稠油热采技术

合集下载

稠油热采开发技术(ppt)

稠油热采开发技术(ppt)

稠油资源分布
稠油资源主要分布在北美 的加拿大、中国、委内瑞 拉、俄罗斯等地。
稠油资源储量
全球稠油资源储量巨大, 但分布不均,主要集中在 加拿大的阿尔伯塔省和中 国的克拉玛依油田。
热采开发技术的定义与特点
热采开发技术定义
热采开发技术是一种利用热能将 稠油资源转化为可流动状态,然 后进行开采的技术。
热采开发技术特点
率的稠油开采方法。
原理
火烧油层法通过向油层注入空气 或氧气,并点燃油层中的轻质组 分,使燃烧反应持续进行。燃烧 过程中产生的高温高压气体推动
原油流向生产井。
适用范围
火烧油层法适用于粘度高、油层 厚度大、渗透率较高的稠油油藏。 该方法可以提高采收率,但开采 过程中需要严格控制火势和燃烧
条件。
热水驱法
投资回报低
由于技术难度和开采效率问题,稠油热采项目的 投资回报率较低。
市场风险
受国际油价波动的影响,稠油热采项目的经济效 益面临较大的市场风险。
环境挑战
排放控制
稠油热采过程中会产生大量的废气和废水,需要严格的排放控制 措施。
生态保护
稠油热采活动可能对周边生态环境造成一定的影响,需要采取生态 保护措施。
案例二:某油田的蒸汽驱项目
蒸汽驱是一种更为先进的稠油热 采技术,通过向油藏注入高温蒸 汽,将稠油驱赶到生产井,进一
步提高采收率。
某油田的蒸汽驱项目实施过程中, 通过优化注汽参数、改善井网布 置等方式,提高了蒸汽驱的开发
效果和经济性。
该项目的成功实施表明,蒸汽驱 技术适用于大规模稠油油藏的开 发,为类似油田的开发提供了有
其降粘并提高流动性。
采收和运输
通过采油树和采油管线将稠油 采出地面,并进行必要的处理

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析
稠油热采工艺技术是一种通过加热稠油使其降低黏度,以方便开采的方法。

稠油热采
工艺技术主要包括蒸汽吞吐、电加热、电阻加热、焦耳加热、微生物采油等。

本文将对稠
油热采工艺技术的应用及效果进行分析。

蒸汽吞吐工艺是稠油热采中使用最广泛的一种工艺。

蒸汽吞吐工艺通过注入高温高压
蒸汽到井筒中,使稠油受热而降低黏度,从而使其能够被抽采。

蒸汽吞吐工艺具有成本低、采油效果好的特点,适用于具有一定温度的稠油油层。

经过实践证明,蒸汽吞吐工艺可以
使稠油的采收率提高20%以上。

电加热工艺是一种通过电流加热稠油的方法。

在电加热工艺中,通过在地下注入电极
并通电,产生高温从而加热稠油。

电加热工艺适用于具有低温稠油油层,其优点是可以局
部加热,提高采收率。

电加热工艺的成本较高,需要大量的电力供应,因此在实际应用中
受到一定的限制。

微生物采油是一种通过微生物的作用来改变稠油性质以方便开采的方法。

微生物采油
工艺主要通过注入特定的微生物群体,改变原油中的组分和性质,从而降低黏度,提高可
采性。

微生物采油工艺具有环境友好、低成本的特点,但目前仍处于实验室研究阶段。

稠油热采工艺技术应用广泛且效果显著,可以提高稠油开采的可行性和效率。

不同的
工艺技术适用于不同类型的油层,因此在实际应用中需要根据具体情况选择最合适的工艺
技术。

未来,随着技术的不断发展,稠油热采工艺技术将会进一步完善,为稠油资源的开
采提供更多的选择和可能。

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油热采技术是一种针对油砂、重油等高粘度油藏开采的方法,通过供热使原油降低粘度,提高流动性,从而实现油藏的高效开发。

稠油热采技术包括蒸汽吞吐、蒸汽辗转、蒸汽驱等多种方法,下面将对其现状及发展趋势进行详细分析。

稠油热采技术的现状:1. 蒸汽吞吐技术:蒸汽吞吐是目前广泛应用的一种稠油热采技术,通过注入高温高压蒸汽使原油粘度降低,从而提高采收率。

蒸汽吞吐技术具有简单、成本较低的特点,适用于高温高压区块。

由于蒸汽吞吐技术存在注汽周期长、水汽云难以控制等问题,使得其效果受到限制。

2. 蒸汽辗转技术:蒸汽辗转技术是近年来发展起来的一种稠油热采技术,通过在油藏中形成蒸汽辗转的气体流动,使原油流动起来。

蒸汽辗转技术相比蒸汽吞吐技术具有注汽周期短、大面积覆盖等优势,适用于较大底水厚度的高粘度油藏。

目前,蒸汽辗转技术已在国内外一些油田中得到应用,取得了一定的效果。

3. 蒸汽驱技术:蒸汽驱技术以蒸汽为驱动剂,通过驱替作用将原油推向井口,实现油田的高效开发。

蒸汽驱技术具有可控性强、适应性好的特点,适用于不同地质条件的油藏。

目前,蒸汽驱技术广泛应用于国内外的重油油田中,取得了良好的开发效果。

稠油热采技术的发展趋势:1. 温度控制技术的发展:随着稠油热采技术的发展,越来越多的油田需要用到高温蒸汽进行开采,因此温度控制技术变得尤为重要。

发展更加精确、高效的温度控制技术,可以更好地实现稠油热采过程中的热能利用。

2. 系统集成技术的应用:稠油热采技术需要配套的供热、注汽、电力等设备,将来的发展方向是更加注重系统集成,在设计上更加合理地组合各个设备,实现能量的互通与优化利用。

3. 非常规能源的应用:随着能源的紧缺以及环保意识的增强,非常规能源作为替代能源的一种,未来在稠油热采技术中的应用将越来越广泛,比如生物质能源、太阳能、地热能等。

4. 人工智能技术的应用:人工智能技术能够模拟复杂的油藏开发过程并进行优化,可以实现稠油热采过程的自动化、智能化。

稠油热采技术

稠油热采技术

式中:Sors为蒸汽驱残余油
μ os对应Ts时的原油粘度mPa.s
Ts、Ti分别为蒸汽温度和原始油层温度℃
油层注蒸汽传热机理 1.由于注入流体的运动引起的能量传递。
2.在油层中,由高温向低温的热传导。
3.在注入流体与地层中原始流体之间,由
于地层的渗透性引起的热对流。
当流体的运动速度较小时,主要传热机理是1、2。
●已知原油的相对密度γo,温度T(℃),求λo: λ o=10.124(1-0.00054×T)/γo 设γo=0.98,T=300℃,则λo=8.66(kJ/d.m.℃) ●已知温度T(273+℃),求饱和水及蒸汽的导热系数:
1000
蒸汽体积/水
100
10
1 0 5 10 压力(MPa) 15 20 25
随压力的降低,蒸汽与水的体积倍数快速增大。因 此对蒸汽驱来说,油层压力尽可能降低。在较低压力
下注蒸汽,蒸汽带的体积较大,蒸汽波及体积较高,
开发效果较好。
2.原油的热特性
⑴原油粘度随温度的变化
⑵原油的比热及热容量
⑶原油的导热系数
热焓(kJ/kg)
⑷湿饱和蒸汽的比容(m3/kg) ●单位质量的饱和水占据的体积称作饱和水的比
容Vw。
●单位质量的干饱和蒸汽占据的体积称作饱和蒸
汽的比容Vs。
●湿饱和蒸汽的比容Vws:Vws=(1-X)Vw+X×Vs
湿饱和蒸汽的比容(m3/kg)
不同压力下不同干度蒸汽的比容 10 干度0 干度20% 干度40% 干度60% 干度80% 干度100%
粘度(mPa.s)
1000 100
y = 4.5029E+12x -4.9992E+00 R 2 = 9.9816E-01

稠油热采技术探析或者浅谈稠油热采技术

稠油热采技术探析或者浅谈稠油热采技术

稠油热采技术探析或者浅谈稠油热采技术摘要:依据稠油油田的特点,采取加热的方式,降低稠油的粘度,提高油流的温度,满足稠油油藏开发的条件。

热力采油技术措施是针对稠油油藏的最佳开采技术措施,经过油田生产的实践研究,采取注蒸汽开采,蒸汽吞吐采油等方式,提高稠油油藏的采收率。

关键词:稠油热采;工艺技术;探讨前言稠油热采工艺技术的应用,解决稠油油藏开发的技术难题,达到稠油开采的技术要求。

稠油热采可以将热的流体注入到地层中,提高稠油的温度,降低了稠油的粘度,达到开采的条件。

也可以在油层内燃烧,形成一个燃烧带,而提高油层的温度,实现对稠油的开发。

为了满足油田生产节能降耗的技术要求,因此,稠油开采过程中,优先采取注入热流体的方式,达到预期的开采效率。

1稠油热采概述稠油具有高粘度和高凝固点,给油田开发带来一定的难度。

采取化学降粘开采技术措施,应用化学药剂的作用,降低了油流的粘度,同时也会导致油流的化学变化,影响到原油的品质,因此,在优选稠油开采技术措施时,选择最佳热采技术措施,进行蒸汽驱、蒸汽吞吐等采油方式,并不断研究热力采油配套技术措施,节约稠油开发的成本,才能达到预期的开采效率。

2稠油的基本特点2.1稠油中胶质与沥青含量比较高,轻质馏分含量少稠油含有比例极高的胶质组分及沥青,轻质馏分比较少,稠油的黏度和密度在其中胶质组分及沥青质的成分增长的同时也会随之增加。

由此可见,黏度高并且密度高是稠油比较突出的特征,稠油的密度越大,其黏度越高。

2.2稠油对温度非常敏感稠油的黏度随着温度的增长反而降低。

在ASTM黏度-温度坐标图上做出的黏度-温度曲线,大部分稠油油田的降黏曲线均显现出斜直线状,这也验证了稠油对温度敏感性的一致性。

2.3稠油中含蜡量低。

2.4同一油藏原油性质差异较大。

3稠油热采技术的现状针对稠油对温度极其敏感这一特征,热力采油成为当前稠油开采的主要开采体系。

热力采油能够提升油层的温度,稠油的黏度和流动阻力得到了降低,增加稠油的流动性,实现降黏效果,从而使稠油的采收率变高。

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油热采技术是在高渗透储层中进行油藏开发的一种方式,其主要原理是通过注入高温热能来降低油的粘度,使其能够流动到井口,从而进行采集。

在燃料资源日益枯竭的情况下,稠油热采技术越来越受到重视。

本文将介绍稠油热采技术的现状和发展趋势。

目前,稠油热采技术主要分为三种:热水气驱采油技术、蒸汽驱采油技术和火炬燃烧采油技术。

这三种技术都是通过加热油藏来改变油粘度,从而促进油的流动。

热水气驱采油技术是在油藏中注入热水和气体,利用高温和压力来改变油粘度,从而实现采油。

这种技术具有采油效率高、采油成本低、无污染等优点,已经在油田中得到广泛应用。

但是,其也存在一些问题,例如地质条件限制、能源消耗大、工艺难度较大等。

蒸汽驱采油技术是在油藏中注入高温高压蒸汽,将其注入后能够改变油粘度,从而实现采油。

与热水气驱采油技术相比,蒸汽驱采油技术能够更好地改变油粘度,提高采收率,但同时也存在一些劣势,例如能耗高、操作难度大等。

火炬燃烧采油技术是通过向油藏中注入氧气来燃烧含油气体,从而产生高温高压的热能来改变油粘度,从而实现采油。

这种技术适用于高粘度油的采集,能够快速提高采收率,但同时也会带来环境污染和安全隐患等问题。

未来,稠油热采技术的发展趋势主要有以下几个方向:1、提高采收率。

由于稠油蕴藏量巨大,采油量相较于蕴藏量仍有较大差距,提高采收率是稠油热采技术未来的一个重要方向。

2、降低成本。

稠油热采技术需要投入巨大的能源和资金,降低成本是当前稠油热采技术发展的一个重要问题。

因此,在开采技术、工艺方面应不断进行改进、优化,降低能源消耗和生产成本。

3、绿色环保。

随着社会的发展,环保意识不断增强,绿色环保已成为各行各业发展的重要方向。

在稠油热采技术开发过程中,应注重环保问题,采用更加绿色环保的采油技术,例如利用可再生能源等。

4、优化油气组合。

由于全球能源消耗量不断增加,优化油气组合已成为制定全球能源战略的一个重要环节。

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析稠油热采工艺技术是一种有效的稠油开采方法,通过注入高温热媒使稠油流动性增加,从而提高生产效率。

本文将对稠油热采工艺技术的应用及效果进行分析。

稠油热采工艺技术的应用主要包括蒸汽驱动、蒸汽辅助重力排水、蒸汽辅助提高采程、电加热和微波加热等。

蒸汽驱动是最常用的稠油热采工艺技术,通过注入高温高压蒸汽,提高稠油温度和压力,使其流动性增加,从而实现稠油的开采。

蒸汽辅助重力排水是在低温下稠油开采后,再注入高温蒸汽,通过降低稠油粘度和温度,增加重力排水效果。

蒸汽辅助提高采程则是在已经开采过程中注入蒸汽,提高稠油温度和压力,进一步推进采程。

电加热和微波加热则是通过电能和微波辐射使稠油加热,从而提高其流动性。

稠油热采工艺技术的应用可以显著提高稠油开采的效果。

稠油热采可以提高稠油的流动性,使其更易于开采。

通过注入高温高压蒸汽,可以降低稠油的粘度,使其更易于流动,提高开采效率。

稠油热采可以有效提高采收率。

通过注入蒸汽,可以推进稠油的采程,提高采收率。

稠油热采还可以减少地面的环境污染。

相比传统的大量使用溶剂、烃类等化学品的开采方式,热采过程中只需注入蒸汽,减少了化学品的使用,减少了环境污染。

然后,稠油热采工艺技术还存在一些问题。

热采需要大量的能源供应,特别是蒸汽驱动,耗能较大。

热采可能引发地质灾害,如地表沉陷、地裂缝等。

由于稠油开采后地下蒸汽作用,地下岩土可能会发生膨胀、溶蚀等变化,导致地表沉陷、地裂缝等地质灾害。

稠油热采还可能导致水资源的浪费与污染。

热采过程中,需大量蒸汽注入,蒸汽来自水的蒸发,可能导致水资源的浪费。

蒸汽中的有机物和重金属等有害物质也可能对水资源造成污染。

稠油热采工艺技术是一种有效的稠油开采方法,通过注入高温蒸汽提高稠油的流动性,提高采收率。

热采过程中存在能源消耗大、地质灾害及水资源浪费与污染等问题。

在使用稠油热采工艺技术时应注意节能减排,加强地质灾害防治,合理利用水资源,防止环境污染。

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油热采技术是指在稠油地层中通过注入热量来降低油粘度,以便提高产能和采收率的一种采油方法。

随着国内外石油资源的逐渐枯竭,稠油热采技术得到了广泛的关注和应用。

目前,稠油热采技术已经成为许多油田开发的主要手段之一,其发展趋势也日渐向着高效环保、自动化和智能化方向发展。

目前,热采技术主要包括蒸汽驱动、CO2驱动、电加热、燃烧驱动和微波加热等方法。

其中,蒸汽驱动技术是应用最为广泛的一种,其核心是注入高温高压的蒸汽使油藏温度升高,油粘度降低,从而提高采收率。

目前,蒸汽驱动技术已经在多个稠油油田得到应用,如中国大庆油田、加拿大阿尔伯塔地区等。

另外,CO2驱动技术是一种以CO2为驱动剂,通过注入大量的CO2使油藏温度升高,从而降低油粘度,提高采收率的一种技术。

该技术与蒸汽驱动技术的区别在于,CO2驱动技术不需要注入大量的水,同时还能够促进CO2的封存,有助于减少温室气体的排放。

此外,电加热技术也是一种目前较为先进的热采技术,其原理是在井筒内的加热器中通电产生热量,通过传热的方式使油藏温度升高,从而降低油粘度。

这种技术的最大优点是精准控制热源,减少能源浪费和二次污染,同时还能够大幅提高采收率和稳定油田生产。

1.高效环保随着社会经济的发展和环境保护理念的深入人心,稠油热采技术的环保要求越来越高。

未来,稠油热采技术将更加注重绿色环保生产,开发和应用更加安全、节能、环保的热采技术成为发展方向。

例如采用高效换热技术控制环境污染,利用低温余热循环利用,降低能耗和废气排放。

2.自动化随着科技的进步,自动化装备的应用越来越广泛,未来稠油热采技术也将更加自动化。

智能化技术将被广泛应用于控制、检测和优化操作过程中,提高操作效率和准确性。

例如将机器人应用于在井下作业,各种传感器应用于实时监测油田生产状态等。

3.智能化未来稠油热采技术还将更加智能化,通过无线传输、云计算、大数据等技术实现产量预测、操作过程控制、生产优化等自主化管理,从而降低操作成本、提高采收率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20
0 2.0 3.0 4.0
压力(MPa)
5.0
6.0
7.0Leabharlann 8.0干度为0.6,2MPa时:水蒸汽比容是液体的51倍, 6MPa时:水蒸汽比容是液体的15倍
饱和水蒸汽干度变化与热焓变化关系图
35 30 25 20 15 10 5 0 2 3 4 5 6 7 8 9 10 压力(MPa) 11 干度降40% 干度降30% 干度降20% 干度降10%
齐40试验区开发历程
齐40块试验区蒸汽驱开发
• 截止到1997年底,试验区内的9口老井累积吞吐89井次,平均单井吞 吐10个周期。累积注汽26.6104t ,累积产油30.5104t,累积产水 24.0104t,累积油汽比1.1,采出程度24.0%。 • 从1998年1月--1998年10月,新老井陆续投入汽驱前的吞吐预热解堵 开 采 , 该 阶 段 试 验 区 共 注 汽 4.35104t , 产 油 2.53104t , 产 水 2.46104t,油汽比0.51,采出程度5.1%。 • 从1998年10月--2001年12月底,汽驱阶段注汽66.3104t(包括吞吐 引效注汽5.7104t),产液55.3104t,产油11.33104t,综合含水 80%,采注比0.83,油汽比0.17,阶段采出程度22.6%。
Second Breakthrough
First Breakthrough
Injector
Edge Producer
有时平行网格的结果不正确
纵向网格与垂向波及面积关系
0.5 yr 1.0 yr 1.6 yr
10 x 3 GRID 20 x 6 GRID
中部有高渗通道,纵向网格对波及面积和突破时间有影响
9 x 9 Parallel Grid P D

r
P
– 角点网格
– 局部网格加密
P
1 2 3 4 5 6 7 8 9
10 x 5 D ia go na lG r id
P P
网格方向对平面波及的影响
Corner Producer 10 x 5 Cylindrical Grid 9 x 9 Parallel Grid 10 x 5 Diagonal Grid
• 1987年以200m正方形井网投入蒸汽吞吐开发 • 1990年确定莲Ⅰ、莲Ⅱ两套井网同井场布井
• 1991年6月加密至141m的井网 • 1994年7月中部地区又加密成100m井网 • 至1997年底,该块吞吐累积产油613104t,平均单井吞吐7.7个周期, 累积吞吐油汽比0.73,吞吐采出程度16.9%,吞吐开采取得了很好的 开采效果。 • 1997年底,采油速度只有0.85%。平均单井日产油也降为3.7t/d,吞 吐开发已进入中后期。
Edge Producer
Injector
稠油热采数值模拟模型
• 特殊网格
角点网格 有限元网格
稠油热采数值模型特点
• • • • • • 双孔、双渗 边底水 井组定义 全隐式、自适应隐式(AIM)解法 动态定义最大网格、最多井数 水平井 – 井筒离散 – 多段井MSW • Multi Segment Wells
液态(未饱和水)
温度(℃)
250 200 150 100 50 0 0 5 10 15 压力(MPa)
饱和温度随压力上升而升高,5MPa以下温度升高较快, 5MPa饱和温度达到264℃,10MPa饱和温度为311℃。
20
25
饱和水蒸汽热焓变化图
3000 2500
热焓(kJ/kg)
2000
1500
液体焓 干度0.2 干度0.4 干度0.6 干度0.8 蒸汽焓
注汽井模拟SIWS
• 流动是气液两相流问题 – 连续方程、能量方程和动量方程 – 考虑流体流态:气泡、气弹、泡沫及 环状流 • 水泥环内采用稳态传热 – 传热与时间无关 • 在水泥环外为拟稳态传热 – 传热与连续注汽时间有关 • 从井口到井底迭代求解 – 考虑水蒸汽、隔热管的热物性 • 模拟计算 – 流体温度变化、压力变化、套管温度 变化、热量损失、隔热效果
• • • • 地质参数 开发简介 模拟研究 热效率分析
共有各类井27口,其中注汽井4口 生产井21口,观察井2口
齐40扩大试验区参数
油藏埋深, m 油层有效厚度, m 净总比 , f 孔隙度, % 920 27.4 0.48 30.0 2200 3127~4648 75 9.2 39.2
渗透率, 10-3µ 2 m 50℃脱气原油粘度, mPa.s 原始含油饱和度, 原始油层压力, 原始油层温度, %
Z=0
Z=Z+ Z
P1 、 l赋初值
计算物性、热阻、 热流及温度
判断流型 计算摩阻
解方程求P、
P-P1 < P? - 1 < ? 是 是 Z<L? 否 输出结果

井筒温度模拟软件
SIWS模拟结果
Wheat流体循环图
空心抽油杆开式循环
空心抽油杆闭式循环
油套环空开式循环
热流体循环模拟WHeat
1000
500
0 0 5 10
压力(MPa)
15
20
3~20MPa,干度在0.6左右,饱和水蒸汽的热焓随压力变化不大。 在低压下,水蒸汽潜热较大,10MPa以下,潜热占干蒸汽热焓的50%以上。
饱和水蒸汽比容变化图
100
80
比容变化倍数
60
干度0.2 干度0.4 干度0.6 干度0.8 干度1.0
40
1. 三次采油与EOR 2. IOR与 EOR 钻加密井 聚合物驱 调剖、流体深部转向
ASR
开采可流动油
扩大波及体积
蒸汽驱、 注热水 火烧油层
IOR EOR
热采 气混相驱 化学驱
CO 2、烃 惰性气体 碱 表面活性剂 各种复合驱
开采不可 流动油 提高 驱油效率
RI
ED
稠油热采数值模拟技术
• 稠油热采主要机理 – 稠油粘温关系、汽驱残余油、水蒸汽热物性 • 稠油热采数值模拟技术 – 井筒传热模拟:注汽井、生产井 – 油藏模拟:模型特点、主要参数 • 稠油热采模拟应用实例 – 辽河齐40汽驱系统热效率分析 – 新疆百重7热采技术对策
• 传热方程 – dT/dZ=ZDKl(T-Tl)+ZDKr(T-Tr) – ZD:方向系数 Ql – Ki=l或r:当量传热系数,与热阻、流量有关 Z – 不考虑纵向导热 • 热物性变化 Kl(T-Tl) – 油水两相混合物性 – 忽略相变影响 Z+dZ • 边界条件 – 注入流体温度、地层温度、井底温度、循环深度等
Segment node Grid cell Segment
井边界条件
• 注汽井 – 注入速度,m3/d – 压力MPa、温度℃ • 根据饱和压力、干度,计算注入热量。 – 干度,小数 生产井条件 – 最大产液、产油、含水 – 最小流压 边界修正 – 网格修正:与流动方向有关 • *VAMOD key v ai aj ak – 井系数修正
提高原油采收率(EOR)方法概论
广义的提高石油采收率概念包括二次、三次采油及各种增产措施 和井技术等(简称IOR);通常的概念主要指强化采油(简称EOR), 包括热力采油,化学驱,注气混相(或非混相)驱以及其它强化方式 采油。 各种提高石油采收率方法的基本原理都在于提高注入液的波 及效率和/或驱替效率。
热焓变化(%)
初始干度70%,4MPa时:干度下降40%,水蒸汽热焓变化30%; 干度下降10%,热焓变化7%。干度变化值与热损失值不同。
井筒温度模拟
• 井筒温度模拟软件WTSP – Wellbore Temperature Simulator Package – 注汽井模拟SIWS • Steam Injection Wellbore Simulator • 计算井筒温度、压力、干度、热损失 – 生产井热流体循环模拟WHeat • Wellbore Heating Simulator • 考虑产油、含水、地温变化、注入流体温度等 • 计算井筒温度变化 – 生产井电加热模拟EHeat • Electrical Heating Simulator • 考虑产油、含水、析蜡温度、加热功率线性变化等 • 计算产液温度及加热功率

36-7047
35A-844
36A-846
D84-35-40
Qi40脱气油

Qi40含气油
1 000 500 400 300 200 150 100 75 50 40 30 20 15 10 9.0 8.0 7.0 6.0 5.0 4.0
KINEMATIC VISCOSITY CENTISTORES (mPa.s)
吞吐相渗曲线
Kro
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8
Krw
Kro Kro2 Krw Krw2
0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00
So
1
齐40汽驱先导试验系统热效率分析


井系数修正
稠油热采数值模拟主要数据
• 地质模型 – 深度、油层厚度、净总比、孔渗饱 • 模型数据 – PVT、粘温曲线、相渗曲线、残余油与温度关系 – 压缩系数、导热系数(J/m.day.℃)、比热(J/m3.℃) • 动态数据 – 井数据:完井井段 – 注汽数据:注汽速度、压力、温度、干度 – 生产数据:产油、含水、压力变化 – 热损失:地面、井筒
MPa ℃
齐40试验区井组数据
• 4个70m井距的反九点井组 • 共有各类井27口,其中注汽井4口,生产井21口, 观察井2口
• 在1998年10月正式转入汽驱;
相关文档
最新文档