2006第四届希望杯六年级第2试试题及答案

合集下载

六年级希望杯试题及答案

六年级希望杯试题及答案

六年级希望杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 2+3=5B. 3+4=7C. 5+5=10D. 6+6=12答案:C2. 哪个图形是正方形?A. 四边形,四个角都是直角,四条边相等B. 三角形,三条边相等C. 五边形,五条边相等D. 圆形,没有边答案:A3. 下列哪个是最小的质数?A. 1B. 2C. 3D. 4答案:B4. 哪个是正确的分数?A. 3/2B. 2/0C. 4/3D. 1/1答案:A5. 下列哪个是正确的因式分解?A. x^2 - 1 = (x+1)(x-1)B. x^2 - 1 = (x+2)(x-2)C. x^2 - 1 = (x+1)(x+1)D. x^2 - 1 = (x-1)(x-1)答案:A二、填空题(每题2分,共10分)1. 一个数的平方是36,这个数是______。

答案:6或-62. 一个数的倒数是1/4,这个数是______。

答案:43. 一个三角形的底是10厘米,高是5厘米,它的面积是______平方厘米。

答案:254. 一个圆的半径是7厘米,它的周长是______厘米。

答案:44π5. 一个数乘以它自己等于49,这个数是______。

答案:7或-7三、解答题(每题10分,共20分)1. 计算下列表达式的值:(1) (3+2)×2(2) 45÷5+6(3) 9×(3-2)答案:(1) (3+2)×2 = 5×2 = 10(2) 45÷5+6 = 9+6 = 15(3) 9×(3-2) = 9×1 = 92. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。

答案:周长= 2×(长+宽) = 2×(15+10) = 2×25 = 50厘米面积 = 长×宽= 15×10 = 150平方厘米四、应用题(每题15分,共30分)1. 小明有30元钱,他买了3个苹果,每个苹果3元,他还剩多少钱?答案:小明买苹果花费了3×3=9元,所以他还剩下30-9=21元。

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案 (满分120分;时间120分钟) 一、填空题(每题5分;共60分) 1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根。

解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根。

4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________。

(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66。

希望杯第4-13届小学六年级全国数学竞赛初赛复赛题及解答

希望杯第4-13届小学六年级全国数学竞赛初赛复赛题及解答

2006年第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。

小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。

”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。

”小明和小刚共有玻璃弹球________个。

7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。

这次测验共有________道题。

8.一个两位数,加上它的个位数字的9倍,恰好等于100。

这个两位数的各位数字之和的五分之三是________。

9.将一个数A 的小数点向右移动两位,得到数B 。

那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。

11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。

小明的编号是30,他排在第3行第6列,则运动员共有________人。

12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。

则三个面涂漆的小正方体有________块。

13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。

小升初数学专题训练——希望杯六年级考前热身—历年真题精讲(二)-数论 (含答案,全国通用)

小升初数学专题训练——希望杯六年级考前热身—历年真题精讲(二)-数论  (含答案,全国通用)

六年级考前热身—历年真题精讲(二)------数论(1)例题1:(08年·六年级1试第19题)有一群猴子正要分56个桃子,每只猴子可以分到同样个数的桃子。

这时,又窜来4只猴子。

只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子。

则最后每只猴子分到桃子___个。

例题2:(09年·六年级2试第5题)已知A、B两数的最小公倍数是180,最大公约数是30,若A=90,则B= ______。

例题3:(10年·六年级1试第12题)甲、乙、丙三人一起去钓鱼,他们将钓得的鱼放在一个鱼篓中,就在原地躺下休息,结果都睡着了。

甲先醒来,他将鱼篓中的鱼平均分成3份,发现还多一条,就将多的这条鱼扔回河中,拿着其中的一份鱼回家了。

乙随后醒来,他将鱼篓中现有的鱼平均分成3份,发现还多一条,也将多的这条鱼扔回河中,拿着其中的一份鱼回家了。

丙最后醒来,他也将鱼篓中的鱼平均分成3份,这时也多一条鱼。

这三个人至少钓到_____条鱼。

例题4:(11年·六年级1试第7题)自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是______。

例题5:(11年·六年级1试第8题)买72块巧克力共需□67.9□元,则每块巧克力______元。

(□内是一位数字)1、求各位数字都是7,并能被63整除的最小自然数。

2、在8264的左右各添一个数码,使新得到的六位数能被45整除。

3、两个数的最大公约数是6,最小公倍数是144,求这两个数。

4、两个数的最大公约数是18,最小公倍数是180,两个数的差是54,求这两个数的和。

5、小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:□11.4□元(□表示不明数字)。

你能帮助小马虎找出不明数字吗?1. 解:能被63整除,因为63=7×9,所以既能被9整除,又能被7整除。

各位数字都是7,显然能被7整除,所以只需要满足被9整除即可。

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

(完整版)小学希望杯全国数学邀请赛六年级第二试附答案

学习奥数的重要性1. 学习奥数是一种很好的思维训练。

奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。

通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。

2. 学习奥数能提高逻辑思维能力。

奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。

所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。

等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。

如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。

小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。

4. 学习奥数对孩子的意志品质是一种锻炼。

大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。

我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。

第八届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.330.24 5.41.35⨯⨯=。

2.已知111116A116B16CC-=+++++,其中A、B、C都是大于0但互不相同的自然数,则(A+B)÷C=。

3.有一类自然数,从左边第三位开始,每个数位上的数字都是它左边两个数位上数字之和,如21347,则这类自然数中,最大的奇数是。

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案.doc

新希望杯六年级数学试卷及解析答案(满分120分;时间120分钟)一、填空题(每题5分;共60分)1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根.解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根.4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________.(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66.(66可以表示成0到11的和)5、十进制计数法;是逢10进1;如141022410⨯+⨯=;15106103365210⨯+⨯+⨯=;计算机使用的是二进制计数法;是逢2进1;如22101111121217=⨯+⨯+⨯=;2231011001020212112=⨯+⨯+⨯+⨯=;如果一个自然数可以写成m 进制数m 45;也可以写成n 进制数n 54;那么最小的m =_______;n =________.(注:4434421an n a a a a a 个⨯⋅⋅⋅⨯⨯⨯=)解析:4m+5=5n+4;也就是说4(m-1)=5(n-1);如果m-1=5;n-1=4;则m=6;n=5;但此时n进制中不能出现数字5;如果m-1=10;n-1=8;则m=11;n=9;符合题意.6、我国除了用公历纪年外;还采用干支纪年;根据图2中的信息回答:公历1949年按干支纪年法是____________年.解析:干支纪年法60年一循环;1949+60=2009;而2009年是己丑年;所以1949年是己丑年7、盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球;为了保证有5次摸出的结果相同;则至少需要摸球__________次.解析:每次摸出的结果可能是两个球颜色相同;有3种可能;或颜色不同;也有3种可能;共6种可能.最不利情况是每种可能各出现4次;则再摸一次就保证有5次相同;6×4+1=258、根据图3中的信息回答;小狗和小猪同时读出的数是___________.解析:相当于分别从1和1002处以2:5的速度比进行相遇问题;(1002-1)÷7×2+1=2879、图4中的阴影部分的面积是__________平方厘米.( 取3)解析:分别连接两个正方形的"\"的对角线;发现它们平行;所以阴影部分的面积就等于一个扇形的面积;为15×15×3÷4=168.7510、甲、乙两人合买了n 个篮球;每个篮球n 元.付钱时;甲先乙后;10元;10元地轮流付钱;当最后要付的钱不足10元时;轮到乙付.付完全款后;为了使两人所付的钱数同样多;则乙应给甲________元.解析:总共价格为2n 元;最后乙付说明2n 的十位数字为奇数;所以个位为6;乙最后一次付了6元;应该给甲2元11、某代表队共有23人参加第16届广州亚运会;他们按身高从高到低排列;前5位队员的平均身高比前8位队员的平均身高多3厘米;后15位队员的平均身高比后18位队员的平均身高少0.5厘米.那么前8位队员的平均身高比后15位队员的平均身高多_______厘米.解析:前5位队员的平均身高比前8位队员的平均身高多3厘米;也就是说;加入第6~8名后;平均身高减少了3厘米;因此第6~8名的平均身高比前5名的平均身高少3÷3×8=8厘米.第9~23位队员的平均身高比第6~23位队员的平均身高少0.5厘米;也就是说;加入第6~8名后;平均身高增加了0.5厘米;因此第6~8名的平均身高比第9~23名的平均身高多0.5÷3×18=3厘米.因此;前8名的平均身高比第9~23名的平均身高多8-3+3=8厘米12、甲、乙、丙三人同时从A 地出发到B 地;他们的速度的比是12:5:4;其中甲、乙两人步行;丙骑自行车;丙可以带一人同行(速度保持不变).为了使三人在最短的时间内同时到达B 地;则甲、乙两人步行的路程之比是___________.解析:根据对称性;丙先带谁没有区别.设先带甲;返回接乙.设乙步行的路程为x ;丙骑车返回的路程为y ;甲步行的路程为z .乙比骑车从A 地到B 地多用时间(5x -12x );甲比骑车从A 地到B 地多用时间(4z -12z );丙比骑车从A 地到B 地多用时间122y .三人同时到达即这三个相等时;5x -12x =4z -12z =122y ;求得x :y :z =10:7:7;所求路程比为7:10二、解答题(每题15分;共60分)13、一辆汽车从甲地开往乙地;若车速提高%20;可提前25分钟到达;若以原速行驶100千米;再将车速提高%25;可提前10分钟到达;求甲乙两地的距离.解析:车速提高20%;也就是变成原来的56;则时间变成原来的65;减少25分钟;原定时间为25×6=150分钟;车速提高25%;也就是变成原来的45;则时间变成原来的54;减少10分钟;则这段路程的原定时间为10÷5=50分钟.因此;原速行驶100千米需要150-50=100分钟;距离为150÷100×100=150千米14、如图5;在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体;容器内盛有m 升水时;水面恰好经过圆柱体的上底面.如果将容器倒置;圆柱体有8厘米露出水面.已知圆柱体的底面积是正方体底面积的81;求实心圆柱体的体积. 解析:两次的空白部分体积相等;而第二次的空白部分的横截面积为第一次的87811=-;所以第一次的空白部分的高度为第二次的87;即7厘米.正方体的底面积为20×20=400平方厘米;所以圆柱体的底面积为400÷8=50平方厘米;高度为20-7=13厘米;体积为50×13=650立方厘米15、有8个足球队进行循环赛;胜队得1分;负队得0分;平局的两队各得0.5分.比赛结束后;将各队的得分按从高到低排名后发现:各队得分互不相同;且第二名的得分与最后四名所得的总分一样多.求这次比赛中;取得第二名的队的得分.解析:全胜的队得7分;而最后四队之间赛6场至少共得6分;所以第二名的队得分至少为6分.如果第一名全胜;则第二名只输给第一名;得6分;如果第二名得6.5分;则第二名6胜1负;第一名最好也只能是6胜1负;与题目中得分互不相同不符.所以;第二名得分为6分16、将两个不同的自然数中较大的数换成他们的差;称为一次操作;如此继续下去;直到这两个数相同为止.如对20和26进行这样的操作;过程如下:(20;26)→(20;6)→(14;6)→(8;6)→(2;6)→(2;4)→(2;2)(1)对45和80进行上述操作.(2)若对两个四位数进行上述操作;最后得到的相同数是17.求这两个四位数的和的最大值.解析:(45,80)→(45,35)→(10,35)→(10,25)→(10,15)→(10,5)→(5,5).这就是用辗转相除法求最大公约数的运算;所以两个四位数的最大公约数为17;9999÷17=588……3;所以最大的四位数是9999-3=9996;第二大的四位数是9996-17=9979;和为19975(祝各位同学学习进步!)。

2006第4届希望杯四年级第2试试题及答案

2006第4届希望杯四年级第2试试题及答案

2006第4届希望杯四年级第2试试题及答案第四届小学“希望杯”全国数学邀请赛四年级第2试一、填空题(每小题4分,共60分。

)1.【解析】:原式=25×4×(8÷14+9÷21)=100×(4/7+3/7)=1002.如果那么【解析】:△×△=(2006+4)÷5-2=400,所以△=203.如果数A减去数B的3倍,差是51;数A加上数B的2倍,和是111,那么数A=,数B=。

【解析】:依题意A-3B=51,A+2B=111,两式相减得5B=60,所以B=12,A=874.如图1,圆A表示1到50这50个自然数中能被3整除的数,圆B表示这50个数中能被5整除的数,则阴影部分表示的数是。

【解析】:阴影部分是A和B共有的,即1到50这50个自然数中能被3×5=15整除的数,即15,30,455.有40个连续的自然数,其中最大的数是最小的数的4倍,那么最大的数与最小的数之和是。

【解析】:最大的数是最小的数的4倍,那么两数之差就是最小数的3倍。

最大数与最小数的差是39,所以最小数是39÷3=13,最大数是13×4=52,两数之和是656.牧羊人赶一群羊过10条河,每过一条河时都有一半的羊掉入河中,每次他都捞上3只,最后清查还剩6只。

这群羊在过河前共有只。

【解析】:用还原法,过第10条河之前,有(6-3)×2=6只,因此他过每一条河之前都有6只羊,最初也共有6只。

7.一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。

但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到个桃子。

【解析】:56的因数有1,2,4,7,8,14,28,56,其中只有4和8相差4,所以最后有猴子8只,每只猴子分到56÷8=7个桃子。

8.三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条。

六年级希望杯历届试题

六年级希望杯历届试题

六年级希望杯历届试题一、计算类。

1. 计算:(1 + (1)/(2))×(1 - (1)/(2))×(1+(1)/(3))×(1 - (1)/(3))×·s×(1+(1)/(99))×(1 - (1)/(99))- 解析:- 先把每个括号内的式子计算出来:- (1+(1)/(2))=(3)/(2),(1 - (1)/(2))=(1)/(2);(1+(1)/(3))=(4)/(3),(1 -(1)/(3))=(2)/(3)等。

- 原式可转化为(3)/(2)×(1)/(2)×(4)/(3)×(2)/(3)×·s×(100)/(99)×(98)/(99)。

- 通过观察可以发现,相邻两项可以约分,如(3)/(2)和(2)/(3),(4)/(3)和(3)/(4)等。

- 最后剩下(1)/(2)×(100)/(99)=(50)/(99)。

2. 计算:2019×2019 - 2018×2020- 解析:- 将2018×2020变形为(2019 - 1)×(2019+1)。

- 根据平方差公式a^2 - b^2=(a + b)(a - b),这里a = 2019,b = 1。

- 则2019×2019-(2019 - 1)×(2019+1)=2019^2-(2019^2-1)=1。

3. 计算:(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(99)-(1)/(100))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四届(2006)小学“希望杯”六年级第2试试题
一、填空题。

(每小题4分,共60分。

)
1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=________。

2.一个数的比3小,则这个数是________。

3.若a=,b=,c=,则a,b,c中最大的是________,最小的是________。

4.牧羊人赶一群羊过10条河,每过一条河时都有三分之一的羊掉人河中,每次他都捞上3只,最后清查还剩9只。

这群羊在过河前共有_____ ___只。

5.如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A与B的和是________。

6.磁悬浮列车的能耗很低。

它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________倍。

7.“△”是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如5△7=5×c+7×d。

如果1△2=5,2△3=8,那么6△1OOO的计算结果是________。

8.一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重________千克。

9.如果a,b均为质数,且3d+7b=41,则a+b=________。

10.如图,三个图形的周长相等,则a∶b∶c=________。

11.如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮
着一块棱长为5厘米的正方体术块,木块浮出水面的高度是2厘米。

若将木块从容器中取出,水面将下降________厘米。

12.如图,正方形ABCD和正方形ECGF并排放置,BF与EC相交于点H,已知AB=6厘米,则阴影部分的面积是________平方厘米。

13.圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米。

(结果用π表示)
14.箱子里装有若干个相同数量的黑球和白球,现往箱子里再放入14个球(只有黑球和白球),这时黑球数量占球的总数的,那么现在箱子里有________个白球。

15.体育课上,60名学生面向老师站成一行,按老师口令,从左到右报数:1,2,3,…,60,然后,老师让所报的数是4的倍数的同学向
后转,接着又让
所报的数是5的倍数的同学向后转,最后让所报的数是6的倍数的同学向后转,现在面向老师的学生有________人。

二、解答题。

(每小题l0分,共40分。

)要求:写出推算过程。

16.国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用。

核检码可以根据前9个数字按照一定的顺序算得。

如:某书的书号是ISBN
7-107-17543-2,它的核检码的计算顺序是:
①7×10+1×9+0X
8+7×7+1×6+7×5+5×4+4×3+3×2=207;
②207÷11=18……9;.
③11-9=2。

这里的2就是该书号的核检码。

依照上面的顺序,求书号ISBN-7-303-07618-□的核检码。

17.甲乙两车分别从A、B两地相向而行,两车在距A点10千米处相遇后,各自继续以原速前进,到达对方出发点后又立即返回,从B地返回的甲车在驶过A、B中点3千米处再次与从A地返回的乙车相遇,若甲每小时行驶60千米,则乙每小时行驶多少千米?
18.在如图S所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。

请问这样的填法存在吗?如存在,请给出一种填法;如不存在,请说明理由。

19.40名学生参加义务植树活动,任务是:挖树坑,运树苗。

这40名学生可分为甲、乙、丙三类,每类学生的劳动效率如下表所示。

如果他们的任务是:挖树坑30个,运树苗不限,那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多?
第四届(2006)小学“希望杯”六年级第2试题
参考答案及评分标准
一、填空题。

每题4分。

(1)16
(2)3又7分之6
(3)c;a
(4)9
(5)9
(6)3
(7)2006
(8)2.4
(9)7
10)20:25:24
(11)1.5
(12)18
(13)300/π或360/π
(14)15
(15)39
二、解答题。

每题10分。

16、2
17、48千米
18、不存在这样的填法。

理由略
19、当甲乙丙分别是2人、15人、10人时,可以完成,最多为260棵。

相关文档
最新文档