鸡兔同笼问题与假设法
“鸡兔同笼”讲解方法(13种)

“鸡兔同笼”讲解方法(13种)题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)『方法一:人见人爱的列表法』如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!『方法二:最快乐的画图法』画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)『方法五:最常用的假设法』分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
『方法六:最常用的假设法』分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只。
鸡兔同笼的十种解法公式

鸡兔同笼的十种解法公式摘要:1.鸡兔同笼问题的背景和意义2.鸡兔同笼的十种解法公式3.鸡兔同笼问题的拓展和应用正文:鸡兔同笼问题是一个古老的数学问题,也被称为“鸡兔同笼问题”。
它描述的是在一个笼子里关着鸡和兔子,已知它们的总数量和总腿数,要求计算鸡和兔子的数量。
这个问题看似简单,但实际上包含了丰富的数学知识和思想方法。
鸡兔同笼问题不仅能够锻炼人们的逻辑思维能力,还能够提高解决实际问题的能力。
因此,它被广泛应用于数学教学和实际生活中。
鸡兔同笼问题的解法有很多,下面列举十种解法公式:1.直接法:用总腿数除以2,得到鸡的数量,再用总数量减去鸡的数量,得到兔子的数量。
2.代数法:设鸡的数量为x,兔子的数量为y,则有以下方程组:x + y = 总数量2x + 4y = 总腿数解方程组,可得到鸡和兔子的数量。
3.假设法:假设笼子里全是鸡,计算出总腿数,与实际总腿数进行比较,得到多出的腿数。
因为一只鸡比一只兔子少2 条腿,所以多出的腿数除以2,得到兔子的数量,再用总数量减去兔子的数量,得到鸡的数量。
4.类比法:将鸡和兔子的腿数进行类比,得到以下关系:鸡的腿数: 兔子的腿数= 2 : 4总腿数: 鸡的腿数= 4 : 2根据以上关系,可以得到鸡和兔子的数量。
5.图示法:画出一个笼子,用不同的符号表示鸡和兔子,根据总腿数,在图示中添加腿,然后计算出鸡和兔子的数量。
6.逻辑法:因为鸡和兔子的总数量和总腿数已知,所以每增加一只鸡,总腿数就增加2,每增加一只兔子,总腿数就增加4。
根据这个规律,可以得到鸡和兔子的数量。
7.排列组合法:根据组合数的定义,从总数量中选择鸡的数量,再从剩下的数量中选择兔子的数量,可以得到鸡和兔子的数量。
8.概率法:假设笼子里的鸡和兔子是随机分布的,计算出鸡和兔子的概率,根据概率,可以得到鸡和兔子的数量。
9.矩阵法:建立一个二维矩阵,矩阵的行表示鸡的数量,列表示兔子的数量,矩阵的元素表示总腿数。
根据矩阵的性质,可以得到鸡和兔子的数量。
第1讲 鸡兔同笼问题与假设法

鸡兔同笼问题与假设法一、问题的背景“鸡兔同笼”最早出现在《孙子算经》中。
许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解。
因此很有必要学会它的解法和思路:例题:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?思考一:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是244÷2=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数.上面的解法是《孙子算经》中记载的,利用化归的思想进行了转化。
做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍。
可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通。
思考二:我们对这类问题给出一种一般解法。
如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中的“鸡”,有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数。
鸡兔同笼”的13种解法

一只鸡变成一只兔子腿增加2条,10÷2=5只
即兔子为5只
鸡为14-5=9只
6 假设法2
假设全是兔
则有14×4=56条腿 比实际多56-38=18只
一只兔子变成一只鸡,腿减少2条,18÷2=9只
即鸡为9只,兔子为14 - 9=5只
7 特异功能法1
关键在于通过增加鸡的腿数,进而达到和兔子腿数相同 鸡有2条腿,比兔子少2条腿 但鸡有2只翅膀,兔子却没有 假设鸡翅变鸡腿,鸡也有4条腿
所以
兔的只数是10÷2=5只 鸡则是14-5=9只
12 方程法1
设
鸡的数量为x只
则
兔子有(14-x)只
列
2x+4(14-x)=38
解
x=9
答
鸡9只,兔子14-9=5只
13 方程法2
设
兔子的数量为x只
则
鸡有(14-x)只
列
4x+2(14-x)=38
解
x=5
答
兔子有5只,鸡有14-5=9只
腿的总数:14×4=56条(实际上只有38条,多出的是鸡翅) 鸡翅总数=56-38=18只 鸡有18÷2=9只,兔就是14-9=5只
8 特异功能法2
关键是使鸡兔的的腿数都减少两条
鸡飞 假设鸡兔都具有“ 特异功能 ”
兔立
站立在地上的全是兔的腿数38-14×2=10条
因此
兔:10÷2=5只 鸡有14-5=9只
两前腿抱胸 两后腿直立
9 特异功能法3
假设孙悟空施法
令每只兔子
又长出一个头来 两头四脚中间劈开 变为2个“半兔”
半兔与鸡都是一头两脚
38÷2=19个头(实际只有14个头)
兔:19-14=5(多出的头是兔子的)
娟娟老师鸡兔同笼问题解题思路解法及公式

鸡兔同笼例题1.笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有多少只?解题方法:①假设法:如果笼子里都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚;一只兔子比一只鸡多2只脚,也就是有10÷2=5只兔。
所以笼子里有3只鸡,5只兔。
(总脚数-总头数×2)÷2=兔子数总头数-兔子数=鸡数②假设法:如果笼子里都是兔,那么就有8×4=32只脚,这样就少了32-26=6只脚;一只鸡比一只兔子少2只脚,也就是有6÷2=3只鸡。
所以笼子里有3只鸡,5只兔。
(总头数×4-总脚数)÷2=鸡数总头数-鸡数=兔子数③抬腿法:假如让鸡抬起一只脚,兔子抬起两只脚,还有26÷2=13只脚;这时每只鸡一只脚,每只兔子两只脚。
笼子里只要有一只兔子,则脚的总数就比头的总数多1;这时脚的总数与头的总数之差13-8=5,就是兔子的只数。
总脚数÷2-总头数=兔子数.总头数-兔子数=鸡数④解方程法:解:设有χ只兔子,那么就有(8-χ)只鸡。
鸡兔总共26只脚,就是:4χ+2(8-χ)=26则χ=58-5=3只例题2.?买一些4分和8分的邮票,共花6元8角。
已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下的邮票中,8分和4分的各有30张。
因此8分邮票有40+30=70(张).答:买了8分的邮票70张,4分的邮票30张。
也可以用任意假设一个数的办法.解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分。
以"分"作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票。
二假设法“鸡兔同笼”问题

二、假设法“鸡兔同笼”问题“鸡兔同笼”是一类有名的中国古算题,出自我国1500年前唐代的一部算书《孙子算经》中。
原题如下:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?纵观近几年国家和各省地市公务员考试的数量关系题目很多都可以转化成这类问题,对于此类问题的解答要求考生熟练掌握。
解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。
此类我们称之为“假设法”。
一、历年真题例1、某零件加工厂按工人完成的合格零件和不合格零件支付工资。
工人每做一个合格零件得工资10元,每做一个不合格零件被扣除5元。
已知某人一天共做了12个零件得工资90元。
那么他在这一天做了多少个不合格零件?()(20XX年国家公务员考试行测第54题)A. 2B. 3C. 4D. 6例2、有大小两个瓶,大瓶可以装水5千克,小瓶可装水1千克,现在有100千克水共装了52瓶。
问大瓶和小瓶相差多少个?()(20XX年浙江省公务员考试行测试卷)A. 26个B. 28个C. 30个D. 32个例3、某地劳动部门租用甲、乙两个教室开展农村实用人才培训。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。
问甲教室当月共举办了多少次这项培训?()(20XX年国家公务员考试行测第48题)A.8B.10C.12D.15例4、已知甲、乙两种产品原价之和为100元,因市场变化,甲产品8折促销,乙产品提价10%,价格调整之后,两种产品的标价之和比原标价之和提高了4%,则乙产品的原标价为多少元( )A.20B.40C.80D.93例5、有蜘蛛、蜻蜓、蝉三种生物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,没有翅膀;蜻蜓有6条腿,2对翅膀;蝉有6条腿和1对翅膀)求蝉有几只?( )A.5B.6C.7D.8练习题:6、某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数相差多少?A.33B.99C.17D.16••7.某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件能得到工资10元,每做一个不合格零件将被扣除5元,已知某人一天共做了12个零件,得工资90元,那么他在这一天做了多少个不合格零件?• A.2 B.3 C.4 D.68.某市居民生活用电每月标准用电量的基本价格为每度0.60元,若每日用电量超过标准用电量,超出部分按基本价格的80%收费,某户九月份用电100度,共交电费57.6元,则该市每月标准用电量为()。
鸡兔同笼问题与假设法

鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1、小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?例3、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。
这样,就将买文化用品问题转换成鸡兔同笼问题了。
例4 、鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?例5、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。
问:大、小瓶各有多少个?例6、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。
已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?例7、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。
已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?【家庭作业】家长签字_________________1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。
【详解】三年级(上)第09讲 假设法解鸡兔同笼

第九讲 假设法解鸡兔同笼1. 例题1答案:鸡有23只;兔有12只详解:假设全是鸡,35只鸡共有腿35270⨯=条,比较一下发现比实际腿少947024-=条,接下来进行调整,拿1只兔换1只鸡,腿会增加2条,共需要增加()244212÷-=只兔子,那么鸡有351223-=只.也可以在开始时假设全是兔,35只兔共有腿354140⨯=条,比较一下发现比实际腿多1409446-=条,接下来进行调整,拿1只鸡换1只兔,腿会减少2条,共需要增加()464223÷-=只鸡,那么兔子有352312-=只.2. 例题2答案:三脚猫有5只;五脚猪有7只详解:假设全是三脚猫,12只三脚猫共有腿12336⨯=条,比较一下发现比实际腿少503614-=条,接下来进行调整,拿1只五脚猪换1只三脚猫,腿会增加2条,共需要增加()14537÷-=只五脚猪,那么三脚猫有1275-=只. 3. 例题3答案:普通票有20张;套票有15张详解:假设老师买的全是普通票,35张普通票共3510350⨯=元,比较发现比实际花的钱少500350150-=元,接下来进行调整,增加1张套票,花的钱会增加10,共需要增加()150201015÷-=张,那么普通票有351520-=张. 4. 例题4答案:男生有15名;女生有35名详解:男生女生共吃了1355130-=块月饼.假设全是女生,共吃了502100⨯=块月饼,比较发现比实际的少13010030-=块月饼,接下来进行调整,增加1名男生,吃的月饼会增加2块,共需要增加()304215÷-=名男生,那么女生有501535-=名.5. 例题5答案:6天详解:松鼠妈妈一共采了112个松籽,平均每天采14个,那么一共采了112148÷=天.假设这些天全是晴天,共采了820160⨯=个松籽,比较发现比实际的多16011248-=个松籽,接下来进行调整,1个晴天变雨天,松籽的总数会减少8个,雨天有()4820126÷-=天.6. 例题6答案:6千克详解:水果糖共卖了480300180-=元,水果糖卖了180209÷=千克.那么奶糖和巧克力糖共卖了了11千克,共卖了300元.假设全是巧克力糖,会卖1130330⨯=元,比较发现比实际的多33030030-=元,接下来进行调整,1千克巧克力糖换成奶糖,收入会减少5元,奶糖有()3030256÷-=千克.7. 练习1答案:鸡有18只;兔有3只简答:假设全是鸡:21242⨯=条;比较:48426-=条;调整:兔:()6423÷-=只,鸡:21318-=只.8. 练习2答案:独脚鸡有4只;三脚猫有8只简答:假设全是独脚鸡:12112⨯=条;比较:281216-=条;调整:三脚猫:()16318÷-=只,独脚鸡:1284-=只.9. 练习3答案:4个简答:假设买的全是菜包子:61272⨯=角;比较:80728-=角;调整:肉包子:()8864÷-=个.10. 练习4答案:大猴子有6只;小猴子有8只简答:大、小猴子共摘了19935164-=个桃子,大小猴子共15114-=个.假设全是小猴子:1410140⨯=个;比较:16414024-=个;调整:大猴子:()2414106÷-=只,小猴子有1468-=只.11. 作业1答案:兔子有3只;鸡有7只简答:假设全是鸡,可得兔子有只,于是鸡有只. 12. 作业2答案:18辆简答:假设全是独轮车,可得三轮车有辆.13. 作业3答案:5天简答:假设都是晴天,可得有天下雨.14. 作业4答案:18名简答:同学们共植树棵.假设全是女生,可得男生有名.15. 作业5答案:晴天有7天;雨天有3天简答:10天内共运了次.假设全是雨天,可得晴天有天.那么雨天有天. 1073-= (65310)(83)7-⨯÷-= 6501065÷= (106352)(42)18-⨯÷-= 1126106-= (15901200)(9060)5⨯-÷-= (66301)(31)18-⨯÷-= 1037-= (26210)(42)3-⨯÷-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题与假设法
姓名
例题:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少
只?
我们对这类问题给出一种一般解法。
如果设想88只都是兔子,那么就有4
×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,
所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.
因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数). 当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244
只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).
说明设想中的“鸡”,有34只是兔子,也可以列出公式
兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).
刚才所讲的例子告诉了大家是鸡兔的“头和”与“脚和”,根据问题条件的
情况,一般可以把鸡兔同笼问题归结为:1、“头和”与“脚和”;2、“头和”
与“脚差”;3、“头差”与“脚和”;4、“头差”与“脚差”。
1、鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只
思路:100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,
鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比
已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换
成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加
3.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可
供120个学生进行活动。
问:象棋与跳棋各有多少副?
4.班级购买活页簿与日记本合计32本,花钱74元。
活页簿每本2元,日记本每本3元。
问:买活页簿、日记本各几本?
5.小蕾花40元钱买了14张贺年卡与明信片。
贺年卡每张3元,明信片每张2元。
问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。
问:这几天中共有几个雨天?
7.振兴小学六年级举行数学竞赛,共有20道试题。
做对一题得5分,没做或做错一题都要扣倒3分。
小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。
已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?。