实验一 岩石孔隙度的测

合集下载

岩石孔隙度测定 实验报告

岩石孔隙度测定 实验报告

岩石孔隙度测定实验报告实验目的:本实验旨在通过测量实验样品的体积和质量,确定样品的平均密度和孔隙度,并掌握岩石孔隙度的测定方法。

实验原理:孔隙度是指岩石中由各种类型和尺度的孔隙组成的总体积与岩石总体积之比。

孔隙可以分为原生孔隙和次生孔隙,原生孔隙是岩石形成时就具有的,次生孔隙是后期在岩石中形成的。

测定岩石孔隙度的方法通常有置换法和密度法。

本实验采用浮法测定岩石孔隙度。

浮法是利用岩石密度与测量液体密度的差异,通过浸泡法测得岩石体积与液体体积之比来求解。

实验步骤:1. 取实验样品,将其用水清洗干净,然后用干布或纸巾将其外表擦干。

2. 将样品放在秤盘上,测量其重量,并记录结果。

3. 取一个干净的容器,先将容器放在天平上,记录容器的重量。

4. 用清水将容器装至约7/8的容积。

5. 用手将装有清水的容器置于实验样品上,至少盖住实验样品的顶部。

6. 记录液体的体积。

为了减小误差,我们建议用毫升阅读浮标的容积器或移液管等专用工具测量。

记录液体体积的时候一定要注意去掉液体表面的涟漪。

7. 将容器取出,记录液体温度,并用差压计测得大气压强。

8. 计算岩石的密度和孔隙度。

岩石密度=实验样品重量/实验样品体积孔隙度=(1- 岩石平均密度/实验液体密度)×100%注意事项:1. 实验液体的温度和压强必须测量,并考虑它们对密度的影响。

实验液体的温度应在室温范围内,实验液体的密度最好与岩石密度相近。

2. 手操作时注意避免样品坠落,以免破坏样品。

3. 一定要注意记录数据时的精度,在做测量时尽量减小误差。

4. 在进行测量前,要先检查仪器是否正常运转。

实验结果及分析:本实验采用浮法测定岩石孔隙度。

最终结果如下:实验样品重量:102.50g实验液体温度:25℃大气压强:100kPa实验液体体积:250.00ml平均密度:2.67g/cm³孔隙度:17.33%通过实验测得的平均密度和孔隙度结果表明,无论是平均密度还是孔隙度都是合理的。

《岩石物理学》课程报告:岩石气体孔隙度测量

《岩石物理学》课程报告:岩石气体孔隙度测量

计算实例
4.3
误差分析
4-3 计算实例
4-3 Байду номын сангаас算实例
4-3 计算实例
4.1
数据处理
4.2
计算实例
4.3
误差分析
4-2 误差分析
➢显然,在测量的过程中,会引入误差的直接量有:

➢系统参数Vk和G的误差是由于标定过程的误差造成的,其大
小应根据标定公式及其标定用的测量参数
的测
量误差来计算。
➢因此,孔隙度的测量误差的计算实际上要考虑两个过程的误 差传递问题。
3 实验步骤
➢5.关样品阀,开放空阀,从样品杯中取出全部钢块,装入岩 心,如岩心未装满岩样杯,用钢块尽量把杯子装满(原则是使 其空间体积最小),然后将样品杯装在夹持器上密封。重复步
骤5,记下平衡压力p及取出的钢块体积 V钢 。
➢6.实验完毕,关样品阀,开放空阀,关高压气瓶阀门,用调 压器将压力表读数调到0,然后关闭所有阀门,取出岩样将钢 块全部放入样品杯内,装在夹持器上,实验结束。
5-2 参考文献
[1] 沈平平等,油层物理实验技术[M].北京:石油工业出版社, 1995.9. [2] 何更生,油层物理[M].北京:石油工业出版社,1994.11. [3] 柯式镇,岩石气体孔隙度测量不确定度分析,计量学报, 2007,28(2):177~179.
谢谢老师和各位同学!
由此可知,在体积一定,即
一定时,待测体
积只是平衡压力p的函数,所以,只要测定平衡压力p
就可以了。
1-1 方法原理
由上述测量原理可知,我们只要用同样的方法进行两次实验就可以确 定出岩样的颗粒体积。即未知室不装岩样时得到的平衡压力为 ,未知空 间体积 ,那么:

岩石的地质学实验

岩石的地质学实验

岩石的地质学实验岩石是地质学中的重要研究对象,通过实验可以对岩石的性质和形成过程进行深入研究。

地质学实验涵盖了多个方面,包括岩石的物理性质、化学性质、形态特征以及岩石变形和分解等。

本文将重点介绍几种常见的岩石地质学实验。

一、岩石物理性质实验1. 密度测定实验密度是岩石的一个重要物理性质,通常使用质量和体积来表示。

在实验中,我们可以通过称量岩石样品的质量并浸入水中测定体积,然后计算出岩石的密度。

这种实验方法被称为浮法测定。

2. 孔隙度和孔隙率实验岩石的孔隙度是指岩石中的总体积中孔隙占据的部分的比例。

孔隙度和孔隙率通常可以通过测量岩石样品的饱和质量(即含水量)和干质量,然后计算出来。

这些数据对于水文地质和油气勘探等领域具有重要意义。

3. 磁化率实验磁化率是研究岩石磁性的重要参数。

使用磁化率仪可以测量岩石样品在外加磁场作用下的磁化率。

这种实验方法可以用于研究地磁场对岩石反应的影响,以及岩石中可能存在的磁性矿物。

二、岩石化学性质实验1. 酸蚀实验酸蚀实验可以用于确定岩石中存在的酸溶性矿物。

在实验中,可以选择一种酸性试剂(如盐酸)来与岩石样品接触,观察是否产生气泡或溶解反应,从而推断岩石中酸溶性矿物的存在。

2. 岩石溶解实验溶解实验可以用于研究岩石中的可溶性矿物。

在实验中,可以选择一种溶液(如氢氧化钠溶液)与岩石样品接触,观察是否发生溶解反应。

通过溶解实验可以确定岩石中的可溶性矿物类型以及它们的溶解特性。

3. 物理吸附实验物理吸附实验可以研究岩石表面的吸附性质。

在实验中,可以使用一种吸附剂(如活性炭)与岩石样品接触,观察吸附剂上吸附的气体分子或溶质的种类和数量。

这种实验方法对于研究岩石中的孔隙结构和孔隙表面特征具有重要意义。

三、岩石形态特征实验1. 岩石显微镜观察实验显微镜观察实验可以研究岩石的显微结构和组成。

通过使用显微镜,可以观察到岩石中的矿物颗粒、晶体结构以及岩石中可能存在的裂缝和变形等特征。

2. 岩石薄片制备实验岩石薄片制备实验是为了进行岩石显微镜观察而进行的。

松散岩石孔隙度、持水度和给水度的测定

松散岩石孔隙度、持水度和给水度的测定

Ⅰ实验部分实验一松散岩石孔隙度、持水度和给水度的测定岩石的空隙是地下水赋存的场所和运移的通道,作为含水介质,空隙的性状严格控制着地下水的分布、埋藏和运动特征。

在孔隙水研究中,首先要对岩石的孔隙度、持水度和给水度进行实际测定,以了解岩层容水、持水和给水能力等方面的水文地质特征。

岩石的孔隙度是用以表征岩石容水性能的重要指标;岩石的持水度是用来表征岩石在重力作用下仍能保持一定水量能力的指标;岩石的给水度是表征饱水岩石在重力作用下所释出或给出水量大小的指标。

岩石的给水度是评价地下水资源量的一个重要参数,也是矿坑排水或疏干、建筑工程地基设计和施工等工作必需的一个重要水文地质参数。

一实验目的及要求通过本次实验,使学生加深对孔隙度、给水度和持水度概念的理解,掌握室内测定基本方法;要求学生在实验过程中认真观察和记录,分析本次实验后面的相关问题,写出实验报告书。

二测定方法及原理松散岩石的孔隙度、持水度与给水度测定方法,通常有高柱仪法和加压法,前者适用于砂和亚砂;后者则用于粘土及亚粘土。

本实验为高柱仪法(图Ⅰ—1),用以下两种方法均可求得其相应参数。

(一) 直接测定水量法根据定义,只要测出装入高柱筒中干试样的体积(V干试样)、试样饱水时所用水的体积(向供水瓶内加入的水和剩余水的体积之差),即:V饱水=V加水―V剩水和在重力的作用下试样排出水的体积(V排水),则试样所保持的水体积(V持水)为:V持水=V饱水―V排水据此,就可求出相应的孔隙度(n)、图Ⅰ—1高柱仪测定装置持水度(sr)和给水度(μ)。

1—高柱筒2—橡胶管3—橡皮塞4—金属网(二) 间接测定水量法5—调流量管夹6—接水桶7—供水瓶先将干试样装入高柱筒,并测出干试样体积(V干试样),倒出干试样,并将干燥试样称量获得其总重量(W干试样)后,再装入高柱筒,并加水饱和,最后使其在重力的作用下自由流出,直至排尽。

根据试样所排出的水量(V排水)、试样饱水时的含水率和重力作用下仍能保持的含水率与试样总重量W干试样,就可求出砂土的V持水及V饱水。

实验一 岩石孔隙度的测

实验一     岩石孔隙度的测

1 / 4实验一 岩石孔隙度的测定一.实验原理气体孔隙度仪是测量体积的一种仪器,用它可以测定岩样的骨架体积和孔隙度体积,利用气体膨胀原理,即玻义尔定律,已知体积的气体在其确定压力下向未知体积等温膨胀,膨胀后可测定最终的平衡压力。

平衡压力的大小取决于未知体积的大小,而未知体积的大小由玻义尔定律求得。

该仪器可用两种气体作为驱替介质,氮气和氦气,对于一般的砂岩可用氦气,对于较为致密的灰岩和孔隙较小的岩样可用氦气测定。

根据玻义尔定律,如图—2所示:气体的已知体积V k 与所测压力P k 下等温膨胀到未知室体积V 中,膨胀后测量最终平衡压力P ,这个平衡压力取决于未知体积量,未知体积可以用玻义尔定律求得:V k P k =VP +V k P (1) V =V k (P k −P)/P (2)对于低压真实气体,在弹性体积中作等温膨胀,考虑到器壁的压变性,忽略一些次要因素,计算由下式表示: V =V k (P k −P P)+P+P 0PG (P k −P) (3)式中:V ——未知室空间体积,cm 3V k ——已知室空间体积,cm3P k ——已知室的(原始)压力,MPa P ——平衡压力,MPaP 0——当天大气压力,MPa G ——体积的压变系数。

(一)岩样颗粒体积的测定:由上述所知,只有用同样的方法进行两次实验就可以确定出岩样的颗粒体积,即未知室不装岩样时得到的平衡压力为P 1,未知室空间体积为V 1。

V 1=V k (P k −P 1P 1)+P 1+P 0P 1G (P k −P 1) (4)未知室里装上岩样时得到的平衡压力P ,未知室的空间(包括岩心当中的空习体积)体积V 2 V 2=V k (P k −P P)+P+P 0PG (P k −P) (5)式(4)—式(5)为岩样的颗粒体积为V gV g =V 1−V 2这里应该指出的是:由于我们所用的气体空隙度仪结构设计上考虑了精度和已知室的校正问题,所以在岩样杯(未知室)中装满了不同体积的钢块,在测定P 1时应在岩样杯中装满钢块,测定P 时应从杯中取出与岩样体积相当的钢块体积,记录取出的钢块体积V 钢,所以颗粒体积为V g =V 1+V 钢−V 2 (6)(二)岩样外表体积和孔隙度的确定1、外表体积的求法:V f =HD 2π/4 (7) 式中:V f ——岩样外表体积,cm 3D ——岩样直径,cm H ——岩样高度,cm 2、孔隙度的求法根据下式就可求出岩样的空隙度Φ: Φ=1−V g /V f (8)(三)公式(3)中V k 、G 的确定其方法是在同一原始压力P k 下测定: 1、 岩样杯中装满钢块时的平衡压力P 1; 2、 从杯中取出1号钢块后的平衡压力P 2;3、 从杯中取出3号钢块(同时装入1号钢块)后的平衡压力P 3;根据公式(3)就可以知道下面三个描述性方程:V 1=V k (P k −P 1P 1)+P 1+P 0P 1G (P k −P 1) (9) V 2=V k (P k −P 2P 2)+P 2+P 0P 2G (P k −P 2) (10) V 3=V k (P k −P 3P 3)+P 3+P 0P 3G (P k −P 3) (11)由(11)—(9)式得:V 3−V 1=V k (P k P 3−P k P 1)+[(P k P 3−1)(P 3+P 0)−(Pk P 1−1)(P 1+P 0)]G (12)由(10)—(9)式得: V 2−V 1=V k (P k P 2−P k P 1)+[(P k P 2−1)(P 2+P 0)−(Pk P 1−1)(P 1+P 0)]G (13)令:A =P k P 3−P kP 1B =(P k P 3−1)(P 3+P 0)−(P kP 1−1)(P 1+P 0)C =P k P 2−P kP 1D =(P k P 2−1)(P 2+P 0)−(P kP 1−1)(P 1+P 0)有:V 3−V 1=A ∙V k +B ∙GV2−V1=C∙V k+D∙G 经整理得G=A(V2−V1)−C(V3−V1)AD−BC(14)V k=D(V3−V1)−B(V2−V1)AD−BC(15)式中(V2-V1)——第一次取出的1号钢块体积;cm3(V3-V1)——第一次取出的3号钢块体积;cm3P0——大气压力;MPa二.测量参数表三.用式(14)和(15)计算v k和G 根据实验测得的数据,计算出:A=P kP3−P kP1=0.309B=(P kP3−1)(P3+P0)−(P kP1−1)(P1+P0)=0.399MpaC=P kP2−P kP1=0.069D=(P kP2−1)(P2+P0)−(P kP1−1)(P1+P0)=0.093Mpa V2−V1=V01=1.453cm33/ 4V3−V2=V03=6.401cm3因此,根据式(14)和式(15)得:G=A(V2−V1)−C(V3−V1)AD−BC =6.060 cm3Mpa⁄V k=D(V3−V1)−B(V2−V1)AD−BC=12.891 cm³四.用式(8)计算岩样孔隙度根据实验测得数据,计算出:V1=V k(P k−P1P1)+P1+P0P1G(P k−P1)=1.016 cm³V2=V k(P k−PP )+P+P0PG(P k−P)=1.254 cm³V g=V1+V钢−V2= 20.429 cm³V f=HD2π/4=24.406 cm³因此,根据式(8),得:Φ=1−V g/V f=0.163。

页岩储层孔隙度测定技术

页岩储层孔隙度测定技术

页岩储层孔隙度测定技术页岩储层孔隙度测定技术页岩储层孔隙度测定技术是评估页岩油气资源潜力的重要手段之一。

它可以帮助我们了解储层岩石中的孔隙空间,从而确定储层的储集能力和产能。

下面将介绍一种常用的页岩储层孔隙度测定技术,以步骤思维的方式进行阐述。

步骤一:准备岩心样品首先,我们需要从勘探井中取得页岩储层的岩心样品。

岩心样品需要具有代表性,以确保测定结果的准确性和可靠性。

在采集过程中,需要注意保持样品的完整性和无损,避免对岩心样品造成二次损伤。

步骤二:岩心样品处理获得岩心样品后,需要对其进行处理,以便进行孔隙度测定。

首先,将岩心样品进行表面清洁,去除附着在样品表面的杂质和污染物。

然后,对岩心样品进行切割、磨削和抛光等处理,以获得平整的截面。

步骤三:孔隙度测定方法选择在进行孔隙度测定前,需要选择合适的测定方法。

常用的孔隙度测定方法包括气体吸附法、水饱和法、压汞法等。

选择方法时,需要考虑岩石性质、孔隙结构特征和实验条件等因素。

步骤四:气体吸附法测定气体吸附法是一种常用的孔隙度测定方法。

它通过测定岩心样品对气体的吸附量来确定孔隙度。

首先,将岩心样品置于气体吸附仪中,利用高真空技术将样品中的气体吸附出来。

然后,根据吸附曲线和等温吸附方程计算出样品的孔隙度。

步骤五:水饱和法测定水饱和法是另一种常用的孔隙度测定方法。

它利用水分子在岩石孔隙中的填充性来确定孔隙度。

首先,将岩心样品浸泡在水中一段时间,使岩石孔隙充分饱和。

然后,测量样品的干重、湿重和饱和重,并根据水饱和法公式计算孔隙度。

步骤六:压汞法测定压汞法是一种常用的孔隙度测定方法,适用于测定细微孔隙的孔隙度。

它利用水银在岩石孔隙中的渗透性来测定孔隙度。

首先,将岩心样品置于压汞仪中,利用压力将水银逐渐注入样品孔隙中。

然后,根据岩石样品的体积和注入水银的体积计算孔隙度。

步骤七:数据分析和结果解释在完成孔隙度测定后,需要对测定结果进行数据分析和结果解释。

根据不同的测定方法和测定数据,可以计算出不同孔隙度参数,如总孔隙度、有效孔隙度、渗透率等。

孔隙度测试实验报告

孔隙度测试实验报告

孔隙度测试实验报告引言孔隙度是岩石中所有孔隙的总体积与岩石样品总体积的比值,是评价岩石储层性质的重要参数之一。

测试孔隙度的目的是为了获得岩石样品中的孔隙度信息,从而进一步了解岩石中的储层特性。

本实验使用氮气置换法测试了岩石样品的孔隙度,并详细记录了实验过程和结果。

实验原理氮气置换法是一种常见的测试孔隙度的方法。

该方法利用氮气的特性,通过测量被测样品在氮气压力作用下的体积变化来获得孔隙度信息。

具体的原理如下:1. 孔隙度的计算公式孔隙度(φ)的计算公式为:![公式1](其中,Vv为被测样品中的孔隙体积,Vt为被测样品的总体积。

2. 氮气置换法的原理氮气置换法利用氮气的低溶解度和高渗透性,将被测样品放入封闭的测试装置中,逐渐增加氮气的压力,使氮气逐渐渗透到样品中的孔隙中。

当氮气压力达到平衡时,测量装置中的压力和体积信息,从而计算出样品的孔隙度。

实验步骤1. 实验设备与材料准备实验设备包括氮气置换仪、高压氮气源、电子天平、计时器等。

材料准备包括岩石样品、封闭测试容器等。

2. 样品制备从野外取得的岩石样品经过清洗和干燥后,切割成适当大小的块状样品,并记录样品的尺寸和质量。

3. 测试装置设置将制备好的岩石样品放置在测试装置的测试室中,完全密封。

4. 氮气置换打开高压氮气源,逐渐增加氮气的压力,直到测试装置中的压力稳定。

记录下测试装置中的压力值。

5. 测定体积和质量测量测试装置中的体积,并记录下来。

同时,使用电子天平测量岩石样品的质量。

6. 数据处理与计算根据上述测得的数据,根据公式计算孔隙度。

结果与讨论根据上述实验步骤,我们成功测试了岩石样品的孔隙度。

以下为实验结果:样品编号尺寸(cm)质量(g)压力(MPa)体积(cm^3)孔隙度(%)-1 3×4×5 15.2 1.5 22.6 15.42 2×3×4 10.5 1.2 16.8 12.53 4×4×5 20.1 1.8 27.0 17.8从实验结果来看,不同样品的孔隙度存在一定的差异,这是由于样品的不同物理结构和成分差异导致的。

实验一:岩石的孔隙度的测定

实验一:岩石的孔隙度的测定

中国石油大学油层物理实验报告实验一:岩石孔隙度的测定一:实验目的1. 巩固岩石孔隙度的概念,掌握其测定原理;2. 掌握空隙的的流程和操作步骤;二:实验原理据波义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固体体积越小,则岩心室中气体所占体积越大,与标准室联通后吗,平衡压力越低;反之,当放入岩心室的岩样体积越大,平衡压力越大;绘制标准块的体积与平衡压力的标准曲线,测定待测岩样的平衡压力,根据标准曲线反求岩样固体体积。

按下式计算孔隙度:=100%三:实验流程与设备平衡关系式:()()1021100V V V P V P V V P s s +-=+-源放空阀 流程图(b)控制面板QKY-Ⅱ型气体孔隙度仪仪器由下列部件组成:①气源阀:供给孔隙度仪调节器低于1000kP,但供气阀开启时,调节器通过常泄,保持压力恒定。

②调节阀:将1000kP的气体压力准确的调节到指定的压力(小于1000kP)。

③供气阀:链接经调解阀调压后的气体到标准室和压力传感器。

④压力传感器:测量体系中气体压力,用来指示准确标准室中的压力,并指示体系中的平衡压力。

⑤样品阀:能使标准室的气体连接到岩心室。

⑥放空阀:使岩心室中的初始压力为大气压力,也可使平衡后岩心室与标准室的气体放入大气。

四:实验步骤1.用游标卡尺测量各个钢圆盘和岩样的直径和长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中。

2.将2号刚圆盘放入岩心杯,并把岩心杯放入夹持器中,顺时针转动T型转柄,使之密封,打开样品阀及放空阀,确保岩心室气体为大气压力。

3.关样品阀及放空阀,开气源阀及供气阀。

调节调压阀,将标准室气体压力调至某一值,如560 kP,。

待压力稳定后,关闭供气阀,并记录标准室气体压力。

4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力。

5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出刚圆盘。

6.用同样的方法将3号、4号及全部钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 4
实验一 岩石孔隙度的测定
一.实验原理
气体孔隙度仪是测量体积的一种仪器,用它可以测定岩样的骨架体积和孔隙度体积,利用气体膨胀原理,即玻义尔定律,已知体积的气体在其确定压力下向未知体积等温膨胀,膨胀后可测定最终的平衡压力。

平衡压力的大小取决于未知体积的大小,而未知体积的大小由玻义尔定律求得。

该仪器可用两种气体作为驱替介质,氮气和氦气,对于一般的砂岩可用氦气,对于较为致密的灰岩和孔隙较小的岩样可用氦气测定。

根据玻义尔定律,如图—2所示:气体的已知体积V k 与所测压力P k 下等温膨胀到未知室体积V 中,膨胀后测量最终平衡压力P ,这个平衡压力取决于未知体积量,未知体积可以用玻义尔定律求得:
V k P k =VP +V k P (1) V =V k (P k −P)/P (2)
对于低压真实气体,在弹性体积中作等温膨胀,考虑到器壁的压变性,忽略一些次要因素,计算由下式表示: V =V k (
P k −P P
)+
P+P 0P
G (P k −P) (3)
式中:V ——未知室空间体积,cm 3
V k ——已知室空间体积,cm
3
P k ——已知室的(原始)压力,MPa P ——平衡压力,MPa
P 0——当天大气压力,MPa G ——体积的压变系数。

(一)岩样颗粒体积的测定:
由上述所知,只有用同样的方法进行两次实验就可以确定出岩样的颗粒体积,即未知室不装岩样时得到的平衡压力为P 1,未知室空间体积为V 1。

V 1=V k (
P k −P 1P 1
)+
P 1+P 0P 1
G (P k −P 1) (4)
未知室里装上岩样时得到的平衡压力P ,未知室的空间(包括岩心当中的空习体积)体积V 2 V 2=V k (
P k −P P
)+
P+P 0P
G (P k −P) (5)
式(4)—式(5)为岩样的颗粒体积为V g
V g =V 1−V 2
这里应该指出的是:由于我们所用的气体空隙度仪结构设计上考虑了精度和已知室的校正问题,所以在岩样杯(未知室)中装满了不同体积的钢块,在测定P 1时应在岩样杯中装
满钢块,测定P 时应从杯中取出与岩样体积相当的钢块体积,记录取出的钢块体积V 钢,所以颗粒体积为
V g =V 1+V 钢−V 2 (6)
(二)岩样外表体积和孔隙度的确定
1、外表体积的求法:
V f =HD 2π/4 (7) 式中:
V f ——岩样外表体积,cm 3
D ——岩样直径,cm H ——岩样高度,cm 2、孔隙度的求法
根据下式就可求出岩样的空隙度Φ: Φ=1−V g /V f (8)
(三)公式(3)中V k 、G 的确定
其方法是在同一原始压力P k 下测定: 1、 岩样杯中装满钢块时的平衡压力P 1; 2、 从杯中取出1号钢块后的平衡压力P 2;
3、 从杯中取出3号钢块(同时装入1号钢块)后的平衡压力P 3;
根据公式(3)就可以知道下面三个描述性方程:
V 1=V k (
P k −P 1P 1)+P 1+P 0P 1G (P k −P 1) (9) V 2=V k (P k −P 2P 2
)+P 2+P 0P 2G (P k −P 2) (10) V 3=V k (
P k −P 3P 3
)+
P 3+P 0P 3
G (P k −P 3) (11)
由(11)—(9)式得:
V 3−V 1=V k (P k P 3
−P k P 1
)+[(P k P 3
−1)(P 3+P 0)−(P
k P 1
−1)(P 1+P 0)]G (12)
由(10)—(9)式得: V 2−V 1=V k (P k P 2

P k P 1
)+[(P k P 2
−1)(P 2+P 0)−(P
k P 1
−1)(P 1+P 0)]G (13)
令:
A =
P k P 3−P k
P 1
B =(P k P 3−1)(P 3+P 0)−(P k
P 1
−1)(P 1+P 0)
C =
P k P 2−P k
P 1
D =(P k P 2−1)(P 2+P 0)−(P k
P 1
−1)(P 1+P 0)
有:
V 3−V 1=A ∙V k +B ∙G
V2−V1=C∙V k+D∙G 经整理得
G=A(V2−V1)−C(V3−V1)
AD−BC
(14)
V k=D(V3−V1)−B(V2−V1)
AD−BC
(15)
式中
(V2-V1)——第一次取出的1号钢块体积;cm3
(V3-V1)——第一次取出的3号钢块体积;cm3
P0——大气压力;MPa
二.测量参数表
三.用式(14)和(15)计算v k和G 根据实验测得的数据,计算出:
A=P k
P3−P k
P1
=0.309
B=(P k
P3−1)(P3+P0)−(P k
P1
−1)(P1+P0)=0.399Mpa
C=P k
P2−P k
P1
=0.069
D=(P k
P2−1)(P2+P0)−(P k
P1
−1)(P1+P0)=0.093Mpa V2−V1=V01=1.453cm3
3/ 4
V3−V2=V03=6.401cm3因此,根据式(14)和式(15)得:
G=A(V2−V1)−C(V3−V1)
AD−BC =6.060 cm3Mpa

V k=D(V3−V1)−B(V2−V1)
AD−BC
=12.891 cm³四.用式(8)计算岩样孔隙度
根据实验测得数据,计算出:
V1=V k(P k−P1
P1)+P1+P0
P1
G(P k−P1)=1.016 cm³
V2=V k(P k−P
P )+P+P0
P
G(P k−P)=1.254 cm³
V g=V1+V

−V2= 20.429 cm³V f=HD2π/4=24.406 cm³
因此,根据式(8),得:
Φ=1−V g/V f=0.163。

相关文档
最新文档