信号检测与估值matlab仿真报告

信号检测与估值matlab仿真报告
信号检测与估值matlab仿真报告

信号检测与估值

仿真报告

题目信号检测与估值的MATLAB仿真学院通信工程学院

专业通信与信息系统

学生姓名

学号

导师姓名

作业1

试编写程序,画出相干移频键控、非相干移频键控(无衰落)和瑞利衰落信道下非相干移频键控的性能曲线。

(1)根据理论分析公式画性能曲线;

(2)信噪比范围(0dB-10dB),间隔是1dB;

(3)信噪比计算SNR=10lg(Es/N0)

一、脚本文件

1、主程序

%********************************************************

%二元移频信号检测性能曲线(理论分析)

%FSK_theo.m

%********************************************************

clear all;

clc;

SNRindB=0:1:20;

Pe_CFSK=zeros(1,length(SNRindB));

Pe_NCFSK=zeros(1,length(SNRindB));

Pe_NCFSK_Rayleigh=zeros(1,length(SNRindB));

for i=1:length(SNRindB)

EsN0=exp(SNRindB(i)*log(10)/10);

Es_aveN0=exp(SNRindB(i)*log(10)/10);

Pe_CFSK(i)=Qfunct(sqrt(EsN0));%相干移频键控系统

Pe_NCFSK(i)=0.5*exp(-EsN0/2);%非相干移频键控系统(无衰落)

Pe_NCFSK_Rayleigh(i)=1/(2+Es_aveN0);%非相干移频键控系统(瑞利衰落)end

semilogy(SNRindB,Pe_CFSK,'-o',SNRindB,Pe_NCFSK,'-*',SNRindB,Pe_NCFSK_Rayleigh ,'-');

xlabel('Es/No或平均Es/No(dB)');

ylabel('最小平均错误概率Pe');

legend('相干移频','非相干移频(无衰落)','非相干移频(瑞利衰落)');

title('二元移频信号检测性能曲线');

axis([0 20 10^-7 1]);

grid on;

2、调用子函数

%********************************************************

%Q函数

%Qfunct.m

%********************************************************

function [y]=Qfunct(x)

% [y]=Qfunct(x) % QFUNCT evaluates the Q-function. % y = 1/sqrt(2*pi) * integral from x to inf of exp(-t^2/2) dt. % y = (1/2) * erfc(x/sqrt(2)). y=(1/2)*erfc(x/sqrt(2)); 二、仿真结果

2

4

6

810121416

18

20

10-7

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

Es/No 或平均Es/No(dB)

最小平均错误概率P e

二元移频信号检测性能曲线

作业2

试编写程序,仿真BPSK ,4PSK 调制信号在高斯信道下的性能,画出误码率(误比特和误符号)的性能曲线,并与理论分析结果相比。 一、BPSK 脚本文件及仿真结果 1、主程序

%******************************************************** %BPSK 调制信号在AWGN 下的蒙特卡罗仿真 %BPSK_MC.m

%******************************************************** clear all; clc;

SNRindB1=0:1:10; SNRindB2=0:0.5:10;

smld_err_prb=zeros(1,length(SNRindB1)); theo_err_prb=zeros(1,length(SNRindB2));

for i=1:length(SNRindB1),

% simulated error rate

smld_err_prb(i)=sm_BPSK(SNRindB1(i));

end;

for i=1:length(SNRindB2),

EsN0=exp(SNRindB2(i)*log(10)/10);

% theoretical error rate

theo_err_prb(i)=Qfunct(sqrt(2*EsN0));

end;

% Plotting commands follow

semilogy(SNRindB1,smld_err_prb,'*',SNRindB2,theo_err_prb,'-');

xlabel('Es/No(dB)');

ylabel('误码率');

title('BPSK调制信号在AWGN下的蒙特卡罗仿真');

legend('仿真误码率','理论误码率');

grid on;

2、调用子函数

%********************************************************

%计算BPSK的仿真误码率(误符号率=误比特率)

%sm_BPSK.m

%********************************************************

function [p]=sm_BPSK(snr_in_dB)

% [p]=sm_BPSK(snr_in_dB)

% sm_BPSK simulates the probability of error for the particular

% value of snr_in_dB, signal to noise ratio in dB.

Es=1;

EsN0=exp(snr_in_dB*log(10)/10); % signal to noise ratio

sgma=Es/sqrt(2*EsN0); % sigma, standard deviation of noise

N=10^7;%统计量

%产生二进制数据源

dsource=zeros(1,N);

for i=1:N,

temp=rand; % a uniform random variable over (0,1)

if (temp<0.5),

dsource(i)=0; % with probability 1/2, source output is 0 else

dsource(i)=1; % with probability 1/2, source output is 1 end

end;

numoferr=0;

for i=1:N,

%接收信号(信号映射,加性高斯白噪声)

if (dsource(i)==0),

r=-Es+gngauss(sgma); % if the source output is "0"

else

r=Es+gngauss(sgma); % if the source output is "1"

end;

%信号判决

if (r<0),

decis=0; % decision is "0"

else

decis=1; % decision is "1"

end;

%计算误符号率=误比特率

if (decis~=dsource(i)), % if it is an error, increase the error counter numoferr=numoferr+1;

end;

end;

p=numoferr/N; % probability of error estimate

%******************************************************

% 产生加性高斯白噪声

% gngauss.m

%******************************************************

function[gsrv1,gsrv2]=gngauss(m,sgma)

% [gsrv1,gsrv2]=gngauss(m,sgma)

% [gsrv1,gsrv2]=gngauss(sgma)

% [gsrv1,gsrv2]=gngauss

% GNGAUSS产生两个均值为m、标准差为sgma的、互相独立的% 高斯随机变量。如果缺少其中一个输入参数,则取均值

% 为0。如果既没有给出均值也没有给出方差,本函数将

% 产生两个标准高斯随机变量。

if nargin==0,

m=0;sgma=1;

elseif nargin==1,

sgma=m;m=0;

end;

u=rand; %在区间(0,1)内的均匀随机变量

z=sgma*(sqrt(2*log(1/(1-u)))); %瑞利分布随机变量

u=rand; %在区间(0,1)内的均匀随机变量

gsrv1=m+z*cos(2*pi*u);

gsrv2=m+z*sin(2*pi*u);

3、仿真结果

1234

5678910

10

10

10

10

10

10

Es/No(dB)

误码率

BPSK 调制信号在AWGN 下的蒙特卡罗仿真

二、QPSK 脚本文件及仿真结果

1、主程序

%******************************************************** %QPSK 调制信号在AWGN 下的蒙特卡罗仿真 %QPSK_MC.m

%******************************************************** clear all; clc;

SNRindB1=0:1:14; % 设置仿真信噪比范围 SNRindB2=0:0.1:14; % 理论计算信噪比范围 smld_bit_err_prb=zeros(1,length(SNRindB1)); smld_symbol_err_prb=zeros(1,length(SNRindB1)); theo_bit_err_prb=zeros(1,length(SNRindB2)); theo_symbol_err_prb=zeros(1,length(SNRindB2)); for i=1:length(SNRindB1),

[pb,ps]=sm_QPSK(SNRindB1(i)); % 仿真比特和符号错误概率 smld_bit_err_prb(i)=pb; % pb 表示误比特率 smld_symbol_err_prb(i)=ps; % ps 表示误符号率 end;

for i=1:length(SNRindB2),

SNR=exp(SNRindB2(i)*log(10)/10); % 信噪比SNR=Es/N0 theo_bit_err_prb(i)=Qfunct(sqrt(SNR)); % 计算理论误比特率

theo_symbol_err_prb(i)=2*Qfunct(sqrt(SNR)); % 计算理论误符号率end;

semilogy(SNRindB1,smld_bit_err_prb,'o'); % 画图

hold on

semilogy(SNRindB1,smld_symbol_err_prb,'*');

semilogy(SNRindB2,theo_bit_err_prb,'-');

semilogy(SNRindB2,theo_symbol_err_prb,'-.');

xlabel('Es/No(dB)');

ylabel('误码率');

title('QPSK调制信号在AWGN下的蒙特卡罗仿真');

legend('仿真误比特率','仿真误符号率','理论误比特率','理论误符号率');

grid on;

2、调用子函数

%********************************************************

%计算QPSK的仿真误码率(包括误符号率和误比特率)

%sm_QPSK.m

%********************************************************

function[pb,ps]=sm_QPSK(snr_in_dB)

N=10^7;

Es=1;

snr=10^(snr_in_dB/10);

sgma=sqrt(Es/snr/2);

%QPSK信号映射(Gray码)

s00=[1 0];

s01=[0 1];

s11=[-1 0];

s10=[0 -1];

%产生四进制数据源

dsource1=zeros(1,N);

dsource2=zeros(1,N);

for i=1:N,

temp=rand;

if(temp<0.25),

dsource1(i)=0;

dsource2(i)=0;

elseif(temp<0.5),

dsource1(i)=0;

dsource2(i)=1;

elseif(temp<0.75),

dsource1(i)=1;

dsource2(i)=0;

else

dsource1(i)=1;

dsource2(i)=1;

end;

end;

numofsymbolerror=0;

numofbiterror=0;

for i=1:N,

%产生复加性高斯白噪声

n(1)=gngauss(sgma);

n(2)=gngauss(sgma);

%接收信号,即信道输出的加噪信号

if((dsource1(i)==0) && (dsource2(i)==0)), r=s00+n;

elseif((dsource1(i)==0) && (dsource2(i)==1)), r=s01+n;

elseif((dsource1(i)==1) && (dsource2(i)==0)), r=s10+n;

else

r=s11+n;

end;

%信号判决

c00=dot(r , s00);

c01=dot(r , s01);

c10=dot(r , s10);

c11=dot(r , s11);

c_max=max([c00 c01 c10 c11]);

if(c00==c_max)

decis1=0;decis2=0;

elseif(c01==c_max)

decis1=0;decis2=1;

elseif(c10==c_max)

decis1=1;decis2=0;

else

decis1=1;decis2=1;

end;

%计算误符号率和误比特率

symbolerror=0;

if(decis1~=dsource1(i)),

numofbiterror=numofbiterror+1;

symbolerror=1;

end;

if(decis2~=dsource2(i)), numofbiterror=numofbiterror+1; symbolerror=1; end;

if(symbolerror==1), numofsymbolerror=numofsymbolerror+1; end; end;

ps=numofsymbolerror/N; pb=numofbiterror/(2*N); 3、仿真结果

24

68101214

10

10

10

10

10

10

10

10

Es/No(dB)

误码率

QPSK 调制信号在AWGN 下的蒙特卡罗仿真

基于MATLAB的GMSK调制与解调课设报告

基于Matlab的GMSK调制与解调 1.课程设计目的 (1)加深对GMSK基本理论知识的理解。 (2)培养独立开展科研的能力和编程能力。 (3)通过SIMULINK对BT=0.3的GMSK调制系统进行仿真。 2.课程设计要求 (1)观察基带信号和解调信号波形。 (2)观察已调信号频谱图。 (3)分析调制性能和BT参数的关系。 3.相关知识 3.1GMSK调制 调制原理图如图2.2,图中滤波器是高斯低通滤波器,它的输出直接对VCO 进行调制,以保持已调包络恒定和相位连续。 非归零数字序 高斯低通滤 波器频率调制器 (VCO) GMSK已 调信号 图3.1GMSK调制原理图 为了使输出频谱密集,前段滤波器必须具有以下待性: 1.窄带和尖锐的截止特性,以抑制FM调制器输入信号中的高频分量; 2.脉冲响应过冲量小,以防止FM调制器瞬时频偏过大; 3.保持滤波器输出脉冲响应曲线下的面积对应丁pi/2的相移。以使调制指数为1/2。前置滤波器以高斯型最能满足上述条件,这也是高斯滤波器最小移频键控(GMSK)的由来。

GMSK 信号数据 3.2GMSK 解调 GMSK 本是MSK 的一种,而MSK 又是是FSK 的一种,因此,GMSK 检波也可以采用FSK 检波器,即包络检波及同步检波。而GMSK 还可以采用时延检波,但每种检波器的误码率不同。 GMSK 非相干解调原理图如图2.3,图中是采用FM 鉴频器(斜率鉴频器或相位鉴频器)再加判别电路,实现GMSK 数据的解调输出。 图3.2GMSK 解调原理图 4.课程设计分析 4.1信号发生模块 因为GMSK 信号只需满足非归零数字信号即可,本设计中选用(Bernoulli Binary Generator)来产生一个二进制序列作为输入信号。 图4.1GMSK 信号产生器 该模块的参数设计这只主要包括以下几个。其中probability of a zero 设置为0.5表示产生的二进制序列中0出现的概率为0.5;Initial seed 为61表示随机数种子为61;sample time 为1/1000表示抽样时间即每个符号的持续时为0.001s。当仿真时间固定时,可以通过改变sample time 参数来改变码元个数。例如仿真时间为10s,若sample time 为1/1000,则码元个数为10000。 带通滤 波器限幅器判决器鉴频器GMSK 信号 输出

matlab实验报告

数学实验报告 班级: 学号: 姓名: 实验序号:1 日期:年 月 日 实验名称:特殊函数与图形 ◆ 问题背景描述:绘图是数学中的一种重要手段,借助图形,可以使抽象的对象得到 明白直观的体现,如函数的性质等。同时,借助直观的图形,使初学者更容易接受新知识,激发学习兴趣。 ◆ 实验目的:本实验通过绘制一些特殊函数的图形,一方面展示这些函数的特点属性, 另一方面,就 Matlab 强大的作图功能作一个简单介绍。 实验原理与数学模型: 1、 球2222x y z R ++= ,x=Rsin φcos θ, y= Rsin φsin θ, z= cos φ, 0≤θ≤2π , 0≤φ≤π 环面 222222222()4(),(cos )cos ,x y z a r a x y x a r φθ+++-=+=- (cos )sin ,sin ,02,02y a r z r φθφφπθπ=-=≤≤≤≤ 2、 平面摆线:2 22 31150,(sin ),(1cos ),0233 x y x a t t y a t t π+-==-=-≤≤ 3、 空间螺线:(圆柱螺线)x=acost , y=asint , z=bt ;(圆锥螺线)22 cos ,sin ,x t t y t t z t === 4、 椭球面sin cos ,sin sin ,cos ,02,0x a y b z c φθφθφθπφπ===≤<≤≤ 双叶双曲面3 tan cos ,tan sin ,sec ,02,22 x a y b z c π φθφθφθπφπ===≤<- << 双曲抛物面2 sec ,tan 2 u x au y bu z θθ=== 实验所用软件及版本:mathematica(3.0) 主要内容(要点): 1、 作出下列三维图形(球、环面) 2、 作出下列的墨西哥帽子 3、 作出球面、椭球面、双叶双曲面,单叶双曲面的图形 4、 试画出田螺上的一根螺线 5、 作出如图的马鞍面

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

MATLAB实验报告50059

实验一MATLAB操作基础 实验目的和要求: 1、熟悉MATLAB的操作环境及基本操作方法。 2、掌握MATLAB的搜索路径及设置方法。 3、熟悉MATLAB帮助信息的查阅方法 实验内容: 1、建立自己的工作目录,再设置自己的工作目录设置到MA TLAB搜索路径下,再试 验用help命令能否查询到自己的工作目录。 2、在MA TLAB的操作环境下验证课本;例1-1至例1-4,总结MATLAB的特点。 例1-1

例1-2 例1-3 例1-4

3、利用帮助功能查询inv、plot、max、round等函数的功能。 4、完成下列操作: (1)在matlab命令窗口输入以下命令: x=0:pi/10:2*pi; y=sin(x); (2)在工作空间窗口选择变量y,再在工作空间窗口选择回绘图菜单命令或在工具栏中单击绘图命令按钮,绘制变量y的图形,并分析图形的含义。

5、访问mathworks公司的主页,查询有关MATLAB的产品信息。 主要教学环节的组织: 教师讲授实验目的、开发环境界面、演示实验过程,然后同学上机练习。 思考题: 1、如何启动与退出MA TLAB集成环境? 启动: (1)在windows桌面,单击任务栏上的开始按钮,选择‘所有程序’菜单项,然后选择MA TLAB程序组中的MA TLABR2008b程序选项,即可启动 MATLAB系统。 (2)在MA TLAB的安装路径中找到MA TLAB系统启动程序matlab.exe,然后运行它。 (3)在桌面上建立快捷方式后。双击快捷方式图标,启动MA TLAB。 退出: (1)在MA TLAB主窗口file菜单中选择exitMATLAB命令。 (2)在MA TLAB命令窗口中输入exit或quit命令。 (3)单击MATLAB主窗口的关闭按钮。 2、简述MATLAB的主要功能。 MATLAB是一种应用于科学计算领域的数学软件,它主要包括数值计算和符 号计算功能、绘图功能、编程语言功能以及应用工具箱的扩展功能。 3、如果一个MATLAB命令包含的字符很多,需要分成多行输入,该如何处理?

MATLAB仿真实验报告

MATLAB 仿真实验报告 课题名称:MATLAB 仿真——图像处理 学院:机电与信息工程学院 专业:电子信息科学与技术 年级班级:2012级电子二班 一、实验目的 1、掌握MATLAB处理图像的相关操作,熟悉相关的函数以及基本的MATLAB语句。 2、掌握对多维图像处理的相关技能,理解多维图像的相关性质 3、熟悉Help 命令的使用,掌握对相关函数的查找,了解Demos下的MATLAB自带的原函数文件。 4、熟练掌握部分绘图函数的应用,能够处理多维图像。 二、实验条件

MATLAB调试环境以及相关图像处理的基本MATLAB语句,会使用Help命令进行相关函数查找 三、实验内容 1、nddemo.m函数文件的相关介绍 Manipulating Multidimensional Arrays MATLAB supports arrays with more than two dimensions. Multidimensional arrays can be numeric, character, cell, or structure arrays. Multidimensional arrays can be used to represent multivariate data. MATLAB provides a number of functions that directly support multidimensional arrays. Contents : ●Creating multi-dimensional arrays 创建多维数组 ●Finding the dimensions寻找尺寸 ●Accessing elements 访问元素 ●Manipulating multi-dimensional arrays操纵多维数组 ●Selecting 2D matrices from multi-dimensional arrays从多维数组中选择二维矩 阵 (1)、Creating multi-dimensional arrays Multidimensional arrays in MATLAB are created the same way as two-dimensional arrays. For example, first define the 3 by 3 matrix, and then add a third dimension. The CAT function is a useful tool for building multidimensional arrays. B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating(联系起来)A1, A2 ... along the dimension DIM. Calls to CAT can be nested(嵌套). (2)、Finding the dimensions SIZE and NDIMS return the size and number of dimensions of matrices. (3)、Accessing elements To access a single element of a multidimensional array, use integer subscripts(整数下标). (4)、Manipulating multi-dimensional arrays

基于matlab的通信信道及眼图的仿真 通信原理课程设计

通信原理课程设计 基于matlab的通信信道及眼图的仿真 作者: 摘要 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。因此我们对瑞利信道、莱斯信道进行了仿真并针对服从瑞利分布的多径信道进行模拟仿真。由于眼图是实验室中常用的一种评价基带传输系统的一种定性而方便的方法,“眼睛”的张开程度可以作为基带传输系统性能的一种度量,它不但反映串扰的大小,而且也可以反映信道噪声的影响。为此,我们在matlab上进行了仿真,加深对眼图的理解。 关键词:瑞利信道莱斯信道多径效应眼图 一、瑞利信道 在移动通信系统中,发射端和接收端都可能处于不停的运动状态之中,这种相对运动将产生多普勒频移。在多径信道中,发射端发出的信号通过多条路径到达接收端,这些路径具有不同的延迟和接收强度,它们之间的相互作用就形成了衰落。MATLAB中的多径瑞利衰落信道模块可以用于上述条件下的信道仿真。 多径瑞利衰落信道模块用于多径瑞利衰落信道的基带仿真,该模块的输入信号为复信号,可以为离散信号或基于帧结构的列向量信号。无线系统中接收机与发射机之间的相对运动将引起信号频率的多普勒频移,多普勒频移值由下式决定: 其中v是发射端与接收端的相对速度,θ是相对速度与二者连线的夹角,λ是信号的波长。

Fd的值可以在该模块的多普勒平移项中设置。由于多径信道反映了信号在多条路径中的传输,传输的信号经过不同的路径到达接收端,因此产生了不同的时间延迟。当信号沿着不同路径传输并相互干扰时,就会产生多径衰落现象。在模块的参数设置表中,Delay vector(延迟向量)项中,可以为每条传输路径设置不同的延迟。如果激活模块中的Normalize gain vector to 0 dB overall gain,则表示将所有路径接收信号之和定为0分贝。信号通过的路径的数量和Delay vector(延迟向量)或Gain vector(增益向量)的长度对应。Sample time(采样时间)项为采样周期。离散的Initial seed(初始化种子)参数用于设置随机数的产生。 1.1、Multipath Rayleigh Fading Channel(多径瑞利衰落信道)模块的主要参数 参数名称参数值 Doppler frequency(Hz) 40/60/80 Sample time 1e-6 Delay vector(s) [0 1e-6] Gain vector(dB) [0 -6] Initial seed 12345 使能 Normalize gain vector to 0 dB overall gain Bernoulli Random Binary Generator(伯努利二进制随机数产生器)的主要参数 参数名称参数值 Probability of a zero0.5 Initial seed54321

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

matlab实验报告

实验一小球做自由落体运动内容:一小球竖直方向做自由落体,并无损做往返运动。程序: theta=0:0.01:2*pi x=cos(theta) y=sin(theta) l=1 v=1 while l<10 for t=1:10 y=y+(-1)^l*v*t plot(x,y,[-1,1],[-56,2],'.') axis equal pause(0.1) end l=l+1 end 结果:

-50 -40 -30 -20 -10 收获:通过运用小球自由落体规律,及(-1)^n 来实现无损往 返运动! 实验二 旋转五角星 内容:一个五角星在圆内匀速旋转 程序:x=[2 2 2 2 2 2] y=[0 4/5*pi 8/5*pi 2/5*pi 6/5*pi 0] y1=2*sin(y) x1=2*cos(y) theta=0:4/5*pi:4*pi

x2=2*cos(theta) y2=2*sin(theta) plot(x,y,x1,y1,x2,y2) axis equal theta1=theta+pi/10 x2=2*cos(theta1) y2=2*sin(theta1) plot(x2,y2) axis equal theta=0:4/5*pi:4*pi for rot=pi/10:pi/10:2*pi x=2*cos(theta+rot) y=2*sin(theta+rot) plot(x,y) pause(0.1) end 结果:

-2 -1.5-1-0.500.51 1.52 -2-1.5-1-0.500.511.5 2 收获:通过theta1=theta+pi/10,我们可以实现五角星在圆内匀速 旋转! 实验三 转动的自行车 内容:一辆自行车在圆内匀速转动 程序:x=-4:0.08:4; y=sqrt(16-x.^2); theta1=-pi/2:0.01*pi:3*pi/2; x3=0.5*cos(theta1); y3=0.5*sin(theta1); theta=-pi/2+0.02*pi for k=1:100

参考答案Matlab实验报告

实验一 Matlab基础知识 一、实验目的: 1.熟悉启动和退出Matlab的方法。 2.熟悉Matlab命令窗口的组成。 3.掌握建立矩阵的方法。 4.掌握Matlab各种表达式的书写规则以及常用函数的使 用。 二、实验内容: 1.求[100,999]之间能被21整除的数的个数。(rem) 2.建立一个字符串向量,删除其中的大写字母。(find) 3.输入矩阵,并找出其中大于或等于5的元素。(find) 4.不采用循环的形式求出和式 63 1 2i i= ∑ 的数值解。(sum) 三、实验步骤: ●求[100,199]之间能被21整除的数的个数。(rem) 1.开始→程序→Matlab 2.输入命令: ?m=100:999; ?p=rem(m,21); ?q=sum(p==0) ans=43 ●建立一个字符串向量,删除其中的大写字母。(find) 1.输入命令:

?k=input('’,’s’); Eie48458DHUEI4778 ?f=find(k>=’A’&k<=’Z’); f=9 10 11 12 13 ?k(f)=[ ] K=eie484584778 ●输入矩阵,并找出其中大于或等于5的元素。(find) 1.输入命令: ?h=[4 8 10;3 6 9; 5 7 3]; ?[i,j]=find(h>=5) i=3 j=1 1 2 2 2 3 2 1 3 2 3 ●不采用循环的形式求出和式的数值解。(sum) 1.输入命令: ?w=1:63; ?q=sum(2.^w) q=1.8447e+019

实验二 Matlab 基本程序 一、 实验目的: 1. 熟悉Matlab 的环境与工作空间。 2. 熟悉M 文件与M 函数的编写与应用。 3. 熟悉Matlab 的控制语句。 4. 掌握if,switch,for 等语句的使用。 二、 实验内容: 1. 根据y=1+1/3+1/5+……+1/(2n-1),编程求:y<5时最大n 值以及对应的y 值。 2. 编程完成,对输入的函数的百分制成绩进行等绩转换,90~100为优,80~89为良,70~79为中,60~69为及格。 3. 编写M 函数文件表示函数 ,并分别求x=12和56时的函数值。 4. 编程求分段函数 2226;03 56;0532 1;x x x x y x x x x x x x +-<≠=-+≤<≠≠-+且且及其它,并求输入x=[-5.0,-3.0,1.0,2.0,2.5,3.0,3.5]时的输出y 。 三、 实验步骤: 根据y=1+1/3+1/5+……+1/(2n-1),编程求:y<5时最大n 值以及对应的y 值。 1. 打开Matlab ,新建M 文件 2. 输入命令: 51022-+x

控制理论实验报告MATLAB仿真实验解析

实验报告 课程名称:控制理论(乙) 指导老师:林峰 成绩:__________________ 实验名称:MATLAB 仿真实验 实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验九 控制系统的时域分析 一、 实验目的: 1.用计算机辅助分析的办法,掌握系统的时域分析方法。 2.熟悉Simulink 仿真环境。 二、实验原理及方法: 系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。在MATLAB 中,提供了求取连续系统的单位阶跃响应函数step ,单位冲激响应函数impulse ,零输入响应函数initial 等等。 二、实验内容: 二阶系统,其状态方程模型为 ? 1x -0.5572 -0.7814 1x 1 = + u ? 2x 0.7814 0 2x 0 1x y = [1.9691 6.4493] +[0] u 2x 四、实验要求: 1.编制MATLAB 程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应; (1)画出系统的单位阶跃响应曲线; A=[-0.5572 -0.7814;0.7814 0 ]; B=[1;0];

本科毕业设计__基于matlab的通信系统仿真报告

创新实践报告
报 告 题 目: 学 院 名 称: 姓 名:
基于 matlab 的通信系统仿真 信息工程学院 余盛泽 11042232 温 靖
班 级 学 号: 指 导 老 师:
二 O 一四年十月十五日

目录
一、引言 ....................................................................................................................... 3 二、仿真分析与测试 ................................................................................................... 4
2.1 随机信号的生成................................................................................................................ 4 2.2 信道编译码......................................................................................................................... 4 2.2.1 卷积码的原理 ......................................................................................................... 4 2.2.2 译码原理................................................................................................................. 5 2.3 调制与解调........................................................................................................................ 5 2.3.1 BPSK 的调制原理 ................................................................................................... 5 2.3.2 BPSK 解调原理 ....................................................................................................... 6 2.3.3 QPSK 调制与解调................................................................................................... 7 2.4 信道..................................................................................................................................... 8 2.4.1 加性高斯白噪声信道 ............................................................................................. 8 2.4.2 瑞利信道................................................................................................................. 8 2.5 多径合并............................................................................................................................. 8 2.5.1 MRC 方式 ................................................................................................................ 8 2.5.2 EGC 方式................................................................................................................. 9 2.6 采样判决............................................................................................................................. 9 2.7 理论值与仿真结果的对比 ................................................................................................. 9
三、系统仿真分析 ..................................................................................................... 11
3.1 有信道编码和无信道编码的的性能比较 ....................................................................... 11 3.1.1 信道编码的仿真 .................................................................................................... 11 3.1.2 有信道编码和无信道编码的比较 ........................................................................ 12 3.2 BPSK 与 QPSK 调制方式对通信系统性能的比较 ........................................................ 13 3.2.1 调制过程的仿真 .................................................................................................... 13 3.2.2 不同调制方式的误码率分析 ................................................................................ 14 3.3 高斯信道和瑞利衰落信道下的比较 ............................................................................... 15 3.3.1 信道加噪仿真 ........................................................................................................ 15 3.3.2 不同信道下的误码分析 ........................................................................................ 15 3.4 不同合并方式下的对比 ................................................................................................... 16 3.4.1 MRC 不同信噪比下的误码分析 .......................................................................... 16 3.4.2 EGC 不同信噪比下的误码分析 ........................................................................... 16 3.4.3 MRC、EGC 分别在 2 根、4 根天线下的对比 ................................................... 17 3.5 理论数据与仿真数据的区别 ........................................................................................... 17
四、设计小结 ............................................................................................................. 19 参考文献 ..................................................................................................................... 20

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

(完整word版)使用matlab绘制眼图.docx

使用 matlab 绘制数字基带信号的眼图实验 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉 MATLAB语言编程。 二、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1 所示,要获得良好的基带传输系统,就应该 a n t nT s 基带传输a n h t nT s n n抽样判决 H ( ) 图 3-1基带系统的分析模型 抑制码间干扰。设输入的基带信号为a n t nT s, T s为基带信号的码元周期,则经过 n 基带传输系统后的输出码元为a n h t nT s。其中 n h(t )1H ()e j t d(3-1 ) 2 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: ,k 0 h( kT s)(3-2) 0,k为其他整数 频域应满足: T s, T s(3-3) H ( ) 0,其他

H ( ) T s T s T s 图 3-2 理想基带传输特性 此时频带利用率为 2Baud / Hz , 这是在抽样值无失真条件下,所能达到的最高频率利用率。 由于理想的低通滤波器不容易实现, 而且时域波形的拖尾衰减太慢, 因此在得不到严格 定时时,码间干扰就可能较大。在一般情况下,只要满足: 2 i H 2 2 , (3-4) H H ( ) H T s i T s T s T s T s 基带信号就可实现无码间干扰传输。这种滤波器克服了拖尾太慢的问题。 从实际的滤波器的实现来考虑,采用具有升余弦频谱特性 H ( ) 时是适宜的。 1 sin T s ( ) , (1 ) (1 ) 2 T s T s T s H ( ) 1, (1 ) 0 (3-5) T s 0, (1 ) T s 这里 称为滚降系数, 1。 所对应的其冲激响应为: sin t cos( t T s ) h(t ) T s (3-6) t 1 4 2t 2 T s 2 T s 此时频带利用率降为 2 / (1 ) Baud/ Hz ,这同样是在抽样值无失真条件下, 所能达到的最 高频率利用率。换言之,若输入码元速率 R s ' 1/ T s ,则该基带传输系统输出码元会产生码

matlab实验报告

Matlab实验报告 实验二图像处理 一、实验目的 (1)通过应用MA TLAB语言编程实现对图像的处理,进一步熟悉MATLAB软件的编程及应用; (2)通过实验进一步掌握图像处理的基本技术和方法。 二、实验内容及代码 ㈠.应用MA TLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换 首先,在matlab页面中的current directory下打开存放图像的文件夹。 1.显示各种图像 ⑴显示彩色图像: ①代码:>> mousetif=imread('tif.TIF'); >> image(mousetif) 显示截图: ②代码:>> mousetif=imread('tif.TIF'); >> imshow(mousetif) 显示截图:

③代码:mousetif=imread('tif.TIF'); subimage(mousetif) 显示截图: 显示截图:

⑵显示二值图像 ①代码:>> I=imread('单色bmp.bmp'); >> imagesc(I,[0 2]) 显示截图: ②代码:>> I=imread('单色bmp.bmp');

>> imshow(I,2) 显示截图: ③代码:>> I=imread('单色bmp.bmp'); >> subimage(I) 显示截图:

⑶显示灰度图像 ①代码:>> I1=imread('256bmp.bmp'); >> imagesc(I1,[0,256]) 显示截图: 代码:>> I1=imread('256bmp.bmp'); >> colormap(gray); >> subplot(1,2,1); >> imagesc(I1,[0,256]); >> title('灰度级为[0 256]的mouse.bmp图'); >> subplot(1,2,2); >> imagesc(I1,[0,64]); >> colormap(gray); >> title('灰度级为[0 64]的mouse.bmp图'); 显示截图:

相关文档
最新文档