岩石孔隙度测定 实验报告
松散岩石孔隙度、持水度和给水度的测定

Ⅰ实验部分实验一松散岩石孔隙度、持水度和给水度的测定岩石的空隙是地下水赋存的场所和运移的通道,作为含水介质,空隙的性状严格控制着地下水的分布、埋藏和运动特征。
在孔隙水研究中,首先要对岩石的孔隙度、持水度和给水度进行实际测定,以了解岩层容水、持水和给水能力等方面的水文地质特征。
岩石的孔隙度是用以表征岩石容水性能的重要指标;岩石的持水度是用来表征岩石在重力作用下仍能保持一定水量能力的指标;岩石的给水度是表征饱水岩石在重力作用下所释出或给出水量大小的指标。
岩石的给水度是评价地下水资源量的一个重要参数,也是矿坑排水或疏干、建筑工程地基设计和施工等工作必需的一个重要水文地质参数。
一实验目的及要求通过本次实验,使学生加深对孔隙度、给水度和持水度概念的理解,掌握室内测定基本方法;要求学生在实验过程中认真观察和记录,分析本次实验后面的相关问题,写出实验报告书。
二测定方法及原理松散岩石的孔隙度、持水度与给水度测定方法,通常有高柱仪法和加压法,前者适用于砂和亚砂;后者则用于粘土及亚粘土。
本实验为高柱仪法(图Ⅰ—1),用以下两种方法均可求得其相应参数。
(一) 直接测定水量法根据定义,只要测出装入高柱筒中干试样的体积(V干试样)、试样饱水时所用水的体积(向供水瓶内加入的水和剩余水的体积之差),即:V饱水=V加水―V剩水和在重力的作用下试样排出水的体积(V排水),则试样所保持的水体积(V持水)为:V持水=V饱水―V排水据此,就可求出相应的孔隙度(n)、图Ⅰ—1高柱仪测定装置持水度(sr)和给水度(μ)。
1—高柱筒2—橡胶管3—橡皮塞4—金属网(二) 间接测定水量法5—调流量管夹6—接水桶7—供水瓶先将干试样装入高柱筒,并测出干试样体积(V干试样),倒出干试样,并将干燥试样称量获得其总重量(W干试样)后,再装入高柱筒,并加水饱和,最后使其在重力的作用下自由流出,直至排尽。
根据试样所排出的水量(V排水)、试样饱水时的含水率和重力作用下仍能保持的含水率与试样总重量W干试样,就可求出砂土的V持水及V饱水。
岩石孔隙度测定 实验报告

岩石孔隙度测定实验报告实验目的:本实验旨在通过测量实验样品的体积和质量,确定样品的平均密度和孔隙度,并掌握岩石孔隙度的测定方法。
实验原理:孔隙度是指岩石中由各种类型和尺度的孔隙组成的总体积与岩石总体积之比。
孔隙可以分为原生孔隙和次生孔隙,原生孔隙是岩石形成时就具有的,次生孔隙是后期在岩石中形成的。
测定岩石孔隙度的方法通常有置换法和密度法。
本实验采用浮法测定岩石孔隙度。
浮法是利用岩石密度与测量液体密度的差异,通过浸泡法测得岩石体积与液体体积之比来求解。
实验步骤:1. 取实验样品,将其用水清洗干净,然后用干布或纸巾将其外表擦干。
2. 将样品放在秤盘上,测量其重量,并记录结果。
3. 取一个干净的容器,先将容器放在天平上,记录容器的重量。
4. 用清水将容器装至约7/8的容积。
5. 用手将装有清水的容器置于实验样品上,至少盖住实验样品的顶部。
6. 记录液体的体积。
为了减小误差,我们建议用毫升阅读浮标的容积器或移液管等专用工具测量。
记录液体体积的时候一定要注意去掉液体表面的涟漪。
7. 将容器取出,记录液体温度,并用差压计测得大气压强。
8. 计算岩石的密度和孔隙度。
岩石密度=实验样品重量/实验样品体积孔隙度=(1- 岩石平均密度/实验液体密度)×100%注意事项:1. 实验液体的温度和压强必须测量,并考虑它们对密度的影响。
实验液体的温度应在室温范围内,实验液体的密度最好与岩石密度相近。
2. 手操作时注意避免样品坠落,以免破坏样品。
3. 一定要注意记录数据时的精度,在做测量时尽量减小误差。
4. 在进行测量前,要先检查仪器是否正常运转。
实验结果及分析:本实验采用浮法测定岩石孔隙度。
最终结果如下:实验样品重量:102.50g实验液体温度:25℃大气压强:100kPa实验液体体积:250.00ml平均密度:2.67g/cm³孔隙度:17.33%通过实验测得的平均密度和孔隙度结果表明,无论是平均密度还是孔隙度都是合理的。
《岩石物理学》课程报告:岩石气体孔隙度测量

计算实例
4.3
误差分析
4-3 计算实例
4-3 Байду номын сангаас算实例
4-3 计算实例
4.1
数据处理
4.2
计算实例
4.3
误差分析
4-2 误差分析
➢显然,在测量的过程中,会引入误差的直接量有:
➢
➢系统参数Vk和G的误差是由于标定过程的误差造成的,其大
小应根据标定公式及其标定用的测量参数
的测
量误差来计算。
➢因此,孔隙度的测量误差的计算实际上要考虑两个过程的误 差传递问题。
3 实验步骤
➢5.关样品阀,开放空阀,从样品杯中取出全部钢块,装入岩 心,如岩心未装满岩样杯,用钢块尽量把杯子装满(原则是使 其空间体积最小),然后将样品杯装在夹持器上密封。重复步
骤5,记下平衡压力p及取出的钢块体积 V钢 。
➢6.实验完毕,关样品阀,开放空阀,关高压气瓶阀门,用调 压器将压力表读数调到0,然后关闭所有阀门,取出岩样将钢 块全部放入样品杯内,装在夹持器上,实验结束。
5-2 参考文献
[1] 沈平平等,油层物理实验技术[M].北京:石油工业出版社, 1995.9. [2] 何更生,油层物理[M].北京:石油工业出版社,1994.11. [3] 柯式镇,岩石气体孔隙度测量不确定度分析,计量学报, 2007,28(2):177~179.
谢谢老师和各位同学!
由此可知,在体积一定,即
一定时,待测体
积只是平衡压力p的函数,所以,只要测定平衡压力p
就可以了。
1-1 方法原理
由上述测量原理可知,我们只要用同样的方法进行两次实验就可以确 定出岩样的颗粒体积。即未知室不装岩样时得到的平衡压力为 ,未知空 间体积 ,那么:
实验一 岩石孔隙度的测

1 / 4实验一 岩石孔隙度的测定一.实验原理气体孔隙度仪是测量体积的一种仪器,用它可以测定岩样的骨架体积和孔隙度体积,利用气体膨胀原理,即玻义尔定律,已知体积的气体在其确定压力下向未知体积等温膨胀,膨胀后可测定最终的平衡压力。
平衡压力的大小取决于未知体积的大小,而未知体积的大小由玻义尔定律求得。
该仪器可用两种气体作为驱替介质,氮气和氦气,对于一般的砂岩可用氦气,对于较为致密的灰岩和孔隙较小的岩样可用氦气测定。
根据玻义尔定律,如图—2所示:气体的已知体积V k 与所测压力P k 下等温膨胀到未知室体积V 中,膨胀后测量最终平衡压力P ,这个平衡压力取决于未知体积量,未知体积可以用玻义尔定律求得:V k P k =VP +V k P (1) V =V k (P k −P)/P (2)对于低压真实气体,在弹性体积中作等温膨胀,考虑到器壁的压变性,忽略一些次要因素,计算由下式表示: V =V k (P k −P P)+P+P 0PG (P k −P) (3)式中:V ——未知室空间体积,cm 3V k ——已知室空间体积,cm3P k ——已知室的(原始)压力,MPa P ——平衡压力,MPaP 0——当天大气压力,MPa G ——体积的压变系数。
(一)岩样颗粒体积的测定:由上述所知,只有用同样的方法进行两次实验就可以确定出岩样的颗粒体积,即未知室不装岩样时得到的平衡压力为P 1,未知室空间体积为V 1。
V 1=V k (P k −P 1P 1)+P 1+P 0P 1G (P k −P 1) (4)未知室里装上岩样时得到的平衡压力P ,未知室的空间(包括岩心当中的空习体积)体积V 2 V 2=V k (P k −P P)+P+P 0PG (P k −P) (5)式(4)—式(5)为岩样的颗粒体积为V gV g =V 1−V 2这里应该指出的是:由于我们所用的气体空隙度仪结构设计上考虑了精度和已知室的校正问题,所以在岩样杯(未知室)中装满了不同体积的钢块,在测定P 1时应在岩样杯中装满钢块,测定P 时应从杯中取出与岩样体积相当的钢块体积,记录取出的钢块体积V 钢,所以颗粒体积为V g =V 1+V 钢−V 2 (6)(二)岩样外表体积和孔隙度的确定1、外表体积的求法:V f =HD 2π/4 (7) 式中:V f ——岩样外表体积,cm 3D ——岩样直径,cm H ——岩样高度,cm 2、孔隙度的求法根据下式就可求出岩样的空隙度Φ: Φ=1−V g /V f (8)(三)公式(3)中V k 、G 的确定其方法是在同一原始压力P k 下测定: 1、 岩样杯中装满钢块时的平衡压力P 1; 2、 从杯中取出1号钢块后的平衡压力P 2;3、 从杯中取出3号钢块(同时装入1号钢块)后的平衡压力P 3;根据公式(3)就可以知道下面三个描述性方程:V 1=V k (P k −P 1P 1)+P 1+P 0P 1G (P k −P 1) (9) V 2=V k (P k −P 2P 2)+P 2+P 0P 2G (P k −P 2) (10) V 3=V k (P k −P 3P 3)+P 3+P 0P 3G (P k −P 3) (11)由(11)—(9)式得:V 3−V 1=V k (P k P 3−P k P 1)+[(P k P 3−1)(P 3+P 0)−(Pk P 1−1)(P 1+P 0)]G (12)由(10)—(9)式得: V 2−V 1=V k (P k P 2−P k P 1)+[(P k P 2−1)(P 2+P 0)−(Pk P 1−1)(P 1+P 0)]G (13)令:A =P k P 3−P kP 1B =(P k P 3−1)(P 3+P 0)−(P kP 1−1)(P 1+P 0)C =P k P 2−P kP 1D =(P k P 2−1)(P 2+P 0)−(P kP 1−1)(P 1+P 0)有:V 3−V 1=A ∙V k +B ∙GV2−V1=C∙V k+D∙G 经整理得G=A(V2−V1)−C(V3−V1)AD−BC(14)V k=D(V3−V1)−B(V2−V1)AD−BC(15)式中(V2-V1)——第一次取出的1号钢块体积;cm3(V3-V1)——第一次取出的3号钢块体积;cm3P0——大气压力;MPa二.测量参数表三.用式(14)和(15)计算v k和G 根据实验测得的数据,计算出:A=P kP3−P kP1=0.309B=(P kP3−1)(P3+P0)−(P kP1−1)(P1+P0)=0.399MpaC=P kP2−P kP1=0.069D=(P kP2−1)(P2+P0)−(P kP1−1)(P1+P0)=0.093Mpa V2−V1=V01=1.453cm33/ 4V3−V2=V03=6.401cm3因此,根据式(14)和式(15)得:G=A(V2−V1)−C(V3−V1)AD−BC =6.060 cm3Mpa⁄V k=D(V3−V1)−B(V2−V1)AD−BC=12.891 cm³四.用式(8)计算岩样孔隙度根据实验测得数据,计算出:V1=V k(P k−P1P1)+P1+P0P1G(P k−P1)=1.016 cm³V2=V k(P k−PP )+P+P0PG(P k−P)=1.254 cm³V g=V1+V钢−V2= 20.429 cm³V f=HD2π/4=24.406 cm³因此,根据式(8),得:Φ=1−V g/V f=0.163。
孔隙度测试实验报告

孔隙度测试实验报告引言孔隙度是岩石中所有孔隙的总体积与岩石样品总体积的比值,是评价岩石储层性质的重要参数之一。
测试孔隙度的目的是为了获得岩石样品中的孔隙度信息,从而进一步了解岩石中的储层特性。
本实验使用氮气置换法测试了岩石样品的孔隙度,并详细记录了实验过程和结果。
实验原理氮气置换法是一种常见的测试孔隙度的方法。
该方法利用氮气的特性,通过测量被测样品在氮气压力作用下的体积变化来获得孔隙度信息。
具体的原理如下:1. 孔隙度的计算公式孔隙度(φ)的计算公式为:质量(g)压力(MPa)体积(cm^3)孔隙度(%)-1 3×4×5 15.2 1.5 22.6 15.42 2×3×4 10.5 1.2 16.8 12.53 4×4×5 20.1 1.8 27.0 17.8从实验结果来看,不同样品的孔隙度存在一定的差异,这是由于样品的不同物理结构和成分差异导致的。
实验部分

Ⅰ实验部分实验一 松散岩石孔隙度、持水度和给水度的测定岩石的空隙是地下水赋存的场所和运移的通道,作为含水介质,空隙的性状严格控制着地下水的分布、埋藏和运动特征。
在孔隙水研究中,首先要对岩石的孔隙度、持水度和给水度进行实际测定,以了解岩层容水、持水和给水能力等方面的水文地质特征。
岩石的孔隙度是用以表征岩石容水性能的重要指标;岩石的持水度是用来表征岩石在重力作用下仍能保持一定水量能力的指标;岩石的给水度是表征饱水岩石在重力作用下所释出或给出水量大小的指标。
岩石的给水度是评价地下水资源量的一个重要参数,也是矿坑排水或疏干、建筑工程地基设计和施工等工作必需的一个重要水文地质参数。
一 实验目的及要求通过本次实验,使学生加深对孔隙度、给水度和持水度概念的理解,掌握室内测定基本方法;要求学生在实验过程中认真观察和记录,分析本次实验后面的相关问题,写出实验报告书。
二 测定方法及原理松散岩石的孔隙度、持水度与给水度测定方法,通常有高柱仪法和加压法,前者适用于砂和亚砂;后者则用于粘土及亚粘土。
本实验为高柱仪法(图Ⅰ—1),用以下两种方法均可求得其相应参数。
(一) 直接测定水量法根据定义,只要测出装入高柱筒中 干试样的体积(V 干试样)、试样饱水时所 用水的体积(向供水瓶内加入的水和剩 余水的体积之差),即: V 饱水=V 加水―V 剩水和在重力的作用下试样排出水的体 积(V 排水),则试样所保持的水体积(V 持水) 为:V 持水=V 饱水―V 排水据此,就可求出相应的孔隙度(n)、 图Ⅰ—1高柱仪测定装置持水度(s r )和给水度(μ)。
1—高柱筒2—橡胶管3—橡皮塞4—金属网 (二) 间接测定水量法 5—调流量管夹6—接水桶7—供水瓶 先将干试样装入高柱筒,并测出干试样体积(V 干试样),倒出干试样,并将干燥试样称量获得其总重量(W 干试样)后,再装入高柱筒,并加水饱和,最后使其在重力的作用下自由流出,直至排尽。
岩石孔隙度实验报告

中国石油大学 渗流物理_实验报告实验日期:2014年9月22日 成绩:______ 班级:_ _学号: 姓名:_ _教师:_________同组者:__ _________________________________________________储层岩石孔隙度的测定一、 实验目的.1、 巩固岩石孔隙度的概念,掌握其测定原理2、 掌握气体膨胀法测定孔隙度的方法二、 实验原理在标准室内充满一定压力的气体,打开标准室与岩心室之间的开关,标准室中的高压气体将进入岩心室,其压力降低。
根据波义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占体积越大,与标准室联通后,平衡压力就降低;反之,放入岩心室岩样的固相体积越大,平衡压力就越高。
绘制标准块的体积与平衡压力的标准曲线,测定待测岩样的平衡压力后,根据标准曲线反查岩样固相体积,按公式计算岩样孔隙度公式:fsff p V V V V V -==φ φ------孔隙度 测定岩样骨架体积的原理:根据气体等膨胀定律:)()-(10211s 00V V V P V P V V P s +-=+ 用表压表示---))(()()-(100210g 1s 00V V V P P V P P V V P s g +-+=++其中-,2g 1g P P 表示表压化简后得1g 1102)(V P V V V P s g =+-三、 实验流程s V1V气源o P1P四、 实验操作步骤1、 用游标卡尺测量各个钢圆盘和岩样的直径与长度(将钢盘由小到大编号为1,2,3和4),并记录在数据表中。
2、 将2号钢盘装入岩心杯,并把岩心杯装入夹持器中,转动T 形转柄,使之密封。
打开样品阀及放空阀,确保岩心室中的压力为大气压。
3、 关闭样品阀及放空阀,打开气源阀和供气阀。
调节调压阀,使标准室内的气体压力为560KPa 。
待压力稳定后,关闭供气阀,并记录标准室内的气体压力。
孔隙率检测报告范文

孔隙率检测报告范文孔隙率是指岩石、土壤或其他多孔介质中孔隙的体积占总体积的比例。
在地质工程、土壤力学和地下水领域中,孔隙率的测定是非常重要的一项工作。
本文将探讨孔隙率的定义、常用的测定方法以及如何编写孔隙率检测报告。
一、孔隙率的定义孔隙率是指岩石、土壤或其他多孔介质中孔隙的体积占总体积的比例。
它是衡量多孔介质中可容纳液体或气体的能力的重要参数。
孔隙率的大小直接影响物质的渗透性、压缩性和强度等性质。
二、孔隙率的测定方法1.水位法水位法是最常用的测定孔隙率的方法之一、该方法首先需要获取一个代表性的岩石或土壤样本,并在实验室中将其干燥至恒定质量。
然后将样本置于一个测定器中,使其完全浸入水中。
根据水的浸润高度和测定器的几何尺寸,可以计算出孔隙率。
2.气体置换法气体置换法是另一种常用的孔隙率测定方法。
该方法利用气体在孔隙中的置换来计算孔隙率。
首先将样本置于一个密闭的容器中,并通过改变压力或温度来改变孔隙中的气体浓度。
然后通过测定气体置换前后的体积变化来计算孔隙率。
3.直接计数法直接计数法是一种用于颗粒较大且孔隙较小的物质的孔隙率测定方法。
该方法通过在显微镜下直接观察和计数孔隙来计算孔隙率。
由于直接计数法需要较高的显微镜技术和时间成本,因此适用于较小规模的研究和实验。
三、孔隙率检测报告的编写1.报告标题和目的报告的标题应明确表达所进行的孔隙率检测。
而目的部分应简要介绍为什么进行该项检测,检测的目标是什么,以及将如何使用检测结果。
2.检测方法介绍在报告中,应对所采用的孔隙率检测方法进行介绍。
包括水位法、气体置换法等不同的方法,并说明为什么选择该方法进行检测。
3.样品信息4.检测结果和数据分析根据所采用的测定方法,报告中应将每个样品的孔隙率测定结果详细列出,并进行数据分析。
可以通过表格、图表等形式来清晰地展示数据。
此外,还要对数据进行比较、计算平均值、标准差等统计分析。
5.结果讨论和结论在结果讨论部分,应对实验结果进行详细分析,并与先前的研究或理论进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国石油大学油层物理实验报告
实验日期:2010年11月22日成绩:
班级:资源(中石化)07-1班学号:07131419姓名:武鑫彪教师:张丽丽同组者:无
实验内容:岩石孔隙度测定
一、实验目的
1.悉知岩石孔隙度的概念,掌握其测定原理(膨胀法测定孔隙度)。
2.掌握气测孔隙度的流程与操作步骤。
二、实验原理
根据波义耳定律,在恒定温度下,岩心室体积一定,放入岩心室样品的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。
绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。
按下式计算岩样孔隙度:
%
100×−=f
s f V V V φ三、实验流程与设备
图1.流程图
图2.控制面板
设备:QKY-II型气体孔隙度仪
仪器部件组成:
1气源阀:供给孔隙度仪调节器低于1000KPa的气体。
当供气阀开启时,调节器通过常泄,使压力保持稳定。
2调节阀:将1000KPa的气体准确地调节到指定压力(小于1000KPa)。
3供气阀:连接经调节阀后的气体到标准室和压力传感器。
4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。
5样品阀:能使标准室的气体连接到岩心室。
6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。
四、实验步骤
1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆
盘从小到大编号为1、2、3、4),并记录在数据表中。
2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形
转柄,使之密封。
打开样品阀及放空阀,确保岩心室气体为大气压。
3.关样品阀及放空阀,开气源阀和供气阀。
调节调压阀,将标准室气体压
力调至某一值(如560KPa)。
待压力稳定后,关闭供气阀,并记录标准
室气体压力。
4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力。
5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘。
6.用同样的方法将3号、4号及全部(1-4)钢圆盘装入岩心杯中,重复步
骤2~5,记录平衡压力。
7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。
8.将上述数据填入原始记录表。
五、数据处理与计算
1.计算各个钢圆盘体积和岩样外表体积。
2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制
标准曲线。
P——平衡压力,KPa;
V
——岩样固相体积,cm3;
s
V
——岩样外表体积,cm3;
f
d——岩样直径,cm;
L——岩样长度,cm;
Ф——孔隙度,%。
表1.气体孔隙度测定数据表
钢圆盘编号2#3#4#1、2、3、4#自由组合钢圆盘岩样编号2、3#2、3、4#3、4#P10-6#直径d /cm 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500长度L /cm 1.994 2.486 4.9989.962 4.4809.4787.484 6.670体积
f V /cm
3
9.788
12.203
24.534
48.901
21.991
46.525
36.737
32.741
原始压力
1P /Kpa 560560560560560560560560
测得压力
2P /Kpa
202218272513256470356295
图3.平衡压力与骨架体积标准曲线
故而岩样体积
3
22cm 741.32670.6500.24
1
41=××==ππL d V f 故而岩样孔隙度
14
.0%100741
.32250.28741.32%100=×−=×−=f s f V V V φ250
.28=s V 295
骨架体积f V /cm 3
在这个实验中,学习到了岩石孔隙度的概念及测量方法(气体膨胀法),而且实验过程中在测量标准块的平衡压力时,需要认真的调节气压为560 kPa,并保证读数稳定时才可读取,所以需要仔细耐心的测量。
气体膨胀法:采用气体作为测量中介,既减小了粘滞系数等的干扰,又减少了浸入体积的误差。
把不易测量的孔隙体积转换成了容易测量的空气气体体积。
这种方法采用了我们地质工程中常用的测量介质替换法,把不容易测量的量转换成为容易测量的量。
求取孔隙体积:采用标准模型建立图版,利用图版来求解所需求的量。
这个需要建立良好的数学模型图板,以减少求解误差。
此种方法在石油工程中及勘查工程中极为常用。
关于测量:实验原理极其简单,但操作起来有一点儿麻烦,就是本实验中调节原始压力(560KPa)不容易调节,可以在第一次自小到大的方向调节调压阀。
在原始压力接近需求值时减缓调节速度,再接近数值时停止,最终要略微超过原始压力(不要超过5KPa)。
关闭供气阀,打开放空阀。
再关闭放空阀。
打开供气阀,注意显示数值,在接近原始压力值时调整个人状态并在到达数值时迅速关闭。
此过程无需再次调节调压阀,减少了实验强度,提升了实验速度,并且对实验结果五不良影响。
最后,还要感谢张丽丽老师的精心、耐心指导!。