化工原理下册概念复习
化工原理下复习小结

蒸 馏––––基本概念和基本原理 利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。
这种分离操作是通过液相和气相之间的质量传递过程来实现的。
对于均相物系,必须造成一个两相物系才能将均相混合物分离。
蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。
一、两组分溶液的气液平衡1. 拉乌尔定律 理想溶液的气液平衡关系遵循拉乌尔定律:p A =p A 0x A p B =p B 0x B =p B 0(1-x A )根据道尔顿分压定律:p A =Py A 而P =p A +p B则两组分理想物系的气液相平衡关系:0BA AB P p x p p -=-———泡点方程0A AA p x y P =———露点方程对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。
2. 用相对挥发度表示气液平衡关系 溶液中各组分的挥发度v 可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即 B A B B=A A p p x x υυ= 溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。
其表达式有: A A B A B A B B B Ay x p p x x y x υαυ=== 对于理想溶液: 00A B p p α= 气液平衡方程:1(1)x y xαα=+- α值的大小可用来判断蒸馏分离的难易程度。
α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。
3. 气液平衡相图(1)温度—组成(t -x -y )图该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。
气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。
化工原理下册复习

1、传热与传质过程阻力为零, 离开塔板时,汽液两 相达到平衡——理论板 αx
恒摩尔流假定:
yn =
n
1 + (α - 1) x n
Ln Ln1
Vn1 Vn Vn1 Vn
精馏段 提馏段
上升气体摩尔流率相等
下降液体摩尔流率相等
Ln Ln1
13、进料热状况的影响
I i F 1mol 原料变成饱和蒸汽所需的热量 q I i 原料的摩尔汽化热
2、按操作流程:间歇精馏和连续精馏; 3、按操作压强:常压蒸馏、减压蒸馏、加压蒸馏; 4、按分离组分:双组份蒸馏、多组份蒸馏。 3、蒸馏的操作费用 蒸馏是通过部分气化和部分冷凝达到提纯目的。因此 蒸馏过程的主要操作费用由冷凝费用和加热费用组成。 4、理想物系的汽液相平衡 液相为理想溶液; 气相为理想气体。
吸 收 复 习
1、吸收定义: 分离气体混合物的一种单元操作。
依据: 混合物各组分在某种溶剂中溶解度的不同
2、吸收目的: ①回收或捕获有用物质;
②除去气体中有害成分,净化气体。
溶剂的选择
(1) 溶质有较大的溶解度。
(2)较高的选择性。
(3)溶质溶解度应对温度的变化比较敏感。 (4)溶剂的蒸气压要低。 (5)应有较好的化学稳定性。 (6)较低的粘度。
F , xF
D x F xW F x D xW
V
L
W , xW
W D 1 F F
-------分别为馏出液、釜液采出率
塔顶易挥发组份的回收率: 塔釜难挥发组份的回收率:
D xD 100% F xF W( 1 - xW) = 100% 2 F( 1 - x F)
1=
精馏段物料衡算式
《化工原理》下册复习

化工原理教研室
最小回流比-一般由平衡线与q线方程交点决定
ye
xe
1 1xe
ye
q
q
1
xe
xF q 1
交点e坐标(xe,ye) 点a坐标(xD,xD)
yn1
R R
1
xn
xD R 1
Rmin xD ye Rmin 1 xD xe
Rm in
xD ye
ye xe
化工原理教研室
练习题
化工原理教研室
1、逆流操作的填料吸收塔,清水吸收原料气
中的甲醇,已知处理气量为75 kmol燥时间θ1
1
GC AU C
X1
XC
降速干燥时间θ2
2
GC AUC
XC
X*
ln
XC X* X2 X*
总干燥时间θ
XC--临界含水率 X*--平衡含水率
1 2
化工原理教研室
盘架式干燥器: 中间加热式、废气循环式
超临界流体特性 吸附等温线,吸附等温线平衡方程 膜分离类型、性质
H、t、tw、tas、td、I、cH、VH的确定
化工原理教研室
干燥要点
物料衡算
湿基含水量w、干基含水量X 绝对干物料Gc、蒸发水量W
X w 1 w
GC G11 w1 G11 w2 W G1 G2 G1w1 G2w2 GC X1 X 2
干空气用量L 湿空气用量L
L W H2 H0
L
L D
xn
D LD
xD
L RD
V R 1D
yn1
R R 1 xn
xD R 1
化工原理教研室
提馏段分析 加料板分析
化工原理下册考试复习资料

一、选择题1.吸收速率主要决定于通过双膜的扩散速度,要提高气液两流体的相对运动,提高吸收效果,则要(减少气膜和液膜厚度)2.选择吸收设备时,综合考虑吸收率大,阻力小,稳定性好结构简单造价小,一般应选(填料吸收塔)3.对接近常压的低浓度溶质的气液平衡系统,当温度和压力不变,而液相总浓度增加时其溶解度系数H 将(不变),亨利系数E将(不变)。
4.在常压下用水逆流吸空气中的CO2,若将用水量增加则出口气体中的CO2量将(减少)气相总传质系数K y将(增加),出塔液体中CO2浓度将(减少)。
5.通常所讨论的吸收操作中,当吸收剂用量趋于最小用量时,完成一定的分率(填料层高度趋向无穷大)。
6.在吸收塔某处,气相主体浓度y=0.025,液相主体浓度x=0.01,气相传质分系数k y=2kmol/(m2.h) 气相总传质系数K y=1.5kmol/(m2.h),则该处气液界面上气相浓度y i应为(0.01),平衡关系y=0.5x。
7.正常操作下的逆流吸收塔,若因某种原因使液体量减少以致液气比小于原定的最小液气比时,下列哪些情况将发生?(出塔气体浓度增加,但x不定)8.气体的亨利系数E值越大,表明气体(越难溶解)。
9.填料吸收塔空塔的速度应(小)于液泛速度。
10.对吸收操作有利的是(温度低,气体分压大时)。
11.在Y—X图上,吸收操作线总是位于平衡线的(上方)。
12.亨利定律是一个稀溶液定律,其亨利系数E值愈小,表明该气体的溶解度(愈大);温度升高,E值(愈大)。
1. 某二元混合物,其中A为易挥发组分,液相组成x A=0.6相应的泡点为tb,与之相平衡的汽相组成y A=0.7,相应的露点为td,则:(tb=td )。
2. 精馏中引入回流,下降的液相与上升的汽相发生传质使上升的汽相易挥发组分浓度提高,最恰当的说法是(液相中易挥发组分进入汽相和汽相中难挥发组分进入液相的现象同时发生)。
3.某二元混合物,汽液相平衡关系如图。
化工原理下册概念复习

第五章 气体吸收气体吸收操作的主要目的是分离气体混合物的组分。
气体吸收是气体溶解于液体的过程。
解吸操作中溶质气体的转移方向是自液相至气相。
吸收↔解吸对一定的气、液体系,温度升高,气体溶解度减小。
↓↑t p 有利于吸收↑↓t p 有利于解吸五、溶剂的选择p229吸收操作对吸收剂的要求是对欲吸收的溶质气体的溶解度大,选择性好,溶解度随温度改变的变化大,挥发度小,无毒,价廉易得。
5.2气液相平衡亨利定律稀溶液p *=Exp *=c/Hy *=mxm=E/P如总压1atm (绝压),20℃的空气与水长期接触,则水中O 2的摩尔分数x=5.24×10-6,E=4.01×104atm ,空气中O 2的摩尔分数y= 0.21如含有79%(体积)N 2的空气与水接触,温度为25℃,总压为100kP a ,查得亨利系数E =8.76×105kP a ,则液相中N 2的平衡浓度C *=5.01×10-4 kmol/m 3。
5.2.2 相平衡与吸收过程的关系(y -y *)以气相浓度差表示的吸收推动力;若相平衡常数为m ,塔内某截面的气液相含易溶组分的摩尔分数为y 及x ,当以y-y*表示总推动力,y*= mx 。
(x *-x )以液相浓度差表示的吸收推动力。
对塔内任一气液浓度分别为y,x 的截面,相际传质推动力为(x*-x),x*=y/m5.3 分子扩散费克定律T 、P 一定的一维定态:dZdC D J A AB A -= 对于二元物系,设A 为溶质气体,B 为惰气,二者摩尔浓度之和为常量,C A +C B =恒值,则分子扩散系数D AB 与D BA 的关系是D AB =D BA ,由费克定律算出A 与B 的分子扩散速率J A 与J B 。
二者关系是A J = BJ 。
非电解质稀溶液,液相分子扩散系数DAB 与绝对温度的1次方成正比对非电解质稀溶液,液相分子扩散系数D 与黏度μ的1次方成反比。
化工原理(下册)复习

18. 某二元混合物,其中A为易挥发组分,液相组成x =0.5相应的泡点为t1, 与之相平衡的汽相组成y =0.7,相应的露点为t2,则:( c ) A. t1>t2 B. t1<t2 C.t1=t2 D. 不能判断 19.在化工生产中,要提高吸收的效果,可以设法提 A 高吸收总传质系数,必须采取( ) A. 降低气膜和液膜厚度 B. 提高气膜和液膜厚度 C. 减少流体流动速度 20.下列各项中属于物性参数的是 ( B ) A.气膜吸收系数 B.分子扩散系数D C.涡流扩散系数 D.脱吸因数S
8.当空气的温度一定时,不饱和湿空气的湿球温度 总是低于干球温度,那么空气的干球温 度和湿球 温差越小,表明空气( B ) A 越干燥 B 越潮湿 C 焓值越高 D 焓值越低 9.在干燥过程中,新鲜空气在预热器中所经历的状 态变化属于( D )。 A 等焓过程 B 等相对湿度过程 C 绝热过程 D 等湿过程 10.萃取是利用各组分间的( C )差异来分离液体 混合物的。 A 挥发度 B 离散度 C 溶解度 D 密度
• 干燥过程的物、热衡算--干燥静力学 1、物料水份量表示法: • 湿、干基含水量 2、物料衡算 ①新鲜干空气用量 ②干燥产品流量 3、热量衡算 ①连续干燥系统的预热器及干燥器热量计算 ②干燥系统热效率
干燥过程的平衡关系干燥速率计算--干燥动力学
• 1、湿物料中水份存在形式 • Ⅰ)分类原则 • Ⅱ)平衡水份与自由水份 • Ⅲ)结合水份与非结合水份 • Ⅳ)四者之间互相关系 • 2、干燥时间计算 • ①恒定干燥 Ⅰ)干燥实验及曲线:X~τ, X~t • Ⅱ)干燥速率曲线 等速干燥、降速干燥,临界含水量 • Ⅲ)干燥时间 • ②变动干燥 • Ⅰ)与恒定干燥过程的比较
• 吸收塔的设计计算 1、吸收塔的物料衡算与操作线方程 ①物料衡算:全塔衡算,任意塔段衡算与操作线方程 ②吸收剂用量的决定:最小液--气比 实际液--气比确定的原则:经济性与技术性综合考虑 ③关于并流吸收:操作线方程过程特点 2、填料吸收塔高度计算方法之一 ①填料塔高度计算公式 ②传质单元数与传质单元高度 ③传质单元数的求取 Ⅰ)图解积分法 Ⅱ)解析法:解吸因子法、对数平均浓度法 Ⅲ)直接图解梯级法(Baker法)
化工原理概念复习资料

流体流动–––基本概念与基本原理一、流体静力学基本方程式)(2112z z g p p -+=ρ或 gh p p ρ+=0注意:1、应用条件:静止的连通着的同一种连续的流体。
2、压强的表示方法:绝压—大气压=表压 表压常由压强表来测量; 大气压—绝压=真空度 真空度常由真空表来测量。
3、压强单位的换算:1atm=760mmHg=10.33mH 2O=101.33kPa=1.033kgf/cm 2=1.033at 4、应用:水平管路上两点间压强差与U 型管压差计读数R 的关系:gR p p A )(21ρρ-=-处于同一水平面的液体,维持等压面的条件必须时静止、连续和同一种液体。
二、定态流动系统的连续性方程式––––物料衡算式常数常数=====≠ρρρρuA A u A u w s A 222111,常数常数======uA A u A u V s A 2211,ρ21221221///,d d A A u u A ===圆形管中流动常数ρ三、定态流动的柏努利方程式––––能量衡算式1kg 流体:f h uP gZ We u P gZ ∑+++=+++22222111ρρ[J/kg] 讨论点:1、流体的流动满足连续性假设。
2、理想流体,无外功输入时,机械能守恒式:3、可压缩流体,当Δp/p 1<20%,仍可用上式,且ρ=ρm 。
4、注意运用柏努利方程式解题时的一般步骤,截面与基准面选取的原则。
5、流体密度ρ的计算:理想气体ρ=PM/RT 混合气体 vn n v v m x x x ρρρρ+++= 2211混合液体nwnw mw mx x x ρρρρ+++=2211上式中:vi x ––––体积分率;wi x ––––质量分率。
6、gz ,u 2/2,p/ρ三项表示流体本身具有的能量,即位能、动能和静压能。
∑h f 为流经系统的能量损失。
W e 为流体在两截面间所获得的有效功,是决定流体输送设备重要参数。
化工原理下复习小结

蒸馏––––基本概念和基本原理利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。
这种分离操作是通过液相和气相之间的质量传递过程来实现的。
对于均相物系,必须造成一个两相物系才能将均相混合物分离。
蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。
一、两组分溶液的气液平衡1.拉乌尔定律理想溶液的气液平衡关系遵循拉乌尔定律:p A =p A 0x A p B =p B 0x B =p B 0(1-x A )根据道尔顿分压定律:p A =Py A而P =p A +p B则两组分理想物系的气液相平衡关系:00B A A BP p x p p −=−———泡点方程0A A A p x y P=———露点方程对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。
2.用相对挥发度表示气液平衡关系溶液中各组分的挥发度v 可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即B A B B=A A p px x υυ=溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。
其表达式有:A A BAB AB B B Ay x p p x x y x υαυ===对于理想溶液:0ABp p α=气液平衡方程:1(1)x y xαα=+−α值的大小可用来判断蒸馏分离的难易程度。
α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。
3.气液平衡相图(1)温度—组成(t -x -y )图该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。
气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理下册概念复习第五章气体吸收气体吸收操作的主要目的是分离气体混合物的组分。
气体吸收是气体溶解于液体的过程。
解吸操作中溶质气体的转移方向是自液相至气相。
吸收↔解吸对一定的气、液体系,温度升高,气体溶解度减小。
↑tp有利于吸收↓p有利于解吸↑↓t五、溶剂的选择p229吸收操作对吸收剂的要求是对欲吸收的溶质气体的溶解度大,选择性好,溶解度随温度改变的变化大,挥发度小,无毒,价廉易得。
5.2气液相平衡亨利定律稀溶液p*=Exp*=c/Hy*=mxm=E/P如总压1atm(绝压),20℃的空气与水长期接触,则水中O2的摩尔分数x=5.24×10-6,E=4.01×104atm,空气中O2的摩尔分数y= 0.21 如含有79%(体积)N2的空气与水接触,温度为25℃,总压为100kP a,查得亨利系数E=8.76×105kP a,则液相中N2的平衡浓度C*=5.01×10-4 kmol/m 3。
5.2.2 相平衡与吸收过程的关系(y -y *)以气相浓度差表示的吸收推动力;若相平衡常数为m ,塔内某截面的气液相含易溶组分的摩尔分数为y 及x ,当以y-y*表示总推动力,y*= mx 。
(x *-x )以液相浓度差表示的吸收推动力。
对塔内任一气液浓度分别为y,x 的截面,相际传质推动力为(x*-x),x*=y/m5.3 分子扩散费克定律T 、P 一定的一维定态:dZ dC D J AAB A -= 对于二元物系,设A 为溶质气体,B 为惰气,二者摩尔浓度之和为常量,C A +C B =恒值,则分子扩散系数D AB 与D BA 的关系是D AB =D BA ,由费克定律算出A 与B 的分子扩散速率J A 与J B 。
二者关系是A J = B J 。
非电解质稀溶液,液相分子扩散系数DAB 与绝对温度的1次方成正比对非电解质稀溶液,液相分子扩散系数D 与黏度μ的1次方成反比。
气体分子扩散系数p T D AB/5.1∝5.3.2 分子扩散传质速率一、 等分子反向扩散等摩尔相向扩散体现在气体解吸操作中二、分子扩散单向传质1主体流动吸收中分子扩散单向传质的物质扩散过程须考虑“主体流动”。
在分子扩散的气体吸收过程中,除了有溶质气体A分子与惰气B分子的等摩尔相向扩散外,尚存在着气相的主体流动。
漂流因子:气体吸收过程中,由于有主体流动,溶质气体的传质速率须考虑“漂流因子”。
“漂流因子”值恒大于1。
当气相中溶质气体的浓度愈高则“漂流因子”的值愈大。
在分子扩散的气体吸收过程中,按费克定律算得的A的分子扩散速率为JA,实际A的传质速率为N A,二者关系是N A>J A5.4.2 对流传质理论一、双膜理论双膜论的要点是①在紧邻气液界面的两侧,流体均为层流②可把层流层适当延伸,使湍流、过渡流的传质阻力折合为当量的层流传质阻力,倂入原层流层,形成“有效层流膜” ③过程定态双膜论假设气液两相接触且流动时,在界面两侧均存在着层流,这一论点已被实验否定5.4.4 总传质系数N A=K y(y-y*)1/K y =1/k y+m/k x1/K y :两膜总阻力1/k y :气膜阻力m/k x :液膜阻力易溶气体气膜控制:K y ≈k yN A =K x (x *-x)1/K x =1/mk y +1/k x1/K x :两膜总阻力1/mk y :气膜阻力1/k x :液膜阻力难溶气体液膜控制:K x ≈k x必须知道k y 、k x 及m ,才能判断某吸收过程属气相或液相控制。
如ky =0.013kmol/(s.m 2),kx=0.026 kmol/(s.m 2),相平衡常数m=100,则气相阻力占总阻力的多少?(1/k y )/(1/K y )=1.96%5.5低浓度气体吸收低浓度气体吸收的特点是全塔L 、V 不变,等温,y k 、xk 不变。
5.5.3 物料衡算一、 全塔物料衡算G(y 1-y 2)=L(x 1-x 2)溶质吸收率:η=( y 1-y 2)/y 1二、 操作线方程逆流:G(y-y 2)=L(x-x 2)y=L/G (x 1-x 2)+ y 2 直线三、 吸收剂用量的确定(L/G)min =(y 1-y 2)/(x 1*-x 2)5.5.4 填料层高度计算一、 气膜控制体系 ⎰-=12*y y y y y dy a K G H H OG =G/K y a 气相总传质单元高度,单位m k ya 的单位是 kmol/(s.m 3)⎰-=12*y y OG y y dy N 气相总传质单元数,无因此 H=H OG *N OG二、 液膜控制体系⎰-=12*x x x xx dx a K L H H OL =L/K x a 液相总传质单元高度,单位m⎰-=12*x x OL x x dx N 液相总传质单元数,无因次 H=H OL *N OL5.5.6 传质单元数的计算一、对数平均推动力法p248m OG yy y N ∆-=21 *22*11*22*112121ln )()(ln y y y y y y y y y y y y y m-----=∆∆∆-∆=∆ 二、吸收因数法(解析法)1/A=mG/L=m/(L/G)解吸因数A=L/mG=(L/G)/m 吸收因数∴逆流填料解吸塔,A =L/(mG)>1,当填料层无限增高,其它条件不变,则气液在塔顶平衡气液逆流解吸塔,A =L/(mG)<1,若填料层无限高,其它操作条件不变,则气液在塔底平衡5.5.7 吸收塔的设计型计算三、吸收塔的操作及调节1)某逆流吸收塔气液流量及进口浓度均不变,操作温度下降,则出塔气体浓度y2将下降。
2)逆流吸收塔,气相控制,当液、气摩尔流量L 、G 按原来比例同时增大,气液进塔浓度不变,其它操作条件不变,则出塔气体浓度y2升高3)气液逆流填料塔吸收,液相控制,液、气摩尔流量不变,只有进塔气体浓度y1增加,其它操作条件不变,则出塔气相浓度y2增大第六章 液体蒸馏蒸馏分离的依据是不同组分的挥发能力有差异。
6.1.1蒸馏概述相对挥发度αABαAB =νA /νB汽相为理想气体αAB =(y A /y B )/ (x A /x B )相对挥发度AB α=)]1/([)]1/([x x y y -- 。
y A =αx A /[1+(α-1)x A ]相平衡方程6.2双组分溶液的汽液相平衡拉乌尔定律p A =p 0A x Ax A =(P-p 0B )/(p 0A - p 0B )泡点方程:描述平衡时温度与汽相组成的关系 y A = p A /P= p 0A x A /P=(p 0A /P)[(P-p 0B )/(p 0A - p 0B )]露点方程:描述平衡时温度与液相组成的关系6.4 精馏6.4.1、精馏过程一. 精馏流程和原理2 全塔物料衡算连续定态过程总物料:F=D+W轻组分:Fz f =Dx D +Wx W用连续精馏塔处理含苯30% (均为摩尔百分数,下同)的混合液。
要求馏出液含苯95%,残液含苯1.5%且馏出液流量为10kmol/h残液流量W=22.81kmol/h2 操作线方程对板式塔精馏操作,操作线表示任一塔板同一侧的汽、液组成(摩尔分数)y 与x 的数量关系。
(1) 精馏段操作线方程精馏段操作线是对包括冷凝器在内的任意精馏塔段作易挥发组分的物料衡算导出的。
Dn n X V D X V L y )/()/(1+=+ 回流比R=L/DL=RD V=(R+1)D(2)提馏段操作线方程y’n= (L’/V’)x’n-1–(W/V’)x W 4 加料板过程分析(1)加料的热状态冷进料:t <t泡点q>1泡点进料:t=t泡点q=1汽液混合进料:t泡点<t<t露点0<q<1饱和蒸汽进料:t=t露点q=0过热蒸汽进料:t>t露点q<0q=(I-i f)/(I-i)L’=L+qF=RD+qFV’=V+(q-1)F饱和蒸汽加料,以L、L’分别表示精馏段与提馏段的液相摩尔流量,则L’=Lq线方程:两条操作线交点的轨迹p282y=qx/(q-1)-z f/(q-1)二元物系精馏操作,当全塔只分精馏段与提馏段两段,进料的q线的几何意义当Z f,q已定,任取一组(X D,X w)值,在改变回流比时,两操作线交点的轨迹就是进料的q线。
q线的斜率q/(q-1)5 理论板和板效率(1)理论板精馏操作的理论板概念的应用范围是不论是否加料、出料的板均可用在精馏操作中,蒸馏釜(再沸器)相当于1块理论板(2)板效率p3471) 总板效率E=N T /N2)默弗里单板效率定义:汽相单板效率对第n 块塔板气相默弗里效率E m,V =(1+-n n y y )/(*n y -1+n y ),其中*n y 是与x n 平衡的气相浓度液相单板效率液相默弗里效率E m,L =(x n-1-x n )/(x n-1-x n *).式中*n x 是与y n 平衡的液相浓度。
6 塔高板式塔:有效高度Z =(N-1)H TH T :板间距填料塔:有效高度ZZ =理论板数×等板高度等板高度HETP :相当于一层理论板的填料层高度p3246.4.2 基本型精馏塔的设计型计算p2841) 全回流与最少理论板数全回流特点D=0,W=0,F=0,L=V 。
∴R=L/D=∞R/ (R+1)=1精馏段操作线、提馏段成直线、对角线三线重合 操作线为:y n+1=x ny n =αx n /[1+(α-1)x n ]全回流操作α=3.0,y n =0.40,则y n-1=0.667若已知x n=0.30,则y n-1=0.7232)最小回流比R min定义:p286 N T=∞y=αx/[1+(α-1)x]y=qx/(q-1)-z f/(q-1)→(x e,y e)6.4.3基本型精馏塔的操作型计算精馏塔加料板位置从最佳加料板位置上移上一块,维持D/W不变,X D会减少若降低操作压强,其它操作条件不变,x D会增大若饱和液体加料改为过冷液体加料,则X D增大若回流比R加大,则x D增大6.4.4双组分精馏的其它类型一.塔顶部分冷凝精馏操作中,塔顶全凝器与分凝器二者中,分凝器起一块理论板的作用。
因为分凝器:汽液平衡,相当于一块理论板。
带分凝器的精馏塔,其精馏段操作线方程是由物料衡算导出的,其控制体包括精馏段上部,分凝器及全凝器二.冷液回流R/R’=L/L0=q R精馏操作中,若塔顶采用全凝器且过冷液回流,回流液q R>1,则精馏段液相流量L为回流的液相流量L R的q R倍,L与L R的单位都是kmol/s间歇精馏有哪两种典型的操作类型有恒X D与恒R两种。