第十章植物体细胞无性系变异
植物体细胞无性系变异的遗传基础及主要影响因素

DOI 0 3 6 / a . 2 . 0 4 :1 . 9 9 g b 0 9 0 1 2 1
Ab t a t Pln o co a rai n I o mo he o e o n t o s fts u u t r nd i ply n i - sr c a ts ma l n l va ito Sac m n p n m n n i hec ur eo s ec lu ea t a sa m i p ra tr l n i r v n a ite n r e n w re i sof a , u ti lo apu z e i l t t e p i o tn o ei mp o i g v rei sa d b e dig ne va ite nt b ti sas z l n al heo h ra pl pl — c to r a fts u ul e Thema n g n tcb s sofp a ts ma lna a ito ,i cud n h o o o a i— ai n a e so s e c t . i ur i e e i a e l n o co lv ra i n n l i g c r m s me v ra to in,ta po o c i to ,DNA eh l to ,ge e mu a i n nd c a e o rs s na t in va m tyain n t to ,a h ng fDNA e a e ue e e ae t a h r pe ts q nc ,r lt o e c o h r ahe ha i g t e o i i fs ma l na a i t n ao .Am o g t e e fc o s e f ci g o oma l n l t e ,r t r t n ben h rgn o o co lv ra i lne o n h s a t r fe tn n s c o a v rai n, o m fc l d v so d rng e pln sd difr n ito g o h r g a o ss pp e ntd i di a ito f r o e l i iin u i x a t e fe e tai n, r wt e ult r u l me e n me um,lv e— eso ul r nc u e n ro d tv e s r ,whih ha e c o e ea i n wi o co lv rai n, c l fc t e e o ntru de xia i epr s u e u c v l s rr l to t s ma lna a ito ofwhih h t xo e u u na d c t ki i r h o ti hee g no sa xi n yo n n a et em s mpo tnt x e na a t r nfu n i n s ma l na a ito To ra tr lf co si l e cng o o co lv rai n. e r d e s m a l n lv rai n a ii g t r u h t e c l r a ttsue ,i hi p r we s g e tt a urh rr — e uc o c o a a ito rsn h o g h u t eofpln is s n t spa e , u g s h tf t e e u s a c n t er lto s i t e o h r g l t r t heg n tcb s so l n o co l a i t nd ty e r h o h ea i n h psbewe n g w e a o swi t e e i a e fp a ts ma l na ra i a r r t u h v on o h y op e e ta d c n r ls ma l n l a ito s d o h ea i n h p . ut ewa st r v n n o to o co a ra i nba e n t er l to s i s t v
体细胞无性系变异

射线:如X-射线及γ-射线
激光
微波
离子束
化学诱变
烷化剂
包括EMS、EI、NEU、NMU、DES、MNNG、NTG等 通过与核苷酸中的磷酸、嘌呤和嘧啶等分子直接反应,在碱基 许多位置上增加了烷基来诱发突变 如5-溴尿嘧啶(BU)和2-氨基嘌呤(AP ) 与DNA正常碱基结构类似的化合物,能在DNA复制时取代正常 碱基掺入并与互补碱基配对。使AT转换为GC碱基对
染色体的结构变异
主要包括缺失、重复、倒位及易位等 结构变异频率随染色体的不同而不同
基因突变(Gene mutation)
由于DNA分子中发生碱基对的增添、缺失或改变, 而引起的基因结构的改变,就叫做基因突变 狭义仅指“点突变” 按照基因结构改变的类型,突变可分为碱基置换、 移码、缺失和插入4种。 按照遗传信息的改变方式,突变又可分为错义、无 义两类 按照表型效应,突变型可以区分为形态突变型、生 化突变型以及致死突变型等,对于基础理论研究及 遗传改良具有重要意义
2 常用的诱变措施
物理诱变 化学诱变 空间技术诱变 复合诱变
物理诱变
紫外线
波长260nm的紫外辐射最有效,使DNA分子形成嘧啶二聚体, 即两个相邻的嘧啶共价连接,减弱双键间氢键的作用,并引起 双链结构扭曲变形,阻碍碱基间的正常配对 电离作用,因而能直接或间接地改变DNA结构 激光是异于自然光的辐射光,能量高度集中。通过光效应、热 效应和电磁效应的综合作用,能使生物的染色体断裂或形成片 断,甚至易位和基因重组 微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范 围在300MHz~300GHz,对生物体具有热效应和非热效应 离子束注入的离子与生物体大分子发生一系列碰撞,而生物大 分子逐步获得能量进而发生键断裂
体细胞无性系变异

染色体的结构变异
主要包括缺失、重复、倒位及易位等 结构变异频率随染色体的不同而不同
基因突变(Gene mutation)
由于DNA分子中发生碱基对的增添、缺失或改变, 而引起的基因结构的改变,就叫做基因突变 狭义仅指“点突变” 按照基因结构改变的类型,突变可分为碱基置换、 移码、缺失和插入4种。 按照遗传信息的改变方式,突变又可分为错义、无 义两类 按照表型效应,突变型可以区分为形态突变型、生 化突变型以及致死突变型等,对于基础理论研究及 遗传改良具有重要意义
3 培养基
培养基成分对体细胞无性系变异有影响 如:
豌豆根尖培养物加激动素(KT)和酵母浸出液,可 以诱导4倍体的分裂 纤细单冠菊的细胞培养中,添加2,4-D,可以诱导 2倍体成为4倍体
细胞质基因组的改变
主要是指独立于核基因组之外的细胞器(如叶绿 体、线粒体等)的遗传物质的变异 常见的如白化苗、雄性不育等
三 影响体细胞无性系变异的因素
基因型 外植体 培养基 继代培养时间 温度 组织原有倍数性
1 基因型
体细胞无性系变异的频率与植物种类和基因型有关 如麝香百合具有较强遗传稳定性,而甘蓝等则出现 各种倍性的嵌合体 如燕麦幼胚组织培养,愈伤组织继代4个月后, Tippecanoe 有12%染色体变异,而Lodi则达到50%
3)原生质体融合的过程包括?其成败关键 是?
异种原生质体—膜融合形成共同的质膜—胞质融 合—产生细胞壁—核融合 细胞核的融合是异种原生质体融合的关键
4)利用体细胞杂交技术获得再生植株的过程 包括那些步骤?
植物组织培养技术与应用_中国计量大学中国大学mooc课后章节答案期末考试题库2023年

植物组织培养技术与应用_中国计量大学中国大学mooc课后章节答案期末考试题库2023年1.在中培养物生长过程中排出的有害物质容易积累,由此造成自我毒害,所以必须及时转移。
参考答案:固体培养基2.利用植物组织培养进行脱毒,最常用的是()。
参考答案:茎尖脱毒3.旺盛生长的愈伤组织其质地有显著差异,可分为松脆型和坚硬型两类,两者可以相互转化,当培养基中的( )素物质低时,可以使愈伤组织变成坚实的小块。
参考答案:生长素4.从理论上说,所有的植物细胞与组织材料都能培养成功,其培养的难易程度基本相同。
参考答案:错误5.下列不属于逆境对孤雄生殖有好的诱导作用的是()。
参考答案:氟乐灵6.( )适用于接种操作及继代培养时移取植物材料用。
参考答案:钝头镊子7.培养基进行高压灭菌时,当压力升到 108kPa 时维持 15-20min ,即可达到灭菌目的。
此时灭菌锅内的温度可达()。
参考答案:121 ℃8.一般而言,愈伤组织的形成大约要经过三个阶段,这三个阶段按时间顺序分为()。
参考答案:启动期分裂期分化期9.下列元素中不属于植物所需大量元素的是()。
参考答案:Fe10.“脱毒苗”是指不含该种植物的主要危害病毒。
参考答案:正确11.下列现象中不属于离体培养容易出现的三大问题的是()。
参考答案:黄化12.细胞悬浮培养的培养基中氧浓度低于临界水平时,利于形成胚状体。
参考答案:正确13.植株进行一次病毒鉴定未发现病毒,就可确定该植株不带病毒。
参考答案:错误14.植物组织培养时,生长素/细胞分裂素的比例低时,有利于()。
参考答案:芽的分化15.MS培养基是1962年Murashige和Skoog为培养烟草材料而设计的。
它的特点是无机盐的浓度高,营养丰富,不需要添加更多的有机附加物,就能满足植物组织对矿质营养的要求,有加速愈伤组织和培养物生长的作用,当培养物久不转移时仍可维持其生存。
故这是目前应用最广泛的一种培养基。
参考答案:正确16.诱导多种植物体细胞胚发生的重要激素是()。
植物体细胞无性系变异

直接筛选
间接筛选
(四)突变体选择
直接选择
01
其方法是用一种含有特定物质的选择培养基,在此培养基上只有突变细胞能够生长,非突变细胞不能生长,从而直接筛选出突变性。
02
贾敬芬等以小麦幼胚愈伤组织为材料,在含有1.4%NaCl的N6培养基上直接筛选出小麦耐盐系。
03
郑企成等曾将小麦“京花1号”花药经γ射线处理后,再经0.5NaCl培养基直接筛选出耐盐再生株系。
1
在全世界50多个国家中已发放了1000多个由直接突变获得的或由这些突变相互杂交而衍生的品种。
2
一、改良作物品种、拓宽种质资源
在各国现有通过体细胞诱变选育的谷类作物品种中,品质得到不同程度改良的占34.3%。
01
在水稻方面,国外至少育成了12个米质优良的品种。如法国选育的Delta,以其良好的籽粒品质占该国水稻总面积的20%。 此外,还有丹麦无花青素原大麦Galant。
01
A
据不完全统计,诱变品种中大约有1/4是抗病品种,其中80%左右为抗真菌品种。
B
耐盐、抗旱、抗寒变异也已筛选出众多中间材料,有的已进入区域试验,有的已用于生产。
二、加强外源基因向栽培种的渐渗
对远缘杂交的体细胞杂种、单体异附加系和异代换系等材料进行组织培养,能使它们发生遗传交换,提高外源基因向栽培种渐渗。
1
目前,使用较多的转座子体系是玉米的Ac/Ds系统。首先采用基因转化的方法将Ac/Ds导入受体细胞,再通过体细胞培养或再生植株的自交或测交使Ac因子切除,由于转座子插入的随机性,即可在切除Ac的植株中筛选出不同变异。利用这一途径已在苜蓿、马铃薯、番茄、甘蓝等多种植物上获得可利用的体细胞变异植株。
2
转座子插入诱变
《体细胞无性系变异》课件

未来研究方向
在未来,研究人员将进一步探索体细胞无性系变 异的分子机制和应用领域。
总结
1 体细胞无性系变异的重要性
体细胞无性系变异在遗传学和分子生物学领域具有重要的理论和应用价值。
2 需要进一步深入研究和应用的方向
未来的研究应该聚焦于体细胞无性系变异的机制、调控以及在医学和农业领域的应用。
《体细胞无性系变异》 PPT课件
体细胞无性系变异是指体细胞中染色体在无性繁殖过程中发生的异常变化。 本课件将介绍体细胞无性系变异的概述、分类、诱发因素、检测和诊断、应 用以及体细胞无性系变异是指体细胞中染色体在无性繁殖过程中发生的异常变化。
为什么会发生体细胞无性系变异
应用
1
体细胞无性系变异在医学上的应用
体细胞无性系变异的研究为遗传疾病的治疗和基因编辑技术的发展提供了重要的依据。
2
体细胞无性系变异在农业上的应用
体细胞无性系变异的研究为改良农作物的耐性和产量提供了新的途径。
研究进展
相关学科的发展趋势
随着生物学和基因组学的进展,体细胞无性系变 异的研究正日益受到重视。
2 辐射
高能辐射,如X射线和γ射线,可能会导致细胞染色体的结构和数量异常。
3 病毒感染
某些病毒感染可能会引起细胞染色体的变异,以及遗传信息的改变。
检测和诊断
常用的检测技术
• 核酸杂交技术 • 染色体核型分析 • 荧光原位杂交技术
临床诊断应用
体细胞无性系变异的检测和诊断在遗传疾病的 预防和治疗中具有重要的意义。
体细胞无性系变异发生的原因可能涉及化学物质、辐射和病毒感染等多种因素。
分类
染色体数目变异
染色体结构变异
- 多染色体综合征 - 单染色体缺失 - 单染色体重复 - 倒位重组 - 染色体环形结构 - 染色体片段缺失或重复
《细胞工程》名词解释

植物细胞全能性:植物体的每个细胞都携带有该物种的全部遗传信息,因而只要在适当的条件下,植物一切生活细胞都具有分化为一个完整植株的潜在能力,这就是细胞的全能性。
这是细胞工程的理论基础。
细胞分化:个体细胞发育过程中,后代细胞在形态、结构和生理功能上发生差异的过程。
脱分化:原已分化的细胞,失去原有的形态和机能,又回复到没有分化的无组织的细胞团或愈伤组织,这个过程称为脱分化。
再分化:由脱分化状态的细胞再度分化形成另一种或几种类型的细胞的过程,称为再分化愈伤组织:外植体在离体条件下,细胞经脱分化等一系列过程,转变为一种能迅速增殖的无特定结构和功能的细胞团,称为愈伤组织。
愈伤组织细胞大而不规则,高度液泡化、没有次生细胞壁和胞间连丝。
继代培养:对来自于外植体所增殖的培养物通过更新新鲜培养基及不断切割或分离,进行连续多代的培养.外植体:植物组织培养中用来进行离体无菌培养的材料,可以是器官、组织、细胞和原生质体。
器官发生:指离体培养条件下的组织或细胞团分化形成不定根、不定芽等器官过程。
体细胞胚:由外植体可直接形成胚状体,外植体也可以经脱分化先形成愈伤组织,再由愈伤组织形成胚状体。
胚状体是由体细胞发育而来人工种子:通过将植物组织培养中所产生的体细胞胚或珠芽等包埋在“人工胚乳”和“人工种皮”里,制成的具有播种功能、类似天然种子的颗粒就称为人工种子。
繁殖系数:也叫增殖系(倍)数或增殖率,是指繁殖材料在一个培养周期内增殖的倍数。
污染:指在组织培养过程中培养基和培养材料滋生杂菌,导致培养失败的现象。
褐变:指在组织培养中,由于材料被切割而使多酚氧化酶活化将组织中的酚类物质氧化形成棕褐色的醌类物质,并向培养基中扩散,抑制培养物生长甚至导致其死亡的现象。
玻璃化:指组织培养过程中的特有的一种生理失调或生理病变,试管苗呈半透明状外观形态异常的现象。
悬浮培养:将游离的单细胞或小的细胞团,按照一定的细胞密度,悬浮在液体培养基中进行培养的方法。
植物体细胞无性系

⑵非整倍体变异 在离体培养中,经常也会出现奇数(n、3n等)的变异。这 可能是因为核融合,或者多被体细胞有丝分裂期间染色体 发生错配造成的。 染色体结构变异
李耿光等报道的玉米等再生植株中染色体结构 的变化频率显著高于染色体数目的异常,主要是染 色体断裂所引起的缺失以及粘合后出现的易位、 倒位、重排等引起的。
• 后代稳定快
一般无性系二代就可获得稳定株系,这是优良性状选择的 关键时期,从而大大缩短育种年限。但也有少部分无性系 是杂合体,要继续分离,不过多属简单分离,像株高,芒性等, 分离程度与供体植株的遗传背景有关,如水稻稳定无性系
• 能基本保持原品种的优良特性 仅改变1-2个性状,这就可以根据育种目标 , 针对现有品种的个别缺点进行选育,以期在短期 (2-3d)内筛选出所需的性状,避免基因重组带来 的麻烦。刁现民等认为 ,虽然利用无性系变异在 短时间内创造有很大突破的全新品种可能性比较 小,但针对现有 品种在株高、株型、抽穗期、粒 型、熟性、抗病性等单个性状进行有针对性的改 善是非常有效的 。
体细胞无性系变异的提出
Larkin和Scowcroft对有关植株变异的研 究结果进行总结,正式提出了植物细胞无 性系变异这一术语。
体细胞无性系变异的类型
遗传变异:自发变异,也有一部分是外植体中预先 存在的变异(个体发育中自然发生)
生理适应 非遗传变异 后生遗传变异
体细胞无性变异的类型
1) 生理适应是指由于某种外界条件存在而引起的性 状变异,这种变异会随着外界因素的消失而消失。 2) 后生遗传变异是指在基因的DNA序列没有发生变 化的情况下,基因功能发生了可遗传的变化,并最终导致 了表型变化,它是由基因表达调控发生变化,并不涉及基 因结构的改变。 后生遗传变异在细胞水平上可遗传的,在诱发条件消 除后,也能通过细胞分裂在一定时间内继续存在,但不能 通过再生植株的有性生殖传递给后代植株,也不能继续表 现在再生植株的二次培养物中。