率的取值范围为()A.(B.[C.33()33-D.33[,]33-二、填空题(本大题共6小题,每小题4分,共24分)13.sin150︒=.14.已知函数()f x 11x =+,则[(1)]f f =.15.用数字0,3,5,7,9可以组成个没有重复数字的五位数(用数字作答).16.在ABC ∆中,====B A b a 2cos ,23sin ,20,30则.17.设斜率为2的直线l 过抛物线22y px =(0)p >的焦点F ,且与y 轴交于点A .若OAF ∆(O 为坐标原点)的面积为4,则此抛物线的方程为.18.若实数x 、y 满足220x y +-=,则39x y+的最小值为.三、解答题(本大题7小题,共78分)19.(6分)设关于x 的不等式||x a -<1的解集为(,3)b ,求a b +的值.20.(10分)已知函数x x x f cos )tan 31()(+=.(1)求函数()f x 的最小正周期;(2)若21)(=αf ,)3,6(ππα-∈,求αsin 的值.21.(10分)已知数列{n a }的前n 项和为n S 2n n =-,n N +∈.(1)求数列{n a }的通项公式;(2)设2na nb =1+,求数列{n b }的前n 项和n T .22.(10分)对于函数()f x ,若实数0x 满足00()f x x =,则称0x 是()f x 的一个不动点.已知2()(1)(1)f x ax b x b =+++-.(1)当1a =,2b =-时,求函数()f x 的不动点;(2)假设12a =,求证:对任意实数b ,函数()f x 恒有两个相异的不动点.23.(14分)甲、乙两位选手互不影响地投篮,命中率分别为31与p .假设乙投篮两次,均未命中的概率为254.(1)若甲投篮4次,求他恰命中3次的概率;(2)求乙投篮的命中率p ;(3)若甲、乙两位选手各投篮1次,求两人命中总次数ξ的概率分布与数学期望.24.(14分)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =.(1)证明:当点E 在棱AB 上移动时,11D E A D ⊥;(2)当E 为AB 的中点时,求①二面角1D EC D --的大小(用反三角函数表示);②点B 到平面1ECB 的距离.25.(14分)已知椭圆C :22221x y a b+=(0)a b >>的离心率为23,且该椭圆上的点到右焦点的最大距离为5.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A 、B ,且过点(9,)D m 的直线DA 、DB 与此椭圆的另一个交点分别为M 、N ,其中0m ≠.求证:直线MN 必过x 轴上一定点(其坐标与m 无关).数学试题答案及评分参考一、单项选择题(本大题共12小题,每小题4分,共48分)题号123456789101112答案DCAB CBAACDB D二、填空题(本大题共6小题,每小题4分,共24分)13.1214.2315.9616.1317.28y x=18.6三、解答题(本大题共7小题,共78分)19.(本小题6分)解:由题意得11x a -<-<,………………………………………………………………1分11a x a -+<<+,…………………………………………………………1分113a b a -+=⎧⎨+=⎩,………………………………………………………………2分解得21a b =⎧⎨=⎩,………………………………………………………………1分所以3a b +=.…………………………………………………………1分20.(本小题10分)解:(1)由题意得()cos f x x x=+…………………………………………………1分2sin(6x π=+,……………………………………………………2分所以函数()f x 的最小正周期2T π=.……………………………1分(2)由1()2f α=得1sin(64πα+=,…………………………………………………………1分因为(,)63ππα∈-,所以(0,)62ππα+∈,…………………………1分15cos(64πα+=,…………………………1分从而sin sin[()]66ππαα=+-sin(cos cos()sin6666ππππαα=+-+131514242=⨯-3158-=.…………………………3分21.(本小题10分)解:(1)当1n =时,211110a S ==-=,………………………………1分当2n ≥时,1n n n a S S -=-22()[(1)(1)]n n n n =-----22n =-,……………………………………………2分综合得22n a n =-,n ∈N +………………………………………2分(2)222121n an n b -=+=+141n -=+,…………………………………1分21(1444)n n T n -=+++++ 1(14)14n n ⨯-=+-4133n n =+-.…………………………………4分22.(本小题10分)(1)解:由题意得2(21)(21)x x x +-++--=,……………………………1分即2230x x --=,解得11x =-,23x =,……………………………………2分所以函数()f x 的不动点是1-和3.……………………………1分(2)证明:由题意得21(1)(1)2x b x b x +++-=,①……………………………1分即21(1)02x bx b ++-=,……………………………1分因为判别式22(1)b b ∆=--222b b =-+……………………………2分2(1)1b =-+0>,……………………………1分所以方程①有两个相异的实根,即对任意实数b ,函数()f x 恒有两个相异的不动点.……1分23.(本小题14分)解:(1)记甲投篮4次,恰命中3次的概率为1P ,由题意得1P =334128C (3381⨯⨯=.……………………………4分(2)由题意得24(1)25p -=,……………………………3分解得35p =.……………………………………………1分(3)由题意ξ可取0,1,2,…………………………………1分154)531()311()0(=-⨯-==ξP ,15853311(531(31)1(=⨯-+-⨯==ξP ,1535331)2(=⨯==ξP .所以ξ的概率分布列为……………………………………………3分1514153215811540)(=⨯+⨯+⨯=ξE .……………………………………2分24.(本小题14分)(1)证明:连接1AD .在长方体1111ABCD A B C D -中,因为1AD AA =,所以11AA D D 为正方形,从而11AD A D ⊥.因为点E 在棱AB 上,所以1AD 就是1ED 在平面11AA D D 上的射影,从而11D E A D ⊥.……………………………………………4分ξ12P154158153(2)解:①连接DE .由题意知11AD AA ==,1AE EB ==.在Rt DAE ∆中,DE ==,在Rt EBC ∆中,EC ==,从而2224DE EC DC +==,所以EC DE ⊥,又由1D D ⊥面ABCD 知1D D EC ⊥,即1EC D D ⊥,从而EC ⊥面1D DE ,所以1EC D E ⊥,因此1D ED ∠是二面角1D EC D --的平面角.…………………2分在1Rt D DE ∆中,11tan2D D D ED DE ∠==,得1D ED ∠2arctan2=,即二面角1D EC D --的大小为arctan 2.…………………3分②设点B 到平面1ECB 的距离为h ,由11EB BC BB ===知11EC B C B E ===123342ECB S ∆==.……………………………1分因为11B ECB B ECBV V --=,所以111133ECB ECB S h S BB ∆∆⋅=⋅,即131113232h ⋅⋅=⋅⋅,所以33h =,故点B 到平面1ECB 的距离为33.……………………………4分25.(本小题14分)解:(1)设右焦点为)0,(c ,则由题意得⎪⎩⎪⎨⎧=+=532c a a c ,……………………………………………2分解得⎩⎨⎧==23c a ,所以549222=-=-=c a b ,椭圆C 的方程为15922=+y x .………………………………………2分(2)由(1)知)0,3(),0,3(B A -,直线DA 的方程为)3(12+=x my ………………………………………1分直线DB 的方程为)3(6-=x my ………………………………………1分设点M 的坐标为),(11y x ,点N 的坐标为),(22y x ,由⎪⎪⎩⎪⎪⎨⎧=++=159)3(1222y x x m y ,………………………………………1分得0451291254)1295(22222222=-+++m x m x m ,由于),0,3(-A M ),(11y x 是直线DA 与此椭圆的两个交点,所以2222211295451293m m x +-=⋅-,解得221803240mm x +-=,从而2118040)3(12m m x m y +=+=.…………2分由⎪⎪⎩⎪⎪⎨⎧=+-=159)3(622y x x m y ,………………………………………1分得04569654)695(22222222=-+-+m x m x m ,由于),0,3(B N ),(22y x 是直线DB 与此椭圆的两个交点,所以22222269545693m m x +-=⋅,解得22220603m m x +-=,从而2222020)3(6m m x m y +-=-=.…………2分若21x x =,则由222220603803240mm m m +-=+-,得402=m 此时121==x x ,从而直线MN 的方程为1=x ,它过点E )0,1(;若21x x ≠,则402≠m ,直线ME 的斜率2222401018032408040mm m m m mk ME-=-+-+=,直线NE 的斜率222240101206032020m m mm m mk NE-=-+-+-=,得NE ME k k =,所以直线MN 过点)0,1(E ,因此直线MN 必过x 轴上的点)0,1(E .………………………………2分。

中职数学考试题及答案

中职数学考试题及答案

中职数学考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的结果:A. 2^3B. 3^2C. 4^1D. 5^0答案:D3. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. -1B. 1C. 5D. 7答案:B4. 一个数的平方根是4,这个数是:A. 16B. 8C. 4D. 2答案:A5. 圆的周长公式是:A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B6. 已知直角三角形的两条直角边长分别为3和4,斜边长为:A. 5B. 7C. 9D. 12答案:A7. 计算下列表达式的值:A. (-3)^2B. (-3)^3C. (-3)^4D. (-3)^5答案:A8. 一个数的立方根是2,这个数是:A. 8B. 2C. 4D. 6答案:A9. 已知等差数列的首项为2,公差为3,求第5项的值。

A. 17B. 14C. 11D. 8答案:A10. 已知等比数列的首项为2,公比为2,求第4项的值。

A. 32B. 16C. 8D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数是______。

答案:±52. 一个数的相反数是-7,这个数是______。

答案:73. 计算(-3) × (-4) = ______。

答案:124. 计算√16 = ______。

答案:45. 已知一个数的平方是25,这个数是______。

答案:±56. 计算(-2)^3 = ______。

答案:-87. 已知一个数的立方根是3,这个数是______。

答案:278. 已知直角三角形的两条直角边长分别为6和8,斜边长为______。

答案:109. 已知等差数列的首项为10,公差为2,求第10项的值是______。

答案:2810. 已知等比数列的首项为1,公比为3,求第3项的值是______。

(完整版)中职数学1-5单元测试题(最新整理)

(完整版)中职数学1-5单元测试题(最新整理)

A. y log2 x
B. y log 1 x
2
C. y log 2 x 2
D.
y
log
2 2
x
8.下列对数中是正数的是( );
A. log0.2 0.3
B. log2 0.3
C log0.2 3 .
9.函数 y 3x 与 y (1) x 的图像关于(
);
3
D. log 1
2
A.原点对称
A. (,2
B. 2,
C. (,1) 2,
D. (,1) 1,2
3.设 f (x) x2 2x, 则 f (2) f (1 ) (
);
2
A.1
B.3 C. 5
D.10
4.若 f (x) 2x2 1,且x 1,0,1,则 f (x)的值域是 ( );
A.1,0,1 B.(1,3) C. 1,3
A. x x 20 B. x 10 x 20
C.2x-1>1 或 2x-1<-1 D.1-2x>1 ); C.(-2,-1) D. (,2) (1, ) ).
C. x x 10 D. x x 10或x 20
二 填空题:本大题共 6 小题,每小题 6 分,共 36 分。把答案填在题中横线上。
C. N M D. M N
7.设集合 A (x, y) xy 0 , B (x, y) x 0且y 0 , 则正确的是( );
A. A B B
B. A B
C. A B
8.设集合 M x1 x 4, N x 2 x 5, 则 A B ( );
D. A B
4.设集合 A x x2 3x 2 0 , B x ax 2 0 ,且A B A, 求实数 a 组成的集合 M.

中职升高职数学试题及答案:套

中职升高职数学试题及答案:套

中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分) 1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =U I ( )A.{0,3,5}B. {0,5}C.{3}D.∅2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D 既不充分又不必要条件3、下列各函数中偶函数为( ) A. ()2f x x = B.2()f x x =- C.()2x f x = D. 2()log f x x =4、若1cos 2α=,(0,)2πα∈,则sin α的值为( )C.25、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( )A. 80B.81C. 26D. -266、下列向量中与向量(1,2)a =r垂直的是( )A. (1,2)b =rB.(1,2)b =-rC. (2,1)b =rD. (2,1)b =-r7、直线10x y -+=的倾斜角的度数是( )A. 60︒B. 30︒C.45︒D.135︒8、如果直线a 和直线b 没有公共点,那么a 与b ( )A. 共面B.平行C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在ABC ∆中,已知AC=8,AB=3,60A ︒∠=则BC 的长为_________________ 10、函数22()log (56)f x x x =--的定义域为_______________________11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、91()x x+的展开式中含3x 的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

职高数学试题及答案

职高数学试题及答案

职高数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 函数f(x) = 2x + 3在x=1时的值是多少?A. 5B. 6C. 7D. 8答案:A3. 以下哪个不是二次方程?A. x^2 + 4x + 4 = 0B. x^2 - 5x + 6 = 0C. 3x^2 - 2x + 1 = 0D. 4x + 7 = 0答案:D4. 圆的面积公式是什么?A. πr^2B. 2πrC. r^2D. πd答案:A5. 直线y = 3x + 2与x轴的交点坐标是什么?A. (0, 2)B. (-2/3, 0)C. (2/3, 0)D. (0, -2)答案:C6. 以下哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 8, 16C. 1, 1, 1, 1D. 1, 4, 9, 16答案:A7. 一个直角三角形的两条直角边分别为3和4,斜边长度是多少?A. 5B. 6C. 7D. 8答案:A8. 以下哪个是复数的实部?A. 3 + 4iB. 2 - 3iC. 5iD. -1答案:D9. 以下哪个是正弦函数的周期?A. 2πB. πC. 1D. 3π答案:A10. 一个数的平方根是它自己,这个数是什么?A. 0B. 1C. -1D. 2答案:A二、填空题(每题2分,共20分)1. 一个数的绝对值是它自己,这个数是______或______。

答案:正数;02. 圆的周长公式是C = ______。

答案:2πr3. 一个二次方程ax^2 + bx + c = 0的判别式是______。

答案:b^2 - 4ac4. 函数y = kx的斜率是______。

答案:k5. 一个数的倒数是1/x,这个数是______。

答案:非零数6. 正弦函数sin(x)的值域是______。

答案:[-1, 1]7. 一个数的对数以10为底,记作______。

中职单招数学试题及答案

中职单招数学试题及答案

中职单招数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项不是正整数?A. 1B. 2C. 3D. 4答案:D2. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 0答案:C3. 函数f(x) = 2x + 3在x=1时的值是:A. 5B. 6C. 7D. 8答案:A4. 圆的半径为5,其面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是二次方程的根?A. x = 2B. x = -2C. x = 3D. x = 1/2答案:B二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是________。

答案:57. 一个数的立方根是2,那么这个数是________。

答案:88. 一个圆的直径是10,其周长是________。

答案:π0(或31.4)9. 函数y = x^2 - 4x + 4的顶点坐标是________。

答案:(2, 0)10. 一个数的相反数是-5,那么这个数是________。

答案:5三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3x - 2)^2,其中x = 1。

答案:(3*1 - 2)^2 = 1^2 = 112. 解方程:2x + 5 = 11。

答案:2x = 11 - 5 => 2x = 6 => x = 313. 化简并求值:(2a + 3b)(2a - 3b),其中a = 2,b = 1。

答案:(2*2 + 3*1)(2*2 - 3*1) = (4 + 3)(4 - 3) = 7*1 = 714. 计算下列三角函数值:sin(30°)。

答案:sin(30°) = 1/2四、解答题(每题10分,共20分)15. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求其体积。

答案:长方体的体积 = 长 * 宽 * 高 = 5cm * 4cm * 3cm =60cm³16. 一个等腰三角形的底边长为6cm,两腰相等,求其周长。

中职数学练习题含答案 (2)

中职数学练习题含答案 (2)

C.R D.∅
2.已知点 A(3,-1), B(2,1), 则BA⃗ = ( ) A. (5,0) B.(1,-2) C. (-1,2) D.(6,-1)
3.直线√3x + y + 2 = 0的倾斜角是 ( ) A.-60o B.120o C.60o D.150o
4.抛物线y = 6x的焦点坐标是 ( )
则实数 k 的取值范围是 ( )
A.( , 1]
B.( , 1) C.( , +∞) D.[1, +∞)
二、填空题:本大题共 5 小题,每小题 5 分,满分 25 分.
16.不等式|x + 1| ≤ 2的解集是
17.已知向量a⃗ = (2, −3)和点 A(3,-5),B(x,4), 且AB⃗ ∥ a⃗,则x =__________
18.函数y = cos x − ≤ x ≤ 的值域是
19.已知直线m: ax + y − 1 = 0和直线n: 2x − y + 4 = 0平行, 则直线 m 与 n 之间的距离为____________
20.在面积为 8 的锐角△ABC 中,AB=4, AC=5,则 BC=_______
一、选择题:
A.( , 0) B.(2,0) C.(3,0) D.(0, )
5.命题“x > 2”是命题“x − x − 2 > 0”的( )
பைடு நூலகம்
A. 充分而不必要条件 B. 必要而不充分条件
C. 充要条件
D. 既不充分也不必要条件
6.某批产品共有 1000 件,从中随机抽取 50 件产品,检测后发现有 2 件不合格品, 则由此可估计该批产品的合格率是( ) A.2% B.98% C.4% D.96%

数学试题及答案职高版

数学试题及答案职高版

数学试题及答案职高版数学试题及答案(职高版)一、选择题(本题共10小题,每小题3分,共30分)1. 下列函数中,为偶函数的是()。

A. y = x^2 + 1B. y = x^3 - 2xC. y = x^2 - 2x + 3D. y = x + 1答案:A2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于()。

A. {1, 2, 3}B. {2, 3}C. {1, 4}D. {3, 4}答案:B3. 函数f(x) = 2x - 3的反函数为()。

A. f^(-1)(x) = (x + 3) / 2B. f^(-1)(x) = (x - 3) / 2C. f^(-1)(x) = (x + 3) / 4D. f^(-1)(x) = (x - 3) / 4答案:A4. 已知向量a = (3, -2),b = (-1, 2),则向量a与向量b的数量积为()。

A. -7B. 7C. -5D. 5答案:A5. 计算极限lim(x→0) (sin(x) / x)的值为()。

A. 0B. 1C. -1D. ∞答案:B6. 已知双曲线方程为x^2 / a^2 - y^2 / b^2 = 1,其中a > 0,b > 0,若双曲线的渐近线方程为y = ±2x,则a与b的关系为()。

A. a = 2bB. a = b/2C. b = 2aD. b = a/2答案:D7. 计算定积分∫(0 to 1) x^2 dx的值为()。

B. 1/2C. 1D. 2答案:A8. 已知矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],则矩阵A与矩阵B的乘积AB为()。

A. [19 22; 43 50]B. [23 30; 53 62]C. [19 22; 43 50]D. [23 30; 53 62]答案:A9. 计算二项式(1 + x)^3的展开式中x^2的系数为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职升高职招生考试
数学试卷(一)
一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)
1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =( )
A.{0,3,5}
B. {0,5}
C.{3}
D.∅
2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件 D 既不充分又不必要条件
3、下列各函数中偶函数为( )
A. ()2f x x =
B.2
()f x x =- C. ()2x
f x = D. 2()lo
g f x x =
4、若1cos 2α=
,(0,)2
π
α∈,则sin α的值为( )
A. 2
B.3
C. 2
5、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( ) A. 80 B.81 C. 26 D. -26
6、下列向量中与向量(1,2)a =垂直的是( )
A. (1,2)b =
B.(1,2)b =-
C. (2,1)b =
D. (2,1)b =-
7、直线10x y -+=的倾斜角的度数是( ) A. 60︒
B. 30︒
C.45︒
D.135︒
8、如果直线a 和直线b 没有公共点,那么a 与b ( )
A. 共面
B.平行
C. 是异面直线 D 可能平行,也可能是异面直线
二、填空题(本大题共4小题,每小题4分,共16分)
9、在ABC ∆中,已知AC=8,AB=3,60A ︒
∠=则BC 的长为_________________ 10、函数2
2()log (56)f x x x =--的定义域为_______________________ 11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________
12、9
1()x x
+的展开式中含3
x 的系数为__________________
参考答案
中职升高职招生考试数学试卷(一)
一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)
二、填空题(本大题共4小题,每小题4分,共16分) 9. 7 10. (,1)
(6,)-∞-+∞,也可以写成{1x x <-或6}x >
11.
2
12. 84
中职升高职招生考试
数学试卷(二)
一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)
1、设全集{1,2,3,4,5}U =,{2,3}A =,{3,4,5}B =,则()u C A B 等于( )
A. {1}
B. {3}
C.{4,5}
D.{1,3,4,5}
2、设命题甲:2x >,命题乙:1x >,甲是乙成立的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D 既不充分又不必要条件
3、设0a b >>,下列不等式正确的是 ( ) A. 0.30.3a
b
> B.22a b
> C. 0.30.3log log a b > D. 22log log a b < 4、若1
sin 2
α=
,α是第二象限角,则cos α的值为 ( )
A. 2-
12
5、下列直线中与260x y -+=平行的是( )
A.2410x y --=
B. 230x y -+=
C. 230x y +-=
D. 2410x y ++= 6、一条直线和两条异面直线中的一条平行,则它与另一条直线的位置关系是 ( )
A. 平行
B.相交
C. 异面
D.相交或异面 7、下列函数中,定义域为R 的函数是( )
A. y =
13y x =
- C. 2
21y x x =-- D. 21y x
= 8、抛物线2
8y x =的准线方程为( )
A.2x =
B. 2y =
C. 2x =-
D. 2y =-
二、填空题(本大题共4小题,每小题4分,共16分)
9、若向量(2,)a x =-,(3,2)b =且a b ⊥,则x 等于___________________
10、一名教师与4名学生随机站成一排,教师恰好站在中间位置的概率为____________ 11、已知数列{}n a 为等比数列,
4
2
6a a =,12a =,则3a =________________ 12、直二面角l αβ--内一点S ,S 到两个半平面的距离分别是3和4,则S 到l 的距离为
_________________
参考答案
中职升高职招生考试数学试卷(二)
一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。

本大题共8小题,每小题3分,共24分)
二、填空题(本大题共4小题,每小题4分,共16分) 9. 3 10.
15
11. 12 12. 5。

相关文档
最新文档