含参的二次函数最值
二次函数求最值的方法

二次函数求最值的方法一提及函数就会让很多人望而生畏,不过也有很多人热衷于探索函数的本质。
函数的概念并不难,尤其是曲线函数。
在曲线函数中,二次函数是一种重要和实际的分析方法。
这篇文章将为你普及,如何利用二次函数来求取最大值和最小值。
首先,我们必须明白函数解析式。
在数学中,函数被定义为:给定一组输入值,每个输入值都有一个对应的输出值,而这种输入和输出定义关系就称为函数。
我们有一个函数 f (x),其中每个值 x应一个值 f (x)。
函数 f (x)阶,决定了函数的特征,其中,二次函数的解析式为:f(x)=ax2+bx+c 。
参数 a、b c为实数,并且 a≠0 。
通常情况下,求函数 f (x)最大值和最小值,只需要分析函数的解析式,就可以计算出最大值与最小值的值。
接下来,我们就来分析一下求二次函数最值的方法:二次函数最大值及最小值解法:(1)首先,求二次函数的极值点,即满足:f′(x)=0则 x= -b/2a(2)其次,求出在 x= -b/2a的函数值,即:f (-b/2a)= (a(-b/2a)2+b(-b/2a)+c)=-b2/4a+c(3)最后,比较 -b2/4a+c f (x)其它 x 上的值,若 -b2/4a+c 于其它 x 上函数值,则 x = -b/2a,函数 f (x)值-b2/4a+c 为最大值;若 -b2/4a+c于其它 x 上函数值,则其它 x 上函数值取最大值。
以上就是求解二次函数最值的方法,总结起来,我们需要做以下几件事:(1)求函数 f′(x)=0解;(2)求函数 f (-b/2a)值;(3)求最大值或最小值时,取最大或最小值。
在实际应用中,我们可以利用上述步骤求解一个二次函数的最值,该方法简单实用,也可以用来解决复杂函数的求解。
从上面可以看出,求解和研究函数可以帮助我们更好地理解数学,进而可以更好地运用它们去求解实际应用的问题。
二次函数求最值的方法正是这种应用的一种实例,不仅可以让我们更好地理解曲线函数,也可以让我们更好地应用它们来求解实际的问题。
二次函数相关的定义域与最值问题

二次函数相关的定义域与最值问题一.定义域为R的含参不等式题型例1.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为( )A.k<0或k>4 B.0≤k<4C.0<k<4 D.k≥4或k≤0变式:函数y=√ax²+ax+2的定义域为R,则实数a的取值范围为练习:1.函数f(x)=1ax2+4ax+3的定义域为R,求实数a的取值范围。
2.不等式ax²-2ax+3≥0的解集为R,求实数a的取值范围。
二.求二次函数在某一闭区间上的最值(定轴定区间型)例2.求函数y=x²-2x-3在x∈[-2,2]上的最大值与最小值。
练习:(1)求函数y=x²-6x+1在[0,4]的最值。
(2)求函数y=-2x²-4x+7在下列范围内的最值①x∈[-3,0]② x∈[0,4]三.含参二次函数在某一闭区间上的最值(动轴定区间型)二次函数随着参数的变化而变化,即其图像是运动的,但定义域区间是固定的,我们称这种情况为“动二次函数在定区间上的最值”例3.求函数f(x)=x²-2a x+3在x∈[0,4]上的最值变式:已知函数f(x)=-x²+2a x+1-a,在x∈[0,1]上的最大值为2,求实数a的值。
练习:求函数f(x)=-2x²+2ax+1在x∈[-1,1]上的最大值四.二次函数在动闭区间上的最值(定轴动区间型)二次函数是确定的,但它的定义域区间是随着参数的变化而变化的,我们称这种情况是“定函数在动区间上的最值”例4.求函数f(x)=x²-2x-5在x∈[t,t+1]上的最小值(其中t为常数)练习:求函数f(x)=x²-2x+3在x∈[a,a+3]上的最值课后练习1.函数f(x)的图象如图,则其最大值、最小值分别为( )A.f32,f −32B.f(0),f32C.f −32,f(0) D.f(0),f(3)2.若函数f(x)=2x+6,x∈[1,2],x+7,x∈[−1,1),则f(x)的最大值为,最小值为.3.若不等式a≤x2-4x对任意x∈[0,4]恒成立,则a的取值范围为.4.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f13=1.(1)求f(1)的值.(2)若存在实数m,使得f(m)=2,求m的值.(3)若f(x-2)>2,求x的取值范围.。
二次函数含参问题

二次函数含参问题 (1)姓名________ 班级________ 学号____________1.“动轴定区间”型的二次函数最值例 函数2()23f x x ax =-+在[0,4]x ∈上的最值。
例 函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,求实数a 的值2“动区间定轴”型的二次函数最值例 求函数2()23f x x x =-+在x ∈[a,a+2]上的最值。
3.“动轴动区间”型的二次函数最值已知函数22()96106f x x ax a a =-+--在1[,]3b -上恒大于或等于0,其中实数[3,)a ∈+∞,求实数b 的范围.巩固习题1.已知函数()222f x x x =++,若[]R a a a x ∈+∈,2,,求函数的最小值,并作出最小值的函数图象。
2.已知函数2()3f x x =-+,若()26f x kx ≤-+在区间[]2,1-上恒成立,求实数k 的取值范围。
3.已知k 为非零实数,求二次函数,122++=kx kx y (,2]x ∈-∞的最小值。
4.已知3a ≤,若函数()221f x x ax =-+在[]3,1上的最大值为()a M ,最小值为()a m ,又已知函数()()()a m a M a g -=,求()a g 的表达式。
5. 已知函数()12-+=ax ax x f ,若()0<x f 恒成立,求实数a 的取值范围。
6. 当20≤≤x 时,函数()()3142-++=x a ax x f 在2=x 时,取得最大值,求实数a 的取值范围。
7. 已知函数322+-=x x y ,在m x ≤≤0时有最大值3,最小值2,求实数m 的取值范围。
8. 已知函数()122+-=px x x f ,当0≥x 时,有()0≥x f 恒成立,求实数p 的取值范围。
9. 方程0122=++x ax 至少的一个负数根,求实数a 的取值范围。
二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总含参的二次函数在高中阶段考试中经常出现,因为参数的存在使得函数形成一种动态,随着参数的变化,函数也会不同。
这就使得本来简单的二次函数变得复杂起来。
例如,考虑求解$f(x)=x-2ax$在$[2,4]$上的最大值和最小值。
由于参数的存在,这个函数是动态的。
为了解决这个问题,我们需要考虑动轴定区间问题,即对称轴随着参数的变化而变化,但是在给定区间上问最大值和最小值。
对于这个问题,需要分类讨论。
在$[2,4]$这个区间上,可能出现对称轴不在这个区间里面的情况,对称轴就在区间里面的情况,或者对称轴在区间右侧的情况。
因此,我们需要分别考虑这些情况。
具体来说,我们需要找到在整个函数的区间上,哪个数离对称轴最远。
这个分界线就应该在$2$和$4$中间的位置上,即$3$。
当对称轴在$x=3$这条线左边的时候,对称轴离$2$就比较近,离$4$就比较远;对称轴在右边的时候,离$2$就比较近,离$4$就比较远。
因此,这个函数的最大值可以表示为:f_{\max}(x)=\begin{cases}f(4)=16-8a& (a\leq 3)\\f(2)=4-4a&(a>3)\end{cases}$$当$a=3$时,放在哪边都可以。
代入上面的式子,得到$f_{\max}(x)=-8$。
因此,最大值为$-8$。
接下来,我们来讨论含参的二次函数的最大值和最小值问题。
这类问题的重点在于能否清晰地做分类讨论,得到一个分段函数的解析式。
我们可以按照对称轴的位置进行分类讨论。
首先,对于对称轴在区间左侧,且$a\leq 2$的情况,函数在$x=2$处取得最小值,即$f_{min}(x)=f(2)=4-4a$。
其次,对于对称轴在区间中间,即$24$的情况,函数在$x=4$处取得最小值,即$f_{min}(x)=f(4)=16-8a$。
另外,还有一类问题叫做定轴动区间的问题。
对于这类问题,我们同样需要进行分类讨论,只不过区间在变化。
含参二次函数的最值问题

5a x
(2)当1 a 5时
f (x)min =f(1)=-4 f (x)max =f(-3)=12
(3)当a 5时
f (x)min=f(1)=-4 f (x)max =f(a)= a2-2a-3
小结:
本节课讨论了两类含参数的二次函数最 值问题:
(1)轴动区间定 (2)轴定区间动 核心思想仍然是判断对称轴与区间的 相对位置,从中体会到数形结合思想、分类 讨论思想。
❖第2类:函数对称轴固定,动区间 例2:
求函数f (x) x2 2x 5在区间t,t 2上的最大值
对称轴:x=1
(1)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递 增当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
(2)t<1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
若0 a 2,则函数f(x)的最小值为f (a) a2 1
若 a 2 ,则函数f(x)的最小值为f(2)=3—4a.
所以,
1, (a 0) f (x)min a2 1, (0 a 2)
3 4a, (a 2)
变式作业上第9题
已知函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值 23:求二次函数f(x)=x2-2x-3 在[-3,a] (a>-3)上的最值
y
a -3 o 1
(1)当 3 a 1时
f (x)min=f(a)=a2-2a-3 x f (x)max =f(-3)=12
f(x)=x2-2x-3,x∈[-3,a] (a>-3)
《二次函数的最值问题》教案

二次函数的最值问题一、内容与内容解析1.内容含参二次函数在m x n ≤≤内的最值问题.2.内容解析本节课在讨论了影响0a >时二次函数在m x n ≤≤内最值的因素后对0a >时含参二次函数在m x n ≤≤内最值问题进行探究.主要的研究方法是从函数图像入手,通过几何画板动态演示,确定分类标准,进行分类讨论,进而对分类标准进行优化,得到解决此类问题的一般方法,并运用此方法解决相关的最值问题.基于以上分析,确定本节课的教学重点是:从函数图像入手,运用分类讨论思想求含参二次函数在m x n ≤≤内最值.二、目标和目标解析1.目标(1)通过复习二次函数图像的特征和性质,能够借助二次函数的图像研究二次函数的最值.(2)通过对二次函数在m x n ≤≤内最值问题初探、对含参二次函数在m x n ≤≤内最值问题的探究,经历直观感知、抽象概括、运算求解、反思与构建等思维过程,体会函数思想,分类讨论等数学思想方法,发展数学感知、数学表征、抽象概括、运算能力等.2.目标解析达成目标(1)的标志是:学生会借助二次函数的图像研究二次函数在m x n ≤≤内的最值,并能由此得到二次函数在m x n ≤≤内最值的影响因素,进一步体会函数思想.达成目标(2)的标志是:借助二次函数的图像求解含参二次函数在m x n ≤≤内最值,进一步体会函数思想和分类讨论的思想.三、教学问题诊断分析学生已学习了二次函数的概念、图像和性质,已经具备了一定的识图能力、分析图形特征的能力、数学说理能力,这为本节课的学习奠定了基础.但对于含参二次函数在m x n ≤≤内的图像及最值问题,由于其抽象程度较高,学生可能会在为什么要进行分类讨论以及如何确定分类标准这两个问题上产生一定的困难.基于以上分析,本节课的教学难点是:如何确定分类标准.四、教学过程设计引言:(展现生活实例,体现研究二次函数在m x n ≤≤内最值的必要性)本节课,我们将结合二次函数的相关知识深入研究二次函数的最值问题.1.复习导入,自主发现问题1如图,(5,),(8,),(1,),( 3.9,)A B C D A y B y C y D y --在二次函数2134y x x =--的图像上,请比较:(1)B y A y ;(2) D y C y ;(3)D y B y ;(4)C y A y .问题2根据问题1的结论填空:(1)二次函数2134y x x =--(58x ≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.(2)二次函数2134y x x =-- ( 3.91x -≤≤-),当x =时,y 取到最大值;当x =时,y 取到最小值.(3)二次函数2134y x x =--( 3.98x -≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.(4)二次函数2134y x x =--(15x -≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.师生活动: 教师提出问题,学生尝试用已有知识解决这些问题,并交流问题中蕴含的函数知识和对这些知识的理解.追问1:这些二次函数的图像是完整的抛物线吗?追问2:为什么有的(二次函数的)最值能在顶点处取到,有的却不能呢?追问3:通过对上面问题的研究,你认为二次函数在 内的最值的取得与什么有关?师生活动:通过对前面问题的研究,自主发现影响二次函数在 内的最值的因素:对称轴和m x n ≤≤的相对位置.若对称轴不在m x n ≤≤内时,最值在端点处取得;对称轴在m x n ≤≤内时,最值在顶点和端点处分别取得.遇到这类问题时,我们通常要结合函数图象进行分析.设计意图:引导学生通过观察函数图像,直观地发现对称轴和 的相对位置影响了二次函数的最值.为下一步解决0a >时含参二次函数在 内的最值问题做铺垫. 2.问题剖析,合作探究探究1:求二次函数2134y x tx =--(21x -≤≤)的最小值. 师生活动:教师引导学生先观察函数解析式,分析参数t 的变化对二次函数图像的影响,然后借助计算机软件,直观感受对称轴和m x n ≤≤的相对位置如何影响二次函数的最小值.最后全班交流,确定分类标准,学生独立补全解题过程.追问1:观察本题中的函数解析式与前面 有什么区别? m x n ≤≤2134y x x =--m x n ≤≤m x n ≤≤m x n ≤≤追问2:随着参数t 的变化,二次函数2134y x tx =--图象的开口方向和开口大小会改变吗?对称轴呢?追问3:二次函数2134y x tx =--(21x -≤≤)的最小值是唯一确定的吗? 师生活动:关注学生是否明确此处为什么要进行分类讨论,体会分类讨论的必要性. 追问4:如何确定分类标准?如何用数学符号表达这种关系呢?师生活动: 师生共同讨论写出分类标准.教师规范格式以后要求学生将过程补齐. 设计意图:探究0a >时含参二次函数在 内的最小值问题,让学生体会解决这一类问题的基本方法.培养学生直观感知、抽象概括、数学表征能力,激发自主学习的积极性和探究意识.引导观察,发现分类依据,培养探究意识.探究2:已知关于x 的二次函数y 1=x 2+bx +c (实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为x =1,求此二次函数的表达式;(2)若b 2﹣c =0,当b ﹣3≤x ≤b 时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数y 2=2x 2+x +m ,若在(1)的条件下,当0≤x ≤1时,总有y 2≥y 1,求实数m 的最小值.师生活动:要求学生独立解决,写出分析过程,小组内交流讨论,最后全班汇报交流.对于学生展示的分类方法,教师适当引导和纠正,让学生理解如何进行分类讨论(不重复,不遗漏),并对分类方法进行优化.最后共同归纳出求含参二次函数在m x n ≤≤内最值的一般方法:一般先确定对称轴与m x n ≤≤的相对位置关系,分别画出示意图,确定分类标准,再进行分类讨论.设计意图:在探究1的基础上进一步探究 时含参二次函数在 内的最大值问题,重点体会解题过程中分类标准的确定.师生活动:回顾探究1和探究2的过程,体会它们的相同与不同之处.追问1:为什么有时候分3类,有时候分2类就可以了?什么时候分2类,什么时候分3类呢?追问2:你能直接判断它们分别分几类进行讨论吗:师生活动:通过类比探究1和探究2归纳:求二次函数在m x n ≤≤上的最值不仅min 2min min 2min 10242,12,2211,2321111,1,2422(1)13()2111()42x t t t x y t t t x t y t t t x y t t t y t t t t =--=-=---==---==--⎧⎪--⎪⎪=---⎨⎪⎪--⎪⎩解:>,对称轴:(1)当2<即<时:(2)当2≤2≤即1≤≤时:,(3)当2>即>-时:<综上所述:1≤≤>-m x n≤≤m x n ≤≤0a >要看对称轴与m x n ≤≤的相对位置,还要看开口方向.开口向下时,可类比开口向上的数学模型进行讨论.设计意图:讨论0a >时含参二次函数在 内最小值的分类问题,体会开口方向对函数最值的影响.3.归纳总结师生共同回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课我们研究了哪些问题?(2)我们是如何分析、解决这些问题的?(3)在研究过程中你遇到的问题是什么?怎么解决的?设计意图:通过小结,理清本节课的研究内容和研究方法.让学生体会提出问题、分析问题、解决问题的方法.4.课外作业(1) 必做题:①求二次函数223y x ax =--+(45x -≤≤)的最值.②已知二次函数221y ax ax =++(12x -≤≤)有最大值4,求实数a 的值.(2) 选做题:求二次函数223y x x =-+(2t x t ≤≤+)上的最值.(3)兴趣作业:通过本节课的学习,你能自己提出一个二次函数最值相关的问题并进行解答吗?试试看,和同伴交流你的想法.设计意图:巩固本节课所学内容,利用前面归纳的结论来解决二次函数最值的相关问题,加深对含参二次函数在 内的最值问题的认识.体会函数思想.提升学生分析问题,解决问题的能力.m x n ≤≤m x n≤≤。
二次函数方程不等式的含参问题

二次含参模块已知单调区间求参问题............................................................................................................. - 2 - 含参二次函数在闭区间内最值问题........................................................................................... - 3 - 解含参一元二次不等式........................................................................................................... - 12 - 一元二次不等式恒成立问题................................................................................................... - 17 - 二次方程根的分布..................................................................................................................... - 27 -已知单调区间求参问题【例1】,对称轴为,判断,,的大小?【答案】【例2】,在上单调递增,上单调递减,则下列说法正确的是不确定【答案】B.【例3】在上单调,求的范围?【答案】∞,,.含参二次函数在闭区间内最值问题一、含参求最值........................................................................................................................... - 4 -(一)轴定区间定............................................................................................................... - 4 - (二)轴动区间定............................................................................................................... - 5 - (三)轴定区间动............................................................................................................... - 6 - (四)相关练习................................................................................................................... - 6 - 二、已知最值求参....................................................................................................................... - 8 -(一)已知最值求参——先斩后奏................................................................................... - 8 - (二)已知值域求参......................................................................................................... - 10 -一、含参求最值设()()002>=++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:⎪⎪⎩⎪⎪⎨⎧+>-+≤-=22)(22)()(maxn m a b m f n m a b n f x f()⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤-≤-<-=n a b n f n a b m a b f m abm f x f 2)(2)2(2)(min;(一)轴定区间定【例1】函数()()2220f x ax ax b a =-++≠在[]2,3上有最大值5和最小值2,求,a b 的值。
求解含参二次函数最值问题的步骤

解题宝典∴椭圆离心率:e =c a=,∴正确答案为选项C .该题是与弦中点有关的圆锥曲线离心率问题,需首先设出交点A 和B 的坐标,将其代入椭圆的方程中并作差,求得直线的斜率的表达式,便可根据中点的坐标建立关于a 、b 的等式,求得椭圆的离心率.运用点差法解答中点弦问题,关键是将两个交点的坐标代入圆锥曲线的方程中,并作差,据此建立关系式.三、弦长问题直线与圆锥曲线的弦长问题比较常见,通常要利用弦长公式求解.若斜率为k (k ≠0)的直线l 与圆锥曲线的交点为A ()x 1,y 1,B (x 2,y 2),则弦AB 的长|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=|y 1-y 2|=(y 1+y 2)2-4y 1y 2,这就是弦长公式.运用弦长公式求弦长,通常要将直线与圆锥曲线的方程联立,构造一元二次方程,利用韦达定理来求得x 1+x 2和y 1+y 2.例3.已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的离心率为,焦距为22.一条斜率为k 的直线l 与椭圆M 交于A 、B 两点.(1)求椭圆M 的方程;(2)若k =1,试求|AB |的最大值.解:(1)椭圆M 的方程为:x 23+y 2=1(过程略);(2)设直线l 的方程为y =x +m ,A ()x 1,y 1,B (x 2,y 2),由ìíîïïy =x +m ,x 23+y 2=1,消去y 可得4x 2+6mx +3m 2-3=0,则x 1+x 2=-3m 2,x 1x 2=3m 2-34,可得||AB =()x 2-x 12+()y 2-y 122()x 2-x 12=2[]()x 2-x 12-4x 1x 2=.当m =0,即直线l 过原点时,||AB 最大,故||AB 的最大值为6.求直线l 被椭圆所截的弦长的最值,关键要求||AB 的表达式.联立直线与椭圆的方程,消去y 得到一元二次方程后,便可运用弦长公式求得||AB 的表达式,根据二次函数的性质即可求得|AB |的最大值.综上可见,无论是求直线的斜率、解答中点弦问题,还是解答弦长问题,都需重点研究直线与圆锥曲线的方程,可将两个方程联立,构造一元二次方程,也可将交点的坐标代入圆锥曲线的方程,并将两个方程作差.(作者单位:江苏省徐州市铜山区夹河中学)含参二次函数最值问题比较常见,通常要求求含参二次函数在给定区间或实数集R 上的最值.由于问题中涉及参数,所以解答此类问题通常需要利用分类讨论思想来对参数进行分类讨论,进而求得函数的最值.对于二次函数f ()x =ax 2+bx +c (x ∈R ,a ≠0),当a >0时,在对称轴x =-b2a左侧的函数单调递减,在对称轴x =-b2a 右侧的函数单调递增;当a <0时,在对称轴x =-b2a左侧的函数单调递增,在对称轴x =-b 2a右侧的函数单调递减.根据函数的定义域和单调性即可求得函数的最值.而对于含参二次函数在给定区间上的最值问题,需要讨论函数图象的对称轴与定义域的位置关系,以便利用二次函数的单调性求函数的最值.求二次函数f ()x =ax 2+bx +c (a ≠0)在区间[]m ,n 上的最值的步骤如下:1.根据函数的解析式求得函数图象的对称轴x =-b 2a,并判断a 的符号;2.判断-b2a 与m 、n 之间的大小关系,即确定函数的对称轴x =-b2a 在[]m ,n 内、在[]m ,n 左侧、在[]m ,n 右侧;3.画出相应的函数图象,结合图象寻找取得最值的点,并求得最值.(1)若a >0,则函数图象的开口向上,(ⅰ)当-b2a ∈[]m ,n 时,函数图象的对称轴在所给李令军41解题宝典区间内,由二次函数的性质可知f()x的最小值在对称轴处取得,其值是fæèöø-b2a=4ac-b24a,f()x的最大值在离对称轴较远的端点处取得,即f()m、f()n中的较大者,如上图;(ⅱ)当-b2a<m时,对称轴在给定区间的左侧,f()x在区间[]m,n上单调递增,此时f()x的最小值是f()m,最大值是f()n;(ⅲ)当n<-b2a时,对称轴在给定区间的右侧,f()x在区间[]m,n上单调递减,此时f()x的最小值是f()n,最大值是f()m.(1)若a<0,则函数图象的开口向下,(ⅰ)当-b2a∈[]m,n时,函数图象的对称轴在所给区间内,由二次函数的性质可知f()x的最大值在对称轴处取得,其值是fæèöø-b2a=4ac-b24a,f()x的最小值在离对称轴较远的端点处取得,即f()m、f()n中的较小者;(ⅱ)当-b2a<m时,对称轴在给定区间的左侧,f()x在区间[]m,n上单调递减,此时f()x的最大值是f()m,最小值是f()n;(ⅲ)当n<-b2a时,对称轴在给定区间的右侧,f()x在区间[]m,n上单调递增,此时f()x的最大值是f()n,最小值是f()m.下面举例说明.例1.求f()x=ax2-2x在0≤x≤1上的最小值.解:(1)当a=0时,f()x=-2x为一次函数,在[]0,1上单调递减,所以f()x min=f()1=-2,即函数的最小值为-2.(2)当a>0时,函数f()x=ax2-2x图象的开口向上,且对称轴为x=1a>0.①当1a≤1,即a≥1时,函数f()x=ax2-2x图象的对称轴x=1a在[]0,1内,由函数的图象可知f()x在éëùû0,1a上单调递减,在éëùû1a,1上单调递增,所以f()x min=fæèöø1a=-1a,即函数的最小值为-1a.②当1a>1,即0<a<1时,函数f()x=ax2-2x图象的对称轴在[]0,1的右侧,所以f()x在[]0,1上单调递减,所以f()x min=f()1=a-2,即函数的最小值为a-2.(3)当a<0时,f()x=ax2-2x图象的开口向下,且对称轴x=1a<0,在y轴的左侧,所以f()x=ax2-2x在[]0,1上单调递减,所以f()x min=f()1=a-2,即函数的最小值为a-2.综上所述,f()x min=ìíîïïa-2,a<1,-1a,a≥1.本题中a为参数,需利用分类讨论思想,分a=0、a>0、a<0三种情况进行讨论.尤其要注意a=0的情形,此时函数为一次函数,需利用一次函数的单调性来求最值.当a>0、a<0时,函数为二次函数,再利用分类讨论思想讨论对称轴与定义域[]0,1的位置关系,结合二次函数的图象,即可判断出函数的单调性,根据函数的单调性便能求得函数的最值.例2.已知函数f()x=ax2+2ax+1在区间[]-1,2上有最大值4,求实数a的值.解:f()x=ax2+2ax+1=a()x+12+1-a.可知其图象的对称轴为x=-1,在[]-1,2的左侧,(1)当a=0时,f()x=1,函数无最大值,所以a=0不符合题意,舍去;(2)当a>0时,函数f()x图象的开口向上,在区间[]-1,2上单调递增,所以函数的最大值为f()2=8a+1=4,解得a=38;(3)当a<0时,函数f()x图象的开口向下,在区间[]-1,2上单调递减,所以函数f()x最大值为f()-1=1-a=4,解得a=-3.综上可知,a的值为38或-3.本题中函数的对称轴和定义域固定,而函数的开口方向不确定,所以只需讨论a>0,a<0时函数的单调性,即可解题.若函数的定义域中含有参数,则需根据参数的取值确定定义域端点值的大小,进而将其与函数图象的对称轴进行比较,以确定定义域与函数图象的对称轴的位置关系,判断函数的单调性.可见,解答含参二次函数最值问题,往往要灵活运用分类讨论思想和数形结合思想,这样能有效地提升解题的效率.在运用分类讨论思想解题时,要注意两点:一是对二次项的系数进行讨论;二是要对对称轴与定义域的位置关系进行讨论.而结合二次函数的图象来分析函数的对称轴与所给区间之间的位置关系,往往能达到事半功倍的效果.(作者单位:扬州大学附属中学)42。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学后反思:
1:本节课探讨了哪几种类型的问题? 2:对你来说,本节课的难点是什么? 如何去克服? 3:你是否体会到“数学思想”在解题中 发 挥的巨大作用? 4:你掌握这类问题的答题格式了吗?
我们每天在忙碌中收获着知识, 享受着快乐,丰富着人生。 高中生活是紧张的,但也是美好 的,是值得一生回忆的。
ymin f (t 2) t 2t 5
2
x (2)
综上所述:
(1) t≤0时, ymin t 2t 5
2
(2)t>0时, ymin t 2t 5
2
变式:
求函数f ( x) x 2 x 5在区间t , t 2上的最大值
2
解:对称轴:x=1 (1)t≥1时,函数f(x)在区间 [t,t+2]上单调递减, 当x=t时,y有最大值, y mat;1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
y
x
(1) y
x (2)
(3)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递增 当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
y
x
(3)
综上所述:
(1) t ≤ -1时, y max = -t2-2t+5 (2) -1<t<1时, y max = 6 (3) t ≥1时, y max = -t2+2t+5
4、注重数学思想和方法 引导学生能够利用数学思想和方法解决实际问题,培 养学生善于总结规律、运用规律的能力 5、充分发挥学生的主体作用 调动学生的学习积极性,促进多边活动, 使学生成为课堂的主人。
6、养成思维严谨,运算准确,答题规范的好习惯。加强定
时训练。
含参的二次函数的最值
教师心语:人只要有一种信念,有所追求, 什么艰苦都能忍受,什么环境也能适应
(1) 当-a≤-2 即 a≥2时
f(x)在区间[-2,2]上单调递增 当x=-2时,y有最小值 ymin f (2) 1 4a
0 y
x
(2) 当-2<-a< 2时,即-2<a< 2 函数的最小值在顶点取得 ∴当x=-a时,y有最小值
y
即:ymin f (a) 3 a
求二次函数在闭区间上最值的 方法:一看开口方向;二看对称轴 与在区间相对位置。若区间端点或 解析式含有字母参数,应进行分类 讨论(按对称轴与区间(或区间的 中点)的位置分类)。
当堂达标
1.求函数y x (2a 1) x 1在 1,上的最小值。 2
2
2.求函数y 2 x 2 3x 5在k , k 2上的最小值
本节课设计指导思想:
含参的二次函数最值求法,对高一学生来讲无疑是一个巨大的挑战。 如何把握重点,突破难点,顺利完成本节课的教学任务,达到预期的 目的,在本节课设计中,我考虑到以下几个方面:
1、激发学生学习热情:
通过设置典型画面和教师心语激发激发学生学习热情,引导和帮助学 生树立远大的理想和为实现理想而艰苦奋斗的信念,为更好的完成本 节课的任务提供了强有力的精神支撑。 2、明确教学目标、重难点、教学方法: 让学生心中有数,有的放矢,从整体上把握本节课的任务以及学习过 程中所用的数学思想和方法。 3、从易到难,层层递进: 通过复习上节课所学内容,引出本节主题,和学生一起探讨参数的介 入对问题所产生的影响,但最终回归为原始问题:即以对称轴和区间 的位置关系进行讨论。同时通过动态图像展示,让学生直观感受分类 讨论的起因和最值产生的过程。
2
0
x
(3)当 -a ≥ 2 即a ≤ -2时, 函数f(x)在区间[-2,2]上单调递减 当x=2时,y有最小值
ymin f (2) 1 4a
y
0 x
综上所述:
(1)a ≤ -2时, y min=1+4a (2)-2<a< 2时,y min =-3-a2 (3)a≥2时, ymin=1-4a
0
x x
(2)
例题二:
解:对称轴:x=1,
1.求函数f ( x) x 2 2 x 5在区间t , t 2上的最小值
y
区间的中点值:x=t+1 (1)t+1≤1,即 t≤0时, 当x=t时,y有最小值,
2
x (1) y
ymin f (t ) t 2t 5 (2) t+1>1,即 t>0时, 当x=t+2时,y有最小值,
由以上两个例子你能得出什么规律? 规律总结:
1:首先求出对称轴 2:判断对称轴与区间的关系
若对称轴在区间的外面,函数在区间 上单调,最值在端点处取得;若对称轴 在区间的内部,函数在区间上不单调, 最值在端点和顶点分别取得。 3:利用好函数的图像
四:学习过程
例1:求函数y=x2+2ax-3在 x [-2,2]上的 的最小值 解:对称轴:x=-a
变式:求函数y=x2+2ax-3在 x[-2,2]
上的最大值
解:区间的中点值:x=0 (1)-a≤0 ,a≥0 时,当x=2时,
0 x (1) y y
y取得最大值,y max = f(2)=1+4a
(2) -a>0 ,a<0 时,当x=-2时, y取得最大值,y max = f(-2)=1-4a 综上所述: (1)a<0 时,y max = f(-2)=1-4a (2)a≥0 时 y max = f(2)=1+4a
一.教学目标:
1:知识目标:使学生掌握含参数的二 次函数的最值的求法。 2:能力目标:培养学生利用“数形结 合”、“分类讨论” 、“问题转化”这 些数学思想去解决实际问题的能力。 3:情感目标:通过展示优美的函数图 像来陶冶学生的情操;通过组织学生讨 论,培养学生主动交流的合作精神,形 成勇于探索的思维品质。
二.重难点: 重点:掌握二次函数最值的求法 难点:分类讨论
三:教学方法:合作探究,启发诱导,讲练 结合,分组讨论
三:知识链接
问题1:求函数y=x2+2x-3在区间[0,2]
上的最值。
解:因为由图易知:对称轴 X0= -1 [0,2] f(x)在区间[0,2]上 单调递增。 则:ymin= f(0)= -3 ymax= f(2)= 5
-10
1 2
y
x
答:函数的最小值为-3,最大值为5
问题2: 求函数y=x2 + 2x-3在区间[-2,2]
上的最值。
解:因为由图易知:对称轴 X0=-1 [-2,2]
所以 ymin= f(-1) = -4 ; 又因为:f(-2)= -3, f(2) = 5 所以:ymax= f(2) = 5 答:函数的最小值为-4 最大值为5