研究生入学考试线性代数试题详解
2024考研数学一线性代数历年考题详解

2024考研数学一线性代数历年考题详解线性代数是2024考研数学一科目中的一个重要内容,对于考生来说,掌握线性代数的知识点和解题技巧非常关键。
本文将对2024年考研数学一线性代数部分的历年考题进行详解,帮助考生更好地备考。
一、第一节:向量与矩阵1. 2010年考题考题描述:已知向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性无关,向量\[{\beta}_1, {\beta}_2, {\beta}_3\]可由向量组\[{\alpha}_1, {\alpha}_2, {\alpha}_3\]线性表示,且\[{\beta}_1 = 2{\alpha}_1 +3{\alpha}_2\],\[{\beta}_2 = 4{\alpha}_1 + 5{\alpha}_2 + {\alpha}_3\],\[{\beta}_3 = 7{\alpha}_1 + 10{\alpha}_2 + 2{\alpha}_3\],则向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为多少?解题思路:根据题意,我们可以建立如下矩阵:\[A =\begin{bmatrix}2 &3 & 0 \\4 &5 & 1 \\7 & 10 & 2 \\\end{bmatrix}\]然后通过对矩阵进行初等行变换,将其化为行最简形。
最后,行最简形的矩阵中非零行的个数即为矩阵的秩。
在本题中,通过计算可知行最简形为:\[\begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \\\end{bmatrix}\]因此,向量组\[{\beta}_1, {\beta}_2, {\beta}_3\]的秩为3。
2. 2014年考题考题描述:设矩阵\[A =\begin{bmatrix}1 & 0 & 0 \\-2 & 1 & 0 \\3 & 0 & 1 \\\end{bmatrix}\],若矩阵\[B = (A - 2I)^2 - I\],其中\[I\)为单位矩阵,求矩阵\[B\)的秩。
线性代数考研试题解析系列

二次型与正定矩阵
包括二次型的标准形、规范形、 正定矩阵的判定和应用。
特征值与特征向量
包括特征值与特征向量的定义、 性质、求解和应用。
线性方程组
包括方程组的求解、解的性质和 结构等。
备考策略与答题技巧
01
02
03
04
系统复习基础知识
熟练掌握基本概念、性质和定 理,构建完整的知识体系。
强化计算能力
加强矩阵运算、行列式计算等 基本功的训练,提高计算速度 和准确性。
掌握证明方法
熟悉线性代数中常用的证明方 法,如归纳法、反证法、构造 法等,培养逻辑推理能力。
多做模拟试题
通过大量练习,熟悉试题类型 和难度,提高解题速度和应试 能力。
02
行列式与矩阵
行列式性质与计算
行列式的定义与性质
介绍行列式的基本概念、性质以及计算方法,包括 行列式的转置、数乘、加法等性质。
特殊行列式的计算
典型例题解析
例题1
判断二次型$f(x,y,z) = x^2 + 5y^2 + z^2 + 2xy + 2xz + 6yz$的正定性。
例题2
求二次型$f(x,y,z) = 2x^2 + 3y^2 + 3z^2 + 4xy - 4xz - 8yz$的标准形及
所用的变换矩阵。
解析
首先写出二次型的矩阵形式,然后通 过计算行列式、特征值等方法判断其 正定性。
矩阵逆与秩例题
选取具有代表性的矩阵逆与秩的问题,进行详细 解析和讲解,帮助考生掌握相关问题的解题方法 和技巧。
03
向量与线性方程组
向量组及其线性组合
02
01
2007全国硕士研究生入学考试数学真题详解——线性代数部分

2007-2010年全国硕士研究生入学考试数学真题详解——线性代数部分一、2007年:1、(2007年数学一、二、三、四) 设向量组321,,ααα线性无关,则下列向量组线性相关的是(A) 133221,,αααααα---. (B) 133221,,αααααα+++.(C) 1332212,2,2αααααα---. (D) 1332212,2,2αααααα+++. [ ] 【答案】A【详解】用定义进行判定:令0)()()(133322211=-+-+-ααααααx x x ,得 0)()()(332221131=+-++-+-αααx x x x x x .因321,,ααα线性无关,所以 1312230,0,0.x x x x x x -=⎧⎪-+=⎨⎪-+=⎩ 又 011011101=---, 故上述齐次线性方程组有非零解, 即133221,,αααααα---线性相关. 类似可得(B), (C), (D)中的向量组都是线性无关的.2、(2007年数学一、二、三、四) 设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=211121112A , ⎪⎪⎪⎭⎫ ⎝⎛=000010001B , 则A 与B(A) 合同, 且相似. (B) 合同, 但不相似 .(C) 不合同, 但相似. (D) 既不合同, 又不相似. [ ] 【答案】B【详解】 由0||=-A E λ 得A 的特征值为0, 3, 3, 而B 的特征值为0, 1, 1,从而A 与B 不相似.又r (A )=r (B )=2, 且A 、B 有相同的正惯性指数, 因此A 与B 合同. 故选(B) .3、(2007年数学一、二、三、四) 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000100001000010A , 则3A 的秩为 . 【答案】1【详解】 依矩阵乘法直接计算得 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000000010003A , 故r (3A )=1.4、(2007年数学一、二、三、四)设线性方程组⎪⎩⎪⎨⎧=++=++=++04,02,03221321321xa x x ax x x x x x ①与方程12321-=++a x x x ②有公共解,求a 的值及所有公共解.【分析】 两个方程有公共解就是①与②联立起来的非齐次线性方程组有解. 【详解】 将①与②联立得非齐次线性方程组:⎪⎪⎩⎪⎪⎨⎧-=++=++=++=++.12,04,02,03213221321321a x x x x a x x ax x x x x x ③ 若此非齐次线性方程组有解, 则①与②有公共解, 且③的解即为所求全部公共解. 对③的增广矩阵A 作初等行变换得:→⎪⎪⎪⎪⎪⎭⎫⎝⎛-=112104102101112a a a A ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----11000)1)(2(0001100111a a a a a .于是1° 当a =1时,有)()(A r A r ==2<3,方程组③有解, 即①与②有公共解, 其全部公共解即为③的通解,此时⎪⎪⎪⎪⎪⎭⎫⎝⎛→0000000000100101A , 此时方程组③为齐次线性方程组,其基础解系为: ⎪⎪⎪⎭⎫⎝⎛-101,所以①与②的全部公共解为⎪⎪⎪⎭⎫ ⎝⎛-101k ,k 为任意常数.2° 当a =2时,有)()(A r A r ==3,方程组③有唯一解, 此时⎪⎪⎪⎪⎪⎭⎫⎝⎛-→0000110010100001A ,故方程组③的解为:011⎛⎫ ⎪⎪ ⎪-⎝⎭, 即①与②有唯一公共解: 为123011x x x x ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.5、(2007年数学一、二、三、四)设3阶对称矩阵A的特征值,2,2,1321-===λλλ T)1,1,1(1-=α是A的属于1λ的一个特征向量,记E A A B +-=354其中E 为3阶单位矩阵.(I) 验证1α是矩阵B的特征向量,并求B 的全部特征值与特征向量.(II) 求矩阵B.【分析】 根据特征值的性质可立即得B 的特征值, 然后由B 也是对称矩阵可求出其另外两个线性无关的特征向量.【详解】 (I) 由11αα=A 得 1112ααα==A A , 进一步 113αα=A , 115αα=A , 故 1351)4(ααE A A B +-=113154ααα+-=A A1114ααα+-=12α-=,从而1α是矩阵B的属于特征值−2的特征向量.因E A A B +-=354, 及A的3个特征值,2,2,1321-===λλλ 得 B 的3个特征值为1,1,2321==-=μμμ.设32,αα为B 的属于132==μμ的两个线性无关的特征向量, 又A为对称矩阵,得B 也是对称矩阵, 因此1α与32,αα正交, 即0,03121==ααααT T 所以32,αα可取为下列齐次线性方程组两个线性无关的解:0)1,1,1(321=⎪⎪⎪⎭⎫ ⎝⎛-x x x ,其基础解系为: ⎪⎪⎪⎭⎫ ⎝⎛011,⎪⎪⎪⎭⎫ ⎝⎛-101 , 故可取2α=⎪⎪⎪⎭⎫ ⎝⎛011, 3α=⎪⎪⎪⎭⎫ ⎝⎛-101.即B 的全部特征值的特征向量为: ⎪⎪⎪⎭⎫⎝⎛-1111k , ⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101132k k , 其中01≠k ,是不为零的任意常数, 32,k k 是不同时为零的任意常数.(II) 令),,(321ααα=P =⎪⎪⎪⎭⎫ ⎝⎛--101011111, 则 ⎪⎪⎪⎭⎫⎝⎛-=-1121BP P ,得 1112-⎪⎪⎪⎭⎫ ⎝⎛-=P P B =⎪⎪⎪⎭⎫ ⎝⎛--101011111⎪⎪⎪⎭⎫⎝⎛-112⎪⎪⎪⎭⎫ ⎝⎛--21112111131=⎪⎪⎪⎭⎫ ⎝⎛---102012112⎪⎪⎪⎭⎫ ⎝⎛--21112111131⎪⎪⎪⎭⎫ ⎝⎛--=011101110.二、2008年:1、(2008年数学一、二、三、四)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则[ ]则下列结论正确的是:(A) E A -不可逆,则E A +不可逆. (B) E A -不可逆,则E A +可逆.(C) E A -可逆,则E A +可逆. (D) E A -可逆,则E A +不可逆. 【答案】应选(C).【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=. 故E A -,E A +均可逆.故应选(C).2、(2008年数学一)设A 为3阶实对称矩阵,如果二次曲面方程()1x x yz A y z ⎛⎫⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为[ ](A) 0. (B) 1. (C) 2. (D) 3. 【答案】 应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221x y z a c +-=.故A 的正特征值个数为1.故应选(B).3、(2008年数学二、三、四)设1221A ⎛⎫=⎪⎝⎭,则在实数域上,与A 合同矩阵为[ ] (A) 2112-⎛⎫⎪-⎝⎭ . (B)2112-⎛⎫ ⎪-⎝⎭. (C) 2112⎛⎫ ⎪⎝⎭. (D) 1221-⎛⎫ ⎪-⎝⎭. 【答案】 应选(D). 【详解】2212(1)423(1)(3)021E A λλλλλλλλ---==--=--=+-=--则121,3λλ=-=,记1221D -⎛⎫=⎪-⎝⎭,则2212(1)423(1)(3)021E D λλλλλλλλ--==--=--=+-=-则121,3λλ=-=,正负惯性指数相同.故选D.4、(2008年数学一) 设A 为2阶矩阵,12,αα为线性无关的2维列向量,10A α=,2122A ααα=+.则A 的非零特征值为___________.【答案】应填1.【详解】根据题设条件,得1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+= ⎪⎝⎭.记12(,)P αα=,因12,αα线性无关,故12(,)P αα=是可逆矩阵.因此0201AP P ⎛⎫= ⎪⎝⎭,从而10201P AP -⎛⎫= ⎪⎝⎭.记0201B ⎛⎫= ⎪⎝⎭,则A 与B 相似,从而有相同的特征值. 因为2||(1)01E B λλλλλ--==--,0λ=,1λ=.故A 的非零特征值为1.5、(2008年数学二)设3阶矩阵A 的特征值为2,3,λ.若行列式|2|48A =-,则λ=___________. 【答案】应填1-.【详解】由482-=A ,依据方阵行列式的性质,则有48223-==A A ,即6-=A .又A 等于其特征值的乘积,即632321-=⨯⨯=⨯⨯=λλλλA ,得1-=λ. 6、(2008年数学三)设3阶方阵A 的特征值为1,2,2,E 为单位矩阵,则=--E A 14 .【答案】应填3.【详解】由方阵特征值的性质,E AA f -=-14)(,则14)(1-=-λλf ,故方阵EA --14的特征值分别为1,1,3,又由方阵行列式等于其特征值的乘积,则有341=--E A .7、(2008年数学四)设3阶方阵A 的特征值互不相同,若行列式0=A ,则A 的秩为 . 【答案】应填2.【详解】由题可知,方阵A 的特征值含有0,而其余两个非零,故A 的秩为2.8、(2008年数学一)设,αβ为3维列向量,矩阵TTA ααββ=+,其中,TTαβ分别是,αβ得转置.证明: (I ) 秩()2r A ≤;(II )若,αβ线性相关,则秩()2r A <.【详解】(I )【证法1】()()()()()()2TTTTr A r r r r r ααββααββαβ=+≤+≤+≤. 【证法2】因为TTA ααββ=+,A 为33⨯矩阵,所以()3r A ≤. 因为,αβ为3维列向量,所以存在向量0ξ≠,使得0,0T T αξβξ==于是 0T T A ξααξββξ=+= 所以0Ax =有非零解,从而()2r A ≤.【证法3】因为TTA ααββ=+,所以A 为33⨯矩阵.又因为()00T TTT A αααββαββ⎛⎫⎪=+= ⎪ ⎪⎝⎭, 所以|||0|00TT a A αββ==故 ()2r A ≤.(II )【证法】由,αβ线性相关,不妨设k αβ=.于是()2()()(1)()12TT T r A r r k rααβββββ=+=+≤≤<. 9、(2008年数学一、二、三、四) 设n 元线性方程组Ax b =,其中2222212121212a a a a a A a a a a ⎛⎫ ⎪⎪⎪=⎪ ⎪⎪ ⎪ ⎪⎝⎭,12n x x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,b 100⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.(I )证明行列式||(1)n A n a =+;(II )当a 为何值时,该方程组有惟一解,并求1x . (III )当a 为何值时,该方程组有无穷多解,并求其通解.【详解】(I )【证法1】数学归纳法.记2222212121||212n na a a a aD A a a a a ==以下用数学归纳法证明(1)nn D n a =+.当1n =时,12D a =,结论成立. 当2n =时,2222132a D a a a==,结论成立. 假设结论对小于n 的情况成立.将n D 按第一行展开得n n n a a a aD aD a a a a 2212211021212212--=-2122n n aD a D --=-1222(1)n n ana a n a --=-- (1)n n a =+故 (1)nA n a =+.【注】本题(1)也可用递推法.由2122n n n D aD a D --==-得,2211221()()n n n n n n n D aD a D aD a D a D a ------=-==-=.于是(1)n n D n a =+(I )【证法2】消元法.记2222212121||212na a a a aA a a a a =22122213121212212na a a ar ar a a a a -322222130124123321212naa a r ar a aa a a a -=n n na a a n r ar nn a n n a n 121301240113111----+(1)n n a =+.(II )【详解】当0a ≠时,方程组系数行列式0n D ≠,故方程组有惟一解.由克莱姆法则,将n D 得第一列换成b ,得行列式为22211222211121021212121212122n n nn a aa a a aa aD na a a a a a a a a ---===所以,11(1)n n D ax D n a-==+. (III )【详解】 当0a =时,方程组为12101101001000n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 此时方程组系数矩阵得秩和增广矩阵得秩均为1n -,所以方程组有无穷多组解,其通解为()()010100TTx k =+,其中k 为任意常数.10、(2008年数学二、三、四)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-的特征向量,向量3α满足321A ααα=+,(I)证明123,,ααα线性无关; (II)令123(,,)P ααα=,求1P AP -.【详解】(I)【证明】设有一组数123,,k k k ,使得 122330k k k ααα++=. 用A 左乘上式,得112233()()()0k A k A k A ααα++=. 因为 11A αα=-, 22A αα=,321A ααα=+, 所以 1123233()0k k k k ααα-+++=, 即113220k k αα-=.由于12,αα是属于不同特征值得特征向量,所以线性无关,因此130k k ==,从而有20k =.故 123,,ααα线性无关.(II )由题意,100011001AP P -⎛⎫⎪= ⎪ ⎪⎝⎭.而由(I )知,123,,ααα线性无关,从而123(,,)P ααα=可逆.故1100011001P AP --⎛⎫⎪= ⎪ ⎪⎝⎭.三、2009年:1、(2009年数学一)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基 122331,,αααααα+++的过渡矩阵为()A 101220033⎛⎫⎪⎪ ⎪⎝⎭. ()B 120023103⎛⎫⎪⎪ ⎪⎝⎭.()C 111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭.()D 111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. 【答案】A【解析】因为()()1212,,,,,,n n A ηηηααα=,则A 称为基12,,,n ααα到12,,,nηηη的过渡矩阵。
2024考研数学一线性代数历年真题全面解析

2024考研数学一线性代数历年真题全面解析一、前言在2024年的考研数学一科目中,线性代数占据着重要的位置。
掌握线性代数的核心概念和解题技巧对于考生来说至关重要。
为了帮助广大考生更好地备考,本文将对2024年考研数学一线性代数部分的历年真题进行全面解析,并分享一些解题技巧和注意事项。
二、基础知识回顾在开始解析之前,先回顾一下线性代数的基础知识是非常必要的。
包括向量、矩阵、行列式、线性空间、线性变换等概念都是线性代数的基本内容。
理解这些基础知识对于解答试题非常有帮助。
三、真题解析接下来,我们将对几道历年真题进行解析,以帮助考生更好地理解线性代数的应用。
1. 2018年真题题目描述:已知矩阵A的特征值为λ1=2,λ2=-3,对应的特征向量分别为X1=(1,2)T,X2=(1,-1)T。
求矩阵A的逆矩阵。
解析:根据线性代数的知识,当一个矩阵存在特征值时,可以通过特征向量组成的矩阵P和特征值组成的对角矩阵D,利用相似矩阵的性质求得矩阵A的逆矩阵。
首先,我们将特征向量X1和X2组成的矩阵P为:2 -1]然后,根据特征值组成的对角矩阵D为:D = [2 00 -3]利用相似矩阵的性质,可以得到:A = PDP^(-1)由此可得:P^(-1) = [1/3 1/32/3 -1/3]最后,计算得到矩阵A的逆矩阵为:A^(-1) = P^(-1)DP2. 2019年真题题目描述:已知矩阵A是n阶方阵,且满足A^2 = -I,其中I为n 阶单位矩阵。
证明A的特征值一定满足λ^2+1=0。
解析:根据已知条件A^2 = -I,可得到:λI^2 = -I再根据特征值的性质,可以得到:进一步推导,可得:(λ^2+1)I = 0因为矩阵A是n阶方阵,所以λ^2+1=0。
证毕。
四、解题技巧和注意事项1. 理清概念:线性代数是一门较为抽象的学科,需要理清概念和定义。
对于一些概念的记忆和理解,可以通过做例题巩固。
2. 多做习题:做大量的习题是掌握线性代数的关键。
考研数学一2024线性代数历年题目全解

考研数学一2024线性代数历年题目全解考研数学一考试是以线性代数为主要内容的学科,对于考生而言,熟练掌握历年的线性代数题目并进行全面解析和讲解是提高题目解答水平的重要方法。
本文将全面解析考研数学一2024年线性代数历年题目,并通过详细的解题过程和讲解,帮助考生深入理解线性代数的基本概念和解题方法。
1. 第一题解析:首先,我们需要明确题目所给的条件和要求。
根据题目中提供的条件,我们可以得到...2. 第二题解析:题目中要求我们...通过以上的解析和讲解,我们可以发现,在解题过程中,需要注意的是...3. 第三题解析:对于此题,我们可以运用...通过以上的解析和讲解,我们可以总结出...4. 第四题解析:题目要求我们...通过以上的解析和讲解,我们可以发现,在解题过程中,需要注意的是...5. 第五题解析:对于此题,我们可以运用...通过以上的解析和讲解,我们可以总结出...通过对上述五道历年线性代数题目的解析和讲解,我们可以发现,线性代数是一门涉及多个概念和技巧的学科。
在解题过程中,需要运用到...总结:通过对考研数学一2024年线性代数历年题目的全面解析和讲解,我们发现了一些解题的方法和技巧。
在考试中,我们应该注重对基本概念和方法的掌握,并灵活运用到具体的题目解答中。
通过不断的练习和总结,我们可以提高解题水平,顺利应对考试。
在学习线性代数的过程中,我们还需重点掌握...希望以上的全面解析和讲解可以帮助考生更好地掌握线性代数的内容和解题方法,为取得优异的成绩奠定坚实的基础。
祝愿各位考生在考研数学一中取得好的成绩!。
线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
考研数学一线性代数历年真题全解2024

考研数学一线性代数历年真题全解2024线性代数是数学的一个分支,是研究向量空间和线性变换的理论。
在考研数学一科目中,线性代数占据了一定的比重,因此熟练掌握线性代数的知识是非常重要的。
本文将针对考研数学一线性代数部分历年真题进行全面解析,以帮助考生更好地备考。
第一部分:向量空间向量空间是线性代数中的重要概念,也是线性代数的基础知识之一。
在考研数学一中,向量空间的相关知识经常会出现在选择题和计算题中。
下面我们将从历年真题中选取一些典型题目,进行详细解析。
题目1:已知向量空间V中的两个非零向量a,b满足a+b和2a-3b线性相关,求向量a和向量b的线性相关关系。
解析:根据已知条件,可以得到方程组:k1(a+b) + k2(2a-3b) = 0化简可得:(2k1+k2)a + (k1-3k2)b = 0由于a和b非零,所以方程组只有零解。
即:2k1+k2=0k1-3k2=0解得k1=3,k2=-6所以,向量a和向量b的线性相关关系为:3a-6b=0。
题目2:设V是数域K上的线性空间,W是V的子空间。
证明:W和V/W的维数之和等于V的维数。
解析:设V的维数为n,W的维数为m,V/W的维数为k。
由定义可知,W是V的子空间,所以m≤n。
而V/W的维数k的定义是:V中所有代表元素的集合构成的集合的维数。
所以,V中任意一组代表元素的集合都可以作为V的一组基,维数为n。
而V中所有代表元素的集合的元素个数为k,所以k≤n。
综上所述,m+k≤n,并且n=m+k。
第二部分:线性变换线性变换在线性代数中扮演着重要的角色,在考研数学一线性代数部分也是一道重要的考点。
线性变换的相关内容通常会涉及到矩阵、特征值等知识。
下面我们将通过历年真题来进行详细解析。
题目3:设A是n阶方阵,证明:矩阵A与其伴随矩阵A*相乘的结果为A的行列式的n次方。
解析:根据定义,矩阵的伴随矩阵满足以下性质:AA*=|A|E其中,|A|为A的行列式,E为单位矩阵。
2024考研数学一线性代数历年真题全解析

2024考研数学一线性代数历年真题全解析线性代数是数学中的一个重要分支,也是考研数学一科目的必考内容之一。
掌握线性代数的基本理论和解题方法,对于考研的成功至关重要。
本文将对2024年考研数学一线性代数历年真题进行全面解析,帮助考生更好地理解和掌握这一内容。
一、第一题:(2024年考研数学一真题)题目描述:设A、B为n阶方阵,且满足A^2=AB-B^2。
求证:可以得出B^2=BA-A^2。
解析:根据题目中的等式A^2=AB-B^2,我们可以推导出:A^3 = (AB-B^2)A = ABA-BA^2将B^2=BA-A^2代入上式,得到:A^3 = A(BA-A^2) = ABA-A^3移项化简可得:2A^3 = ABA进一步整理:2A^3 - ABA = 0因此,我们证明了B^2=BA-A^2。
二、第二题:(2023年考研数学一真题)题目描述:已知线性变换T:R^3->R^3的矩阵为A=[a1,a2,a3],其中a1、a2、a3分别为R^3的列向量,向量a3可以表示为a3=k1a1+k2a2,其中k1、k2为实数。
证明:线性变换T在R^3的任意向量上的投影运算P与反射运算S满足P^2=P,S^2=S。
解析:设矩阵A=[a1,a2,a3],且a3=k1a1+k2a2,根据题目条件可知向量a3可由a1、a2线性表示。
由此,我们可以得到矩阵A的列向量组线性相关。
由于投影运算P的定义为P^2=P,这意味着对于任意向量x,有P(P(x))=P(x),即P^2(x)=P(x)。
另一方面,反射运算S的定义为S^2=S,即S(S(x))=S(x),即S^2(x)=S(x)。
根据线性变换T的定义,我们有T(x)=Ax,其中A=[a1,a2,a3]。
根据题意,向量a3可由a1、a2线性表示,说明向量a3可以写为a3=k1a1+k2a2。
我们知道,投影运算P的定义为P(x)=A(A^TA)^(-1)A^Tx,反射运算S的定义为S(x)=2P(x)-x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30 40
4. 0011 数数四四 设行列式
D
=
2 0
2 −7
2 0
2 0
,
则第四行各元素余子式之和的值为________.
5 3 −2 2
解: [方法一] D 的第四行各元素余子式依次为
0 40
340
300
304
M41 = 2 2 2 = −56, M42 = 2 2 2 = 0, M43 = 2 2 2 = 42, M44 = 2 2 2 = −14.
——张小向 272365083@
答案仅供参考 ⋅ 打印/复印请选双面格式(节约纸张)
祝您好运! 2
⎡k 1 1 1⎤
3.
0011
数数三三//四四设矩阵
A
=
⎢1 ⎢⎢1
k 1
1 k
1⎥
1
⎥ ⎥
且秩(A)
=
3,
则 k = _______.
⎣1 1 1 k⎦
k111
解:
|A|
=
1 1
k 1
1 k
⎡a 1 1⎤ ⎡ x1 ⎤ ⎡ 1 ⎤
2.0011数数二二设方程 ⎢1 ⎢⎣1
a 1
1 a
⎥ ⎥⎦
⎢ ⎢ ⎣
x2 x3
⎥ ⎥ ⎦
=
⎢ 1 ⎥ 有无穷多个解, ⎢⎣−2⎥⎦
则 a = _______.
a 1 1 a+2 a+2 a+2
1 1 1 ×(−1)
11 1
解: 1 a 1 = 1 a 1 = (a+2) 1 a 1
⎡ 1 0 1⎤ 11.0033数数二二设三阶方阵A, B满足A2B−A−B = E, 其中E为三阶单位矩阵, 若A = ⎢ 0 2 0⎥ , 则|B| = ____.
⎢⎣−2 0 1⎥⎦
解: A2B−A−B = E ⇒ (A2−E)B = A+E ⇒ (A+E)(A−E)B = A+E ⇒ |A+E|⋅|A−E|⋅|B| = |A+E|.
⎡ a ⎤ ⎡1 2 −2⎤ ⎡a⎤ ⎡λa⎤ ⎢2a + 3⎥ = ⎢2 1 2 ⎥ ⎢1⎥ = ⎢ λ ⎥ . ⎢⎣3a + 4⎥⎦ ⎢⎣3 0 4 ⎥⎦ ⎢⎣1⎥⎦ ⎢⎣ λ ⎥⎦
由此可得λ = 1, a = −1.
8.
0022
数数四四设矩阵A
=
⎡1 ⎢⎣2
−1⎤ 3 ⎥⎦
பைடு நூலகம்
,
B
=
A2
−3A
+
2E,
2 而|A+E| = 0
01
0
3 0 = 18. |A−E| = 0
0 1
1 0
= 2.
故|B| = 1
.
−2 0 2
−2 0 0
2
公益宣传:保护环境·节约资源·关爱弱者
——张小向 272365083@
答案仅供参考 ⋅ 打印/复印请选双面格式(节约纸张)
祝您好运! 4
12. 0033数数三三//四四设n维向量α = (a, 0, …, 0, a)T, a < 0, E为n阶单位矩阵, 矩阵A = E − ααT, B = E + 1 ααT, 其中 a
1/ 2⎤ −1 ⎥⎦
.
9.
0033
数数一一从R2的基α1
=
⎡1⎤ ⎢⎣0⎦⎥
,
α2
=
⎡1⎤ ⎢⎣−1⎦⎥
到基β1
=
⎡1⎤ ⎢⎣1⎥⎦
,
β2
=
⎡1⎤ ⎢⎣2⎥⎦
的过渡矩阵为_______.
解:
令A
=
(α1,
α2)
=
⎡1 ⎢⎣0
1⎤ −1⎦⎥
,
B
=
(β1,
β2)
=
⎡1 ⎢⎣1
1⎤ 2⎥⎦
,
基α1, α2到基β1, β2的过渡矩阵为P,
⎡a 2 2⎤
解:
二次型f(x1,
x2,
x3)
=
a(x12
+
x22
+
x32)
+
4x1x2
+
4x1x3
+
4x2x3的矩阵为A
=
⎢ ⎢⎣
2 2
a 2
2⎥ . a⎥⎦
又因为f(x1, x2, x3)
经
正交变换x = Py可化成标准形f = 6y12, 可见A的特征值为λ1 = 6, λ2 = λ3 = 0. 于是有
⎢⎣0 0 0⎥⎦
⎡1 2 −2⎤ 7.0022数数三三设三阶矩阵A = ⎢2 1 2 ⎥ , 三维列向量α = (a, 1, 1)T. 已知Aα与α线性相关, 则a = _____.
⎢⎣3 0 4 ⎥⎦ 解: 因为α = (a, 1, 1)T ≠ 0, 而且Aα与α线性相关, 故存在λ使得Aα = λα , 即
⎢⎣2 0 2⎥⎦
解: AB = 2A + B ⇒ (A−E)(B−2E) = AB − 2A − B + 2E = 2E ⇒ (A−E) 1 (B−2E) = E ⇒ (A−E)−1 = 1 (B−2E).
2
2
⎡2 又因为B = ⎢0
0 4
2⎤ 0⎥ ,
所以(A−E)−1 = 1
⎡0 (B−2E) = ⎢0
⎢⎣1 1 a −2⎥⎦ ⎣⎢ 1 1 −2 −2⎦⎥
⎡−2 1 1 1⎤ → ⎢ 1 −2 1 1⎥
⎢⎣ 0 0 0 0⎥⎦
⎡ 1 −2 1 1⎤ ×2 ⎡1 −2 1 1⎤
→ ⎢−2 1 1 1⎥ ⎢⎣ 0 0 0 0⎥⎦
→ ⎢0 −3 3 3⎥ . ⎢⎣0 0 0 0⎥⎦
公益宣传:保护环境·节约资源·关爱弱者
⎢⎣−2 −2 2 ⎥⎦
公益宣传:保护环境·节约资源·关爱弱者
——张小向 272365083@
答案仅供参考 ⋅ 打印/复印请选双面格式(节约纸张)
祝您好运! 3
λ2 2 解: 根据对角线法则, −2 λ − 2 2 = λ (λ−2)2 + 8 − 8 − 4(λ−2)+ 4(λ−2) − 4λ = λ2(λ−4), 可见该矩阵的
−7 0 0
000
0 −7 0
0 −7 0
于是有M41 + M42 + M43 + M44 = −28.
3 0 40
[方法二]
计算“D 的第四行各元素余子式之和”相当于把
2 0
2 −7
2 0
2 0
按第四行展开,
而
−1 1 −1 1
3 2 0 −1
0 2 −7 1
4 2 0 −1
0 2 0 1
=
−7×(−1)3+2
则B = AP,
P
=
A−1B
=
⎡1 ⎢⎣0
1 ⎤ ⎡1 −1⎥⎦ ⎢⎣1
1⎤ 2⎥⎦
=
⎡2 ⎢⎣−1
3⎤ −2⎥⎦
.
⎡ 1 −1 1 ⎤ 10.0033数数二二设α为 3 维列向量, αT是α的转置. 若ααT = ⎢−1 1 −1⎥ , 则αTα = _______.
⎢⎣ 1 −1 1 ⎥⎦
解:
⎡ a1 ⎤
2 2 λ−2
非零特征值是 4.
⎡ 0 −2 −2⎤ [注] 由此可以进一步看出 A = ⎢ 2 2 −2⎥ 不能与对角矩阵相似. 因为假若 A 相似于对角矩阵, 则 A
⎢⎣−2 −2 2 ⎥⎦
⎡4 0 0⎤ 相似于Λ = ⎢0 0 0⎥ , 因而秩(A) = 秩(Λ) = 1. 但秩(A) = 2, 矛盾!
01 0 |A−2E| = 1 0 0 = 1.
0 0 −1
1
ABA* = 2BA* + E ⇒ (A−2E)BA* = E ⇒ |A−2E|⋅|B|⋅|A*| = |E| = 1 ⇒ |B| = .
9
15. 0044数数三三二次型f(x1, x2, x3) = (x1 + x2)2 + (x2 − x3)2 + (x3 + x1)2的秩为______.
答案仅供参考 ⋅ 打印/复印请选双面格式(节约纸张)
历年全国硕士研究生入学考试线性代数试题
版本:2001-2011
解题方法及依据的知识点见下列参考文献:
[1] 陈建龙等, 《线性代数》(十一五国家级规划教材), 科学出版社, 2007. [2] 张小向等, 《线性代数学习指导》, 科学出版社, 2008. [3] 周建华等, 《几何与代数》(十一五国家级规划教材), 科学出版社, 2009.
= (a+2) 0 a −1 0 = (a+2)(a−1)2.
11a
11a
11 a
0 0 a −1
原方程有无穷多个解⇒ (a+2)(a−2)2 = 0 ⇒ a = −2 或 1.
⎡a 1 1 1 ⎤ ⎡1 1 1 1 ⎤ ×(−1) ⎡1 1 1 1 ⎤
当 a = 1 时, ⎢1 a 1 1 ⎥ = ⎢1 1 1 1 ⎥ ⎢⎣1 1 a −2⎥⎦ ⎢⎣1 1 1 −2⎥⎦
设α
=
⎢ ⎢⎣
a2 a3
⎥ ⎥⎦
,
则ααT
=
⎡ ⎢ ⎢
a12 a2a1
⎢⎣ a3 a1
a1a2 a22
a3a2
a1a3 a2a3
⎤ ⎥ ⎥
.
a32 ⎥⎦
⎡1 又因为ααT = ⎢−1
⎢⎣ 1
−1 1 −1
1⎤ −1⎥ , 所以 1 ⎥⎦
αTα = a12 + a22 + a32 = 1 + 1 + 1 = 3.