疏水缔合聚合物与三次采油
疏水缔合型聚丙烯酰胺驱油剂的合成与性能评价

6
7
A2
A3
B3
B1
Cl
C3
在三 次 采 油 中 , 聚合 物 水 溶 液驱 油 的 主 要要 对 求是 聚 合物 耐温 、 盐 、 剪 切和粘 度 不降 低 。部分 抗 抗
水解 聚 丙 烯 酰胺 ( AM ) 然 水 溶性 好 、 一 定 粘 HP 虽 有 度 , 由于 其 分 子 链 上 的 C 但 OO一对 盐 极 其 敏感 , 在 盐 水 中粘度 急剧 下 降[ 。为此近 年 来 人们 研 究在亲 】 ] 水 性 高分 子 中引 入疏 水 性 基 团 , 用疏 水 基 之 间 的 利
量 比、 催化 剂用 量 、 阻聚剂 用 量和反 应 时 间定 为考 察 因素 。其余 条 件设 为 固定 值 , 分别 为 : 携水 剂用 量 为 酸 醇总 量的4 , 0 反应 温度 为8 ℃ 一9 ℃ 。 文 以合 5 0 本 成 疏 水 单体 丙烯 酸 正 辛酯 ( 0AB 为 例 , 说 明该 酯 ) 来 化 反应 最适宜 条 件的确 定 。采用 四 因素三 水 平 的正 交实 验方 案 , 表 1 见 。
4 5
Al Al
A2 A2
B2 B3
B1 B2
C2 C3
C2 C3
D2 D3
D3 Dl
8 3 6. 9 .8 0
89 .5 9 2
三 颈 瓶 中加 入适 量 的正 辛醇 、 甲苯 磺酸 ( 对 催化 剂 ) 、 对 苯 二 酚 ( 聚剂 ) 阻 和环 己烷 ( 水剂 ) 在 搅 拌条 件 携 , 下 水浴 加 热 到 6 ℃使 其全 部 溶解 后 加 入 丙烯 酸 , 0 继 续升 温至 8 —9 C , 5 0 反应 若干 小 时 ( 时左 右 ) 反 4小 。 应结 束后 , 反应 混合 液倒 入蒸 馏 瓶 中 , 将 常压 蒸馏 除 去大部 分 携水 剂环 己烷 。 馏完 毕后 , 蒸馏 瓶 中的 蒸 将 粗 酯置 于 分液 漏 斗 中 , w( OH) 5 的溶 液洗 用 Na 为
三次采油工程技术措施

三次采油工程技术措施采油工程技术是石油开采过程中非常重要的环节,它涉及到了油田开发的各个方面,包括钻井、提高采收率、减少成本、提高生产效率等。
在实际的石油开采过程中,为了有效地提高采油效率,降低生产成本,采用了许多创新的技术措施。
下面我们将介绍三种常用的采油工程技术措施。
一、液压压裂技术液压压裂技术是一种在油井中通过高压液体对地层进行破裂,以增加开采油田的采收率和提高生产效率的工程技术。
在使用液压压裂技术时,首先需要进行钻孔作业,然后将高压液体通过泵送系统注入到井中,使井筒中的裂隙扩张,产生裂缝,从而提高地层的渗透性和油气的产量。
液压压裂技术具有以下几个特点:1.提高油井产量。
液压压裂技术可以有效地增加油藏的有效压裂面积,提高地层的渗透性,从而提高油井的产量。
2.降低生产成本。
通过使用液压压裂技术,可以将地层的渗透性提高到一定程度,降低了地层的流动阻力,减少了开采油田的生产成本。
3.延长油井寿命。
液压压裂技术可以有效地提高生产效率,延长油井的寿命,并且可以在油井生产过程中多次进行压裂,进一步提高产量。
二、水平井技术水平井技术是一种在垂直井眼的水平段上进行侧钻,使井眼进入油层,并在其长度方向上通过控制技术开展出射井眼,在油层中形成一定范围的透明构造,在垂直井眼上形成一个或多个侧向井眼的技术,用以增加有效的地层接触面积,提高产量。
水平井技术具有以下几个优点:1.提高采收率。
通过水平井技术,可以将垂直井眼上形成一个或多个侧向井眼,扩大了地层的接触面积,提高了开采的采收率。
2.减少横井数目。
通过水平井技术可以减少横井的数量,降低了开采的成本,提高了生产效率。
3.降低井底流体压降。
水平井技术可以在相对较少的横截面上获取更多的地层能量,减少井底的流体压降,提高了油井的产量。
三、聚合物驱替技术聚合物驱替技术是一种通过注入聚合物溶液到油层中,改变油水相对渗透率比值,从而提高原油驱出率的技术。
通过聚合物驱替技术,可以有效地将地层中原油的驱出率提高到一定程度,提高油井的采收率和生产效率。
抗温耐盐驱油用聚合物研究现状

抗温耐盐驱油用聚合物研究现状我国于60年代开始三次采油技术的研究,在80年代以后,三次采油技术得到了高速发展。
我国油藏大部分是陆相湖盆沉积,地层条件错综复杂,油层非均质性严重,层系间和层内渗透率差异较大,有着适应聚合物驱油的广泛应用前景。
根据我国提高石油采收率方法的筛选、潜力分析及发展战略研究,认为目前聚合物驱是可以大规模工业化应用的主要三次采油技术。
由于聚合物驱在我国具有的巨大潜力,“三次采油新技术”连续列为“七五”以来国家重点科技攻关项目,特别是有关采油用剂的研究备受重视。
聚合物驱工业化在我国已经取得了巨大的成功。
我国先后在大庆、大港、胜利、河南和新疆等油田进行了聚合物驱的矿场试验以及工业化推广应用,尤其是在大庆油田,经过十年的矿场工业化扩大试验后,2002年聚合物驱油产量已占到其总产量的20%,已经成为保持稳产的主要措施之一。
常用的驱油聚合物主要是部分水解聚丙烯酰胺(HPAM)及其衍生物。
HPAM亲水性强,易与水形成氢键,易溶于水,水化后具有较大的水动力学体积,起到增粘作用,由于引入了,分子链间发生电性排斥作用,使分子链伸展,可以获得更大的水动力学体积。
但由于分子链为柔性链,在水溶液中表现为无规线团构象,在高温、高矿化度的盐水中,分子链发生卷曲,粘度大幅度下降,使聚合物溶液增粘作用明显丧失,并且柔性链易于机械降解,使其应用范围受到了较大的限制,不能很好的满足高温、高矿化度地层驱油的要求。
因此,近几年来,国内外对抗温耐盐驱油聚合物的研究非常活跃,取得了一些进展。
1 驱油用聚合物的基本要求2.1聚合物驱油法聚合物驱油是指将水溶性高分子量的聚合物添加到注入水中,以提高注入水黏度、降低驱替介质的流度改善水驱,从而提高原油采收率的方法。
与一般水驱相比,聚合物驱油可以加速采油过程,改善经济效益,在化学驱油中注入工艺及设备较简单、成本较低。
聚合物注入油层中,将会产生两种重要作用:一是增加水相黏度,二是聚合物的滞留引起油层渗透率下降。
驱油用疏水缔合聚合物溶液的流变性及粘弹性实验研究

驱油用疏水缔合聚合物溶液的流变性及粘弹性实验研究一、概括本文主要研究了驱油用疏水缔合聚合物溶液的流变性及粘弹性。
论文介绍了研究的背景和目的,然后通过实验手段,对疏水缔合聚合物溶液进行了流变性和粘弹性的测试和分析。
疏水缔合聚合物溶液在受到剪切力作用时,其表观粘度会降低,表现出非牛顿流体的特性。
随着剪切力的减小,溶液的粘度会逐渐恢复,表明疏水缔合聚合物溶液具有显著的粘弹性。
疏水缔合聚合物溶液的粘弹性随温度和盐度的变化而发生变化,但在不同盐度下,溶液的流变性和粘弹性表现相似。
通过对实验结果的分析,本文探讨了疏水缔合聚合物溶液的流变性和粘弹性与其分子结构和浓度之间的关系。
分子结构中疏水基团的含量和分布、水化基团的含量以及聚合物链的长度等因素都会影响溶液的流变性和粘弹性。
溶液的浓度也会对疏水缔合聚合物溶液的流变性产生影响,一定范围内,溶液的表观粘度和粘弹性越大。
本文通过实验研究得到了驱油用疏水缔合聚合物溶液的流变性和粘弹性的关键参数,并对其影响因素进行了探讨。
这些成果为疏水缔合聚合物在驱油领域的应用提供了理论依据和实践参考。
1. 研究背景及意义随着油田开发技术的不断深入,低渗透、高含油地层逐渐成为我国油田开发的主战场。
在低渗透油藏开发过程中,油层堵塞是一个难以避免的问题,它不仅影响油井的产量,还可能最终导致油井的停产,从而严重影响油田的整体开发效益。
油层堵塞的形成涉及到多种复杂因素,包括油层本身的物理化学性质、原油的性质、加入的各种处理剂以及油层中的微生物等。
开展油层堵塞的形成机理及防治措施研究对于油田的高效开发具有重要意义。
疏水缔合聚合物作为一种新型的高分子材料,具有独特的亲水疏油特性,能够在油水界面处发生吸附和聚沉作用,从而有效地调控油、水、岩石等多相体系的界面性质。
随着分子设计技术的不断进步,疏水缔合聚合物的合成与应用研究得到了广泛的关注。
其良好的耐温抗盐性、增粘效果和较低的腐败速率等特性使其在提高油藏采收率、改善油水流动条件等方面展现出巨大的应用潜力。
石油开采三次采油技术应用现状及发展探析

石油开采三次采油技术应用现状及发展探析随着油藏资源的不断开采,石油开采技术也在不断地升级发展。
三次采油技术作为目前采油领域的重要技术之一,具有开采效率高、经济效益好等优势。
本文将从三次采油技术的概念和分类、应用现状和存在的问题、发展前景及展望等方面进行探析。
一、三次采油技术的概念与分类常规的石油开采方式只能开采出油井周围的原油,而难以开采到岩石缝隙中的原油,这就需要三次采油技术的应用,使原本难以开采的岩石缝隙中原油被采集。
三次采油技术三个阶段,即水驱、气驱和聚合物驱的联合协同作用,采用化学物质或者物理手段促进岩石中残余原油的流动,从而实现石油的再生产。
三次采油技术根据驱油介质的不同分为水驱三次采油、气驱三次采油和聚合物驱三次采油。
其中,水驱三次采油是指锁藏在岩石中间的原油被水冲刷而被驱出来,通过井口采集。
气驱三次采油是指通过注入天然气或二氧化碳等气体来驱动岩石中的残余原油,使其流入油井,达到采油目的。
聚合物驱三次采油是利用聚合物在岩石中墙面结合的特性,使残余原油形成微粒,流动性增强,更易于提取,从而实现采油。
二、三次采油技术的应用现状三次采油技术自上世纪70年代起就开始应用于我国石油产业,至今已在大量油田得到广泛应用和推广。
据统计,目前我国开采原油的三次采油技术以上的采油比例已经达到90%以上,水驱占48%,气驱占25%,聚合物驱占17%。
水驱三次采油技术是三次采油技术的主要方式之一,自1979年在长庆油田成功应用后,连续取得一系列的成功应用。
例如,水驱三次采油技术已经成功应用于福山油田、大同油田、庆东油田等油田中。
在应用过程中,水驱三次采油技术主要包括水泵驱动、注水管具、自动控制装置等工具的协同使用,从而实现原油的提取。
气驱三次采油技术也在我国得到广泛的应用,应用场合多样。
例如,氦气、亚气等非常效气体采用于致密油、油页岩等难以采集的地层中,提高了采油效率。
二氧化碳气体采用于黄骅油田、海拉尔油田等油田,也取得了显著的效果。
三次采油和聚合物驱相关知识

目 录
• 三次采油概述 • 聚合物驱技术 • 三次采油技术比较 • 聚合物驱技术挑战与解决方案 • 三次采油与环境保护
01 三次采油概述
定义与分类
定义
三次采油是指利用物理、化学或 生物方法,通过改变油藏的能量 状态,提高油田采收率的过程。
分类
根据使用的技术手段,三次采油 可分为热采、气驱、化学驱、微 生物采油等。
热力采油
通过加热油藏,降低原油黏度,提高其流动性,利用温度差驱动原油流向生产 井。
不同三次采油技术的优缺点
蒸汽驱
优点是技术成熟、成本较低、 驱替效率较高;缺点是蒸汽易 挥发、热损失大、对地层热稳
定性要求高。
化学驱
优点是提高流度比效果显著、 适用范围广;缺点是化学剂成 本高、对地层和环境可能产生 影响。
绿色三次采油技术的发展趋势
研发新型环保化学
剂
研发低毒、低污染的化学剂,替 代传统的高毒性化学剂,减少对 环境的危害。
提高采收率
通过技术创新和优化采油工艺, 提高三次采油的采收率,降低采 油过程中的资源浪费。
循环经济与资源化
利用
将采油过程中产生的废弃物进行 资源化利用,实现循环经济和可 持续发展。
THANKS FOR WATCHING
技术原理
热采
利用热能提高油藏温度,降低原油黏度,增 加流动性,便于开采。
气驱
将气体注入油藏,通过气体的膨胀和压缩作 用,将原油驱向生产井。
化学驱
利用化学剂改变原油的流变性,提高采收率。
微生物采油
利用微生物的生长和代谢产物,提高原油的 采收率。
历史与发展
历史
三次采油技术起源于20世纪80年代, 随着技术的不断发展和完善,已成为 油田开发的重要手段。
化学驱三次采油技术

化学驱三次采油技术一、化学驱油机理化学驱在油田进入现场应用的主要是:聚合物驱和三元复合驱(A.S.P)。
聚合物驱主要是通过增加驱替液粘度、降低油层水相渗透率来降低流度比、调整吸水剖面,达到提高驱替相波及体积的目的。
聚合物溶液粘度越高,其提高采收率幅度越大。
一般聚合物驱比水驱提高采收率幅度6%~ 13%。
三元复合驱既可提高注入剂波及体积,又可增加驱油效率。
另外,三类化学剂复配在一起,既能够发挥单一驱油剂的优势,又能够产生协同加合效应,从而获得更好的提高采收率效果。
三元复合驱一般比水驱提高采收率幅度13%~ 20%。
二、化学驱研究程序及技术系列化学驱油技术是一项比较大的系统工程,比注水开发要复杂的多,投入费用高,风险大,中间某个系统或环节出现问题,都可能导致整个工作的失败。
为了使这项工作能够顺利地开展,并达到增加采收率的预期目标,需要将化学驱油的各个环节有机地联系起来,成为一个整体。
胜利油田的化学驱油技术主要由聚合物驱油和三元复合驱油两大部分组成。
聚合物试验研究主要集中在:(1)聚合物溶液性质如基本物性参数、流变性、稳定性等;(2)聚合物在多孔介质中的性质如吸附、分子量与地层配伍性、流变性、阻力系数、不可及孔隙体积等;(3)驱油试验及试验方案,确定用量、非均质影响等。
在三元复合驱油中要重点研究油水界面性质、不同化学剂间的配伍性如互相作用及其协同效应。
同时由于不同化学剂组合在一起具有不同的特点,因此在研究注入方式时已不再是简单的流度控制问题,它需要根据油藏实际情况和形成乳化液的状况来合理地确定注入方式。
特别是由于复合驱油机理复杂。
影响因素已不再仅仅是油或注入流体粘度问题,故研究过程中所需要的手段和影响因素比聚合物驱油要复杂得多。
通过攻关研究,目前该技术已基本成熟配套,形成从室内筛选、性能评价、油藏工程方案优化设计、数值模拟跟踪模拟到现场实施跟踪调整和评价的一整套技术系列。
1、建立完善了室内试验研究配套技术完善了聚合物评价技术。
三次采油技术的现状及未来发展

随着采油过程的深入,开采难度逐渐增大, 需要采用更高级的技术和设备,导致技术成 本不断攀升。
注入剂损害地层
环保问题
在注入过程中,部分注入剂可能会损害地层 ,影响采油效果。
采油过程中产生的废弃物和污染物对环境造 成的影响不容忽视,需要采取有效的环保措 施。
解决方案一:提高注入剖面
1 2 3
采用多段塞注入剖面调整技术
方法来降低成本。
05
三次采油技术的前景展望
提高采收率的前景展望
01
技术发展
02
矿场实践
随着三次采油技术的不断发展和创新 ,如化学驱、热力驱、微生物驱等技 术的进步,将有助于进一步提高采收 率。
已经在一些油田中成功应用了三次采 油技术,并取得了显著的成果,这为 该技术的广泛应用提供了实践基础。
03
其他三次采油技术
化学驱油技术
化学驱油技术是通过向油层中注入化学剂,改变原油的化学 性质,降低其粘度,从而提高采收率。
微生物采油技术
微生物采油技术是通过向油层中注入特定的微生物,分解原 油中的大分子物质,降低其粘度,从而提高采收率。
03
三次采油技术挑战与解决方案
技术挑战
注入剖面不均匀
技术成本高
在三次采油过程中,由于地层条件的复杂性 ,常常会出现注入剖面不均匀的问题,导致 部分油层得不到充分的开发。
研发低成本高效率的注入剂
通过研究新的配方和制备方法,降低注入剂的成本,同时提高 其在地层中的扩散性和流动性。
引入新型采油技术
例如微生物采油、CO2驱油等,这些技术具有成本低、效率高等 优势,可以有效降低采油成本。
优化生产工艺
通过对生产工艺进行优化,提高设备的利用率和减少维护成本, 实现采油过程的降本增效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 三次采油概述
石油是重要的能源和化工原料,其作为不可再生的资源越来越宝贵。
开发可大幅度提高石油采收率的化学剂,发展三次采油技术是当前迫切的任务[1-2]。
三次采油(简称EOR),是在注水保持油层压力基础上,又依靠注入大量新的驱油剂,改善油水流度比,降低油水界面张力,不仅进一步扩大了注入水波及范围,而且使分散的束缚在毛细管中的残余油重新聚集而被采出,洗油效率提高,从而能使采收率进一步提高。
在EOR技术中,聚合物驱油技术与一般水驱相比可加速采油过程,实施工艺较简单,在我国大庆等油田取得良好试验结果,并已在生产中大规模应用,年增油量达1000万吨。
开发新型高效聚合物驱油剂始终是我国采油用化学剂行业的重点研发内容[3]。
在我国油田所进行的三次采油中,聚合物驱发展最快,是提高油气采收率的重要途径。
例如在大庆、胜利等油田的现场试验结果表明,采用聚合物驱平均可提高采收率10%,平均每注入1吨聚合物可增油150吨。
实践证明以聚合物驱为主的化学驱油方法对采出水驱后的残余油是很有效的,对注水开发的油田也有很好的适应性。
但随着油藏开采难度的进一步加大,对驱油用聚合物的耐温耐盐等性能也提出了更高的技术要求,如大庆油田出于环境保护和水资源合理利用的考虑,油田要求利用采出污水配制聚合物水溶液:胜利油田由于有大约三分之二油藏地层条件属高温高矿化度,使其至今没有找到合适的驱替剂,这些都使提高聚合物的抗温抗盐性成为国内外近来研究的焦点。
1.1.2 聚合物驱油[4-5]
聚合物驱和复合驱作为一项重要的三次采油方法近年来引起了国内外石油工程技术人员的广泛重视。
其驱替机理主要是通过减少水油的流度比,减少水的指进,达到活塞式驱替,以提高驱油剂的波及指数,从而提高油层的采收率[6-7]。
1.1.3 疏水缔合水溶性聚合物
疏水缔合水溶性聚合物,是指聚合物亲水性大分子链上带有少量疏水基团(摩尔分数为2 %~5 %)的水溶性聚合物[8]。
由于其特有的两亲结构使其溶液特性与一般水溶性聚合物溶液大相径庭。
在水溶液中,此类两亲聚电解质的疏水基团相互缔合,以及带电离子基团的静电排斥与吸引相互竞争与协同,使大分子链产生分子内或分子间的缔合作用,形成各种不同形态的胶束纳米结构—超分子网络结构[9]。
在稀溶液中,大分子主要以分子内缔合为主,使大分子链发生卷曲,流体力学体积减小,特性黏数下降。
当聚合物的浓度高于某一临界值时,大分子链形成以分子间缔合作用为主的超分子结构—“动态物理胶联网络结构”,溶液黏度大幅上升。
小分子电解质的加入使溶液的极性增加,疏水缔合作用增强[10],具有明显的抗盐性。
在高剪切作用下,疏水聚合物缔合形成的“胶联网络”被破坏,
溶液黏度下降;当剪切作用消除后,大分子间胶联网络重新形成,黏度再度恢复;而不发生一般高分子聚合物的不可逆剪切降解[11]。
此外,由于疏水缔合是熵驱动的吸热效应,其溶液具有一定的耐温增黏性,因此其在涂料、药物缓释、油气开采、污水处理以及生物大分子、纳米粒子制备等方面具有巨大的应用潜力[12-13]。
(1)合成方法
①反相微乳液聚合
反相微乳液聚合是将水溶性的单体和疏水单体在油包水乳化剂作用下,以有机物为连续相形成W/ O 微乳液;再以油溶性或水溶性引发剂引发聚合的方法。
其特点是反应速度快,分子质量高,不需对产物溶液作后处理。
赵勇用反相微乳液法对疏水型聚丙烯酰胺的合成及性能进行了研究,发现用反相微乳液聚合的大分子溶液具有更明显的增黏作用,且随疏水单体的浓度及聚合物的浓度增大而增大;而不像胶束聚合产物存在一临界“聚集”浓度值。
②无皂乳液聚合
针对胶束聚合时表面活性剂对疏水缔合聚合物溶液性质的影响及其后处理复杂等问题,从解决疏水单体水溶性着手,人们设计了两亲性的大分子单体。
由于该类单体具有两亲性,可使共聚单体在不加乳化剂条件下直接进行传统的自由基水溶液共聚合,即无皂乳液聚合,简化了反应条件,有利于工业生产与应用。
③阴离子聚合
阴离子聚合是目前惟一能按分子结构设计来合成并控制分子结构的聚合方法。
它可用于合成特定的嵌段共聚物、支化聚合物和末端带有官能团的聚合物,并使聚合按设计的分子结构、分子质量、分子质量分布进行,从而控制产品性能。
利用阴离子聚合法合成了亲水主链上带有少量疏水侧链的两亲梳状聚合物-苯乙烯接枝的1-乙氧基甲基丙烯酸乙酯/甲基丙烯酸缩水甘油酯共聚物。
Francois 采用阴离子聚合制备了聚氧乙烯端封远螯型疏水聚合物,并研究了其溶液流变性。
Tsitsilianis 等则对阴离子聚合的聚丙烯酸远螯型疏水聚合物进行了研究。
(2)疏水缔合水溶性聚合物的溶液性质[14-19]
在疏水缔合水溶性聚合物溶液内部存在局部疏水微区,或在较高浓度时存在缔合胶束聚结体[20]。
在低浓度溶液中,聚合物主要以分子内形成疏水微区为主;而在超过临界聚集浓度时,则形成分子间的疏水缔合,引起溶液黏度明显上升。
Yamamoto 和Yekta 等人[21]认为引起上述现象的原因是溶液中存在“结构”,并对
疏水端封的非离子型聚氧乙烯远螯型聚合物的溶液进行了研究。
认为在高于临界聚结浓度的稀溶液中,聚合物两端的疏水端基发生缔合并形成了“花状”聚结体;而当浓度进一步升高时,则形成较大的多个花状体的聚结物,且聚合物嵌段主链-聚氧乙烯链段在花状聚结物间形成了桥联,从而在溶液中形成了“瞬时网络”;其流变性体现为低剪切速率时的类牛顿溶液现象和在剪切变稀前轻微的剪切增稠。
Tsitsilianis 等人对聚苯乙烯疏水端封聚丙烯酸盐溶液的研究,也得到了相同的结论,但由于聚电解质的作用,其溶液存在零剪黏度和屈服应力,体现出了更为明显的“网络结构”特征。
在聚合物浓度高于临界缔合浓度时,溶液中确实存在“缔合网络结构”,其形成方式是疏水缔合水溶性聚合物在溶液中先形成链束,再以链束形成结构。
结构表现为三维立体网络状,网络状结构的“网眼”似六边形。
研究还发现疏水缔合聚合物在溶液中的质量分数低达0.001 %时,溶液中仍有结构,只是结构更疏松,似乎呈单层分布。
(3)疏水缔合聚合物的应用前景
新型疏水缔合水溶性聚合物则具有优良的耐温、耐盐及抗剪切能力,可应用于油气开采中的调剖,三次采油、钻井、压裂等工艺[23]。
另外,在污水污泥处理[24]、涂料工业[25,26]、生物医学[27]及工程材料[28]等方面也具有一定的应用。