岩土工程勘察报告稳定性评价1
岩土工程稳定性评价

第7章 岩土工程稳定性评价教学提示:通过本章的学习,要求学生在了解地基、基坑以及围岩稳定性评价的基本内容的基础上,能将工程地质学的基本知识点与工程实践紧密结合,理解岩土工程稳定性评价的重要意义。
教学要求:岩土工程在施工过程中必然受到自然和人为等不确定性因素的影响,使得系统的稳定性的分析成为更加复杂的工作。
学习本节内容时,要求能理论联系实际,对地基、基坑及围岩的稳定性进行系统的理解,重点是评价的目标及主体内容,以便更好地确保建设工程在施工和运行过程中稳定性,确保工程的安全、高效。
对任何地表建筑物而言,其地下工程部分均属于隐蔽建筑,它的勘察、设计和施工质量直接关系到整个建筑物的安危。
实践证明各种事故,均与地基基础有关,一旦发生问题,补救起来也非常困难。
岩土性质与结构、边坡高度与坡度、工程质量与经济等多种因素,以及地质与水文条件复杂、高填深挖或特殊需要时,路基边坡的稳定性分析就显得十分重要。
7.1 地基稳定性评价处理由于地面空间逐渐减少,在一些薄弱地段兴建工程的情况越来越多。
地层一般进入稳定变形期之后,有些建筑物不采取任何抗变形措施均可施工;但有时由于受特殊地质因素影响,地基未能达到长期稳定,将会给工程留下隐患;或者某些拟建的重要建筑物对地表稳定性要求很高,此时就应该考虑地表进入稳定期后对残余变形的影响。
地基是直接支承建(构)筑物重量的地层有天然地基与人工地基之分。
天然地基是未经加固的地基,基础直接砌置其上;人工地基是经人工加固处理后的地基,若基础埋置深度小于5 m时称为浅基,基础埋置深度等于或大于5 m时称为深基。
基础指的是建(构)筑物在地下直接与地基相接触的部分。
图7.1给出了地基与基础的示意图。
地基稳定性研究是各种建筑物与构筑物岩土工程勘察与设计中的最主要任务。
地基稳定性包括地基强度和变形两部分。
若建筑物荷载超过地基强度、地基的变形量过大,则会使建筑物出现裂隙、倾斜甚至发生破坏。
为了保证建筑物的安全稳定、经济合理和正常使用,必须研究与评价地基的稳定性,提出合理的地基承载力和变形量,使地基稳定性同时满足强度和变形两方面的要求。
建筑地基的稳定性分析和评价学习

《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。
一、地基稳定性地基稳定性,一说是地基在外部荷载(包括基础重量在内的建筑物所有的荷载)作用下抵抗剪切破坏的稳定安全程度;二说是各类工程在施工和使用过程中,地基承受荷载的稳定程度;还有表达为与地基岩土体在承受建筑荷载条件下的沉降变形、深层滑动等对工程建设安全稳定的影响程度。
因此,地基稳定性是一个很模糊的概念,其分析和评价可以包含在场地稳定性分析和评价和地基分析和评价之中。
总之,稳定性评价的目的是为了避免由于建(构)筑物的兴建可能引起地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。
按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的稳定应在定性分析的基础上进行定量分析。
评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。
二、地基稳定性分析评价内容影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。
一般情况下,需要对如下建(构)筑物进行地基稳定性评价:经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等。
通常涉及到岩土工程方面主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。
特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。
如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。
按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,根据济南地区这一问题,通常需要分析评价的内容总结如下:1、地基承载力计算与验算验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。
地基稳定性分析

地基稳定性分析建筑地基的稳定性分析和评价《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。
一、地基稳定性地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。
按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。
评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。
二、地基稳定性分析评价内容影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。
一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。
通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。
特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。
如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。
按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下:1、地基承载力计算与验算验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。
[贵州]金矿岩土地质勘察报告_secret
![[贵州]金矿岩土地质勘察报告_secret](https://img.taocdn.com/s3/m/f721e050e2bd960591c6774e.png)
一、前言(一)、工程概况拟建xx金矿位于xx省贞丰县沙坪乡烂泥沟村,距贞丰县城70Km,为xx省黔西南贞丰、望谟和册亨三县交界处,属xxxx矿业有限公司。
该项目为储存选厂排出的浮选尾矿和炭浸尾矿,需建两座尾矿库,以储存浮选尾矿和炭浸尾矿。
在选矿厂和废石场下方的沟谷里还将修筑一道滞洪坝,通过该坝收集并澄清暴雨迳流,另外,还需在浮选尾矿库的上游修建一暴雨分流坝。
根据尾矿坝的高度、库容和安全等级,浮选尾矿坝的库等级指标为Ⅱ级,炭浸尾矿坝的库等级指标为Ⅲ级。
拟建浮选尾矿坝和炭浸尾矿坝坝址区曾于2004年进行了选址勘察,共布置4条勘探线,完成了10个钻孔及6个槽探的勘探工作,钻孔深度一般20m左右,其中浮选尾矿库完成了6个钻孔、4个槽探的勘探工作、炭浸尾矿库完成了4个钻孔、2个槽探的勘察工作。
初步了解了坝址区域的岩土构成情况。
拟建浮选尾矿坝最终坝高98.0m,炭浸尾矿坝最终坝高59.0,尾矿坝破坏后果很严重,工程安全等级为一级,场地位于抗震不利地段、地形地貌较复杂,场地等级为二级,岩土种类较多,均匀性较差,地基等级为二级。
勘察等级为甲级。
该项目由高达集团有限公司进行咨询,南昌有色冶金设计研究院进行施工图设计。
我院受xx公司委托对该项目进行详细工程地质勘察,本次勘察2005年7月20日进场,2005年9月4日结束野外工作。
(二)、勘察内容及要求根据业主提供的《xx金矿尾矿库工程(水文)地质勘察及测绘任务书》,本次勘察范围:炭浸尾矿库、浮选尾矿库、分洪库、沉清库,其主要构筑物为坝体及排洪系统。
各主要构筑物特征见表一、表二:坝体部分结构特征表表一序号坝名称坝高(m)顶宽(m)底宽(m)坝基砌筑标高(m)坝长(m)使用年限(年)工程量(m3)1 炭浸尾矿坝59 6 212 410 206 13 5890002 浮选尾矿坝98 8 273 488 309 13 13210003 分洪坝 5 2 7 19 4304 沉清坝 3 4 12 40 970排洪设施部分结构特征表表二序号库名称构筑物名称材料结构(m)高/长度(m)基础高度形状尺寸(m)砌置深度(m)总荷重1炭浸尾矿库侧槽C20钢混 1.0×1.2 68 矩形 2.2 1.0 59连接井C20钢混D=3.0 3.5 圆形 4.0 4.0 59坝下涵洞C20钢混 1.2×1.65 230 矩形 2.2 2.0 592浮选尾矿库排水斜槽C20钢混双格1.4×1.8280 矩形78 隧洞C20钢混 2.5×3.0 800城门洞型783分洪库隧洞钢混 2.0×2.5 340 15根据设计单位提供的勘察任务书,本次勘察的技术要求如下:①、查明库区和坝址范围内的岩土工程地质条件,地层结构和岩土物理力学性质,对岩土的均匀性、强度和变形性状作出定性和定量评价,查明有无岩溶发育情况;②、查明场地水文地质条件,地下水埋藏条件和变化幅度,评价场地岩土渗透性,进行坝体渗透稳定性评价;③、查明库区和坝址范围发育的不良地质现象特征,评价其对工程的影响,并提出防治建议;④、确定不良地质现象防治工作所需的计算指标及资料,确定场地岩土类别,划分岩土质量单元,提供1:2000的综合工程地质测绘图、工程地质剖面图、钻孔柱状图等;⑤、根据岩土性质,进行坝基稳定性分析;⑥、提出保证坝的安全稳定和防止渗漏污染的工程措施。
岩土勘察地基均匀度及稳定性评价

岩土勘察地基均匀度及稳定性评价
为重要的一项内容,从定性和定量两方面对地基的均匀性和稳定性进行了论叙,并对在不均匀地基的基础设计中应采取的结构措施提出建议。
关键词:地基;地基均匀性;稳定性;基础设计;
1.天然地基的均匀性评价
在建筑物的天然地基浅基础设计时,设计人员最关心的是由于地基变形引起的建筑物的变形(沉降量、沉降差、倾斜及局部倾斜)而当前在进行建筑物的变形设计时多采用正常使用极限状态的原则设计,即建筑物的变形是否超过变形允许范围值,而造成地基变形最主要的原因之一就是地基存在不均匀的问题;岩土工程师在对地基的均匀性进行评价时由于《岩土工程勘察规范》和《建筑地基基础设计规范》中没有明确的评判标准可供参考,往往仅一笔带过或者只停留在定性的评价上,缺乏必要的定量分析,给岩土工程设计带来诸多不便。
1.1地基均匀性的评价范围
对天然地基的均匀性评价时应首先确定其评价的平面范围和深度范围,天然地基的均匀性评价平面范围与抗震场地评价范围既有相似而又有较大的差异,抗震的建筑场地评价多以自然村或某一街区为单位进行考虑,而建筑地基的均匀性评价时多以建筑物水平投影面积范围为标准,也即通常以建筑物角点包络线所占的面积为评价范围;但地基均匀性的评价深度范围与抗震覆盖层厚度评价具有明显不同的概念,必须有明确的定性概念,假若它的评价范围与抗震覆盖层厚度的评价范围一致,则。
场地的稳定性和适宜性怎么评价

1.场地的稳定性和适宜性怎么评价在《建筑岩土工程勘察基本术语标准》中是这样:场地稳定性:拟建场地是否存在能导致场地滑移、大的变形及破坏等严重情况的地质条件。
在实际进行评价时又要牵涉到工程的类型、规模、场地的工程地质条件、地形地貌等诸多因素。
例如在平原土质地基,就没有必要去考虑岩溶、土洞、崩塌等问题。
工程实践中的场地的稳定性和适宜性评价大致如下:一、场地的稳定性评价。
就是看场地及其临近又没有影响场地性稳定性的因素。
1、不良地质作用和地质灾害:岩溶、土洞、滑坡、泥石流、崩塌、大的沉降、地下洞室(采空区、人防洞室等)、断层、地震效应等等;2、有无边坡稳定性问题;3、有无可能影响拟建物安全的地形地貌。
二、场地的适宜性:这个问题与场地的稳定性密切相关。
但从理论的角度说,没有不能建筑的场地。
有的场地虽然存在稳定性问题或其他不利条件,但经过工程处理,仍然可以建筑,问题是需要处理的工程量和造价与拟建物的价值比。
例如我们要建一栋投资500万的多层建筑,但勘察发现场地处于一滑坡体上,如果要对滑坡进行处理,需要1000万的投资,显然不合适。
我就遇到过这类问题,最后建筑方放弃了该场地的使用。
我们在做场地和地基基础的选择评价时所要尊守的原则就是:技术经济原则。
也就是在技术上可行,经济上合理。
场地的适宜性评价还要考虑一个水的问题。
这里的水包括了地面水与地下水。
林宗元先生给我们讲过一个工程实例。
早年一个厂区在建设时由于考虑不周,选在了一个沟谷里,结果发生大的山洪,造成灾害,最后不得不迁建。
这类事例在媒体上也时有报道。
三、有些朋友在对场地进行评价时忽略了地基均匀性与稳定性的评价,这也是场地的适宜性评价必须考虑的一个方面。
例如场地总体稳定性较好,但地基存在局部均匀性与稳定性的问题,仍然会对拟建物产生不良影响。
所以我们在勘察报告中,地基均匀性与稳定性的评价是不可或缺的内容。
2.岩土工程勘察报告编写提纲与具体内容参考岩土工程勘察报告编写提纲与具体内容参考根据《岩土工程勘察规范》GB50021-2001,特别是其中14.3.3条关于岩土工程勘察报告规定的内容,结合CECS99:98《岩土工程勘察报告编制标准》,参考众多勘察报告中的优秀者,提出下面这个编写提纲及每个标题应有的内容和数据,以使勘察报告内容更充实,论证更合理,岩土参数更有适用性和可靠性,特编写本勘察报告编写提纲及有关内容指南,供勘察单位参考。
建筑工程岩土勘察及其稳定、适宜性评价

在 受 附加 应 力的 作 用 下 , 易产 生 剪切 破 坏 . 基岩起伏 较 大, 相
对 高差 大 于 5 m
( 2) 场 地 内为 岩 溶 中等 发 育 场 地 , 溶 洞较为发 育 , 遇 洞 率
为 1 9 3% . 对 基 础 下 卧 层 的 稳 定 性 不 利 。 场 地 内岩 溶 裂 隙 、 溶
勘 察 工 作 布 置 包含 5个 方 面 .即 工 程 测 量 、工 程 地 质 调
查、 工 程 钻探 、 取 样 与试 验 、 地 下 水位 观 测 。由 于拟 建 场 区受 区
4 . 2 基础 施工及 成桩 可行 性分析
拟 建 建筑 场 地 在 勘 察 期 间 未发 现 地 下 水 .故 拟 采 用人 工 挖 孔 桩基 础 不 受地 下 水 的影 响 。部 分 桩 基 础 虽 受基 岩起 伏 面
已经被 破 坏 , 场 地 等级 为 二 级 场 地 ( 中等 复 杂 场 地 ) ; 场 区 内岩 土层 种 类 单 一 , 有新填土 , 地 基 等 级 为二 级 地 基 ( 中等 复 杂 地 基) 根 据 工 程 重要 性 等级 、 场 地 复 杂 程 度 等 级 以及 地 基 复 杂
建 筑 地 基 进 行 全 面 详 细 的 勘察 , 获取 可 靠 的岩 土参 数 , 本 文根 据 具体 工 程 实 例 , 对 工 程 要 求 及 地 质 条 件 提 出合 理 的地 基 处理 方 案 , 并 对 处 理 方
案 的安 全 性 进 行 评 价 。
【 关键词 】 建筑工程 岩土勘察 i 稳定性 适宜性
级 。而在 该 工 程 在 拟 建 场地 在 本 次 勘 察 时 因前 期 校 园建 设 , 原 始 地 貌 已经被 破 坏 .现 场 地 较 为 平 整 .地 面标 高为 1 8 8 1 . 9 7 ~
岩土工程分析评价与勘察报告

THANKS
谢谢您的观看
工程地质分区
根据场地地质条件和岩土工程问题,对工程场地进行了合理的地质分 区,并提出了各分区的工程地质特征和评价。
勘察方法与质量评价
报告对采用的勘察方法进行了说明,包括勘探、原位测试、室内试验 等,并根据规范要求对勘察成果进行了质量评价。
建议与措施
设计建议
根据分析评价结果,对基础设计 、边坡治理、地下水处理等提出 了合理化建议。
岩土工程稳定性评价
边坡稳定性分析
运用极限平衡法、有限元法等对边坡的稳定性进行分析,预测可 能发生的滑坡、崩塌等地质灾害。
基础稳定性评价
根据地质勘察资料,结合建筑物荷载情况,采用地基承载力计算方 法,评估基础稳定性。
地下洞室稳定性评价
针对地下洞室,考虑围岩压力、地下水等因素,进行稳定性评价, 确保洞室施工安全。
3
政策与规划
介绍与项目相关的政策、规划及法规要求。
项目目的与任务
目的
明确项目的目的,如解决现有岩土工程问题、促进地区发展 等。
任务
详细阐述项目的具体任务,如进行地质勘察、分析评价岩土 工程条件等。
项目研究范围
研究区域
明确项目的研究区域,包括地理范围、行政区域等。
研究内容
列举项目的研究内容,如地质构造、地层岩性、水文 地质条件等。
研究方法
说明项目采用的研究方法,如野外调查、室内试验、 数值模拟等。
02
岩土工程勘察
勘察方法与技术
钻探
通过钻探获取岩土样本,了解地下岩土的分 布、性质和特征。
坑探
通过挖掘坑道,直接观察岩土的天然状态。
地球物理勘探
利用地球物理方法,如电阻率、声波、地震 等,对地下岩土进行无损探测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩土工程勘察报告(稳定性评价部分)
(第二册共二册)
院长:
总工程师:
勘察设计研究院
二O一二年十月
岩土工程勘察(稳定性评价部分)
主要责任人及岗位
生产单位负责人:
审定人:
审核人:
工程技术负责人:
目录
1前言 (1)
2稳定性分析与计算 (1)
2.1坝肩稳定性分析 (1)
2.2初期坝及后期堆积坝稳定性分析 (1)
2.3坝体稳定性计算 (2)
3影响坝体稳定性的因素分析及工程措施方案 (5)
4降低浸润线后的坝体加高计算 (5)
5结论与建议 (7)
附图一:坝体稳定性计算图(现坝高)
附图二:坝体稳定性计算图(坝体加高20m)
1前言
xxxxx尾矿库、尾矿堆积坝岩土工程勘察工作,是受龙钢集团公司木龙沟铁矿委托,根据xxxx设计研究院提出的岩土工程勘察任务书之技术要求(见附件),由我院于2006年7月~8月完成。
本册为坝体稳定性评价报告。
2稳定性分析与计算
2.1坝肩稳定性分析
据工程地质测绘结果,初期坝和堆积坝的左、右坝肩,山体形态自然完整,基岩裸露,无影响坝肩稳定的不利组合的结构面,也无崩塌、滑坡等不良地质作用,坝肩稳定,有利于坝体稳定和继续加高。
2.2初期坝及后期堆积坝稳定性分析
据调查,尾矿库初期坝为一不透水浆切片石拱坝,坝体完整,整体强度较高,未发现切石松动、坝体裂缝等变形破坏的痕迹,地基持力层为⑥-2层中风化白云岩,坝肩支撑于两侧的基岩上,坝基及坝肩的地质条件良好,初期坝的稳定性好。
仅在坝面上发现有多处渗水、漏水现象,目前不致影响坝体的稳定性。
在初期坝坝顶之上已筑有7级尾矿堆积的子坝,各级子坝高度1.60~3.80m不等,其中第三级子坝最高,达3.80m,堆积坝总高度约17.1m,总坡度比约1:3.1,各级子坝坡度约450~600,坝体形态较规则,坝体上未发现裂缝等变形破坏特征,干面滩长度约60m,综合分析认为,现状态下堆积坝体处于基本稳定状态。
据钻探揭露,坝体内浸润线较高,初期坝上方第一级马道处地下水位埋深为1.20m,已接近了初期坝顶,各子坝地下水位在排矿时接近了地表,在
第三级子坝坡脚,放矿时即有水从坡脚出逸。
坝体内较高的浸润线和局部的渗流破坏对子坝的稳定性极为不利。
2.3坝体稳定性计算
为对尾矿坝的稳定性进行定量分析评价,假设滑动面为圆弧面,采用毕肖普法(Bishop法)对尾矿坝体进行稳定性计算,计算采用的公式为:
F
S =
∑{C
i
l
i
cosα
i
+[W
i
+W
qv
-μ
i
l
i
cosα
i
]×tanΦ
i
}×(1/m
αi) ∑W i sinαi+ W qh Y eq- Y c)÷r
m
αi=cosαi+tanΦi sinαi/F s
式中:F
s
稳定系数;
C
i
第i条块滑面粘聚力(kPa);
Φ
i
第i条块滑面内摩擦角(0);
α
i
第i条块滑面与水平线的夹角(0);
l
i
第i条块滑面长度(m);
W
i
第i条块的土体重量(kN);
W
qh
水平地震惯性力(kN);
W
qv
垂直地震惯性力(kN);
μ
i
垂直作用于第i条块滑面上的孔隙水压力(kN);
Y
eq
水平地震惯性力作用线的纵坐标(m);
Y c 滑弧圆心纵坐标(m);
r 滑动圆弧半径(m)。
根据工程地质剖面图2——2′概化的现状坝体稳定性计算简图详见附
图一。
根据本次勘察室内直剪(快剪、固结快剪)、三轴固结下不排水剪切试验结果,并结合已有的工程经验,综合确定的坝体稳定性计算参数列于表2.3-1。
现状坝体稳定性计算参数表2.3-1
计算考虑了天然和全饱和两种状态。
天然状态指的是坝体现状状态,干面滩长度为60m,浸润线位置采用勘察时的浸润线位置;全包和状态是指尾矿土全部饱和,坝体上无干面滩,地下水位上升接近了坝体的表面。
计算结果列于表2.3-2
现状坝体稳定性计算结果表2.3-2
本尾矿库等级为四级,按《尾矿库安全技术规程》(AQ2006-2005)和
《碾压式土石坝设计规范》(SL274-2001)有关规定,取坝坡抗滑稳定最小安全系数在天然状态下(正常运用条件下)为1.25,全饱和状态下(非常运用条件)为1.15,考虑水平地震惯性作用力情况下取1.10,表2.3-2计算结果表明现坝高条件下:
1)天然状态、无地震力作用下,稳定安全系数最小为1.17,小于规范规定的坝坡抗滑稳定最小安全系数 1.25,表明现状条件下的坝体是不安全的;天然状态、有地震力作用下,最小稳定安全系数为1.00,小于规范规定的1.10,坝体不安全。
2)全饱和状态、无地震力和有地震力作用下的稳定安全系数最小值分别为0.92和0.86,均小于1.0,坝体不稳定。
坝体可能产生破坏的位置(滑动面位置)详见附图一。
由上可见,天然状态、有或无地震力作用坝体均不安全。
全包和、有或无地震力作用下坝体均不稳定。
现状坝体各种状态下的稳定安全系数均不满足规范的要求。
3影响坝体稳定的因素分析及工程措施方案
由于本尾矿库初期坝为不透水坝,尾矿库区内亦无有效的排渗措施,致使坝体内形成了较高的浸润线。
理论计算及工程经验均表明,当尾矿坝坝体内浸润线较高时,对坝体稳定十分不利,高的浸润线一方面降低了坝体土层的抗剪强度,同时形成较大的静、动水压力,增大了下滑力。
因此坝体中较高的浸润线成为影响坝体稳定的最主要因素。
据调查,放矿时在第三级子坝坡脚出现渗流,若不采取措施降低地下水位,将影响堆积坝的稳定,也无法进行尾矿坝的继续加高。
根据尾矿坝场地条件及坝体底层条件,建议在初期坝后缘第一级或第二
级马道一带设置降水井、初期坝上设置排渗孔等措施降低坝体内浸润线,降水方案应进行专门的设计工作。
设计所需的各层土的渗透系数建议如下:
①层尾中砂 k=4.9×10-3cm/s
②-1、②-2 层尾粉细砂 k=1.0×10-3cm/s
③层尾粉土 k=3×10-5cm/s
④层尾粉质粘土 k=3×10-6cm/s
4降低浸润线后的坝体加高计算
当坝体内浸润线降低至③层粉土顶部(如附图二所示的位置)、干面滩长度为50m,对坝体加高的可能性进行了计算,加高部分的尾矿土安尾中砂、尾粉细砂考虑,其计算参数取综合值,详见表4.1。
加高后坝体稳定性计算参数表4.1
计算考虑了降水后和全饱和两种状态。
假设降水后的浸润线如图(附图二)所示,干面滩长度为50m。
计算结果列于表4.2。
坝体加高后稳定性结果表4.2
表4.2计算结果表明,降水后坝体加高20m时:
1)天然状态、无地震力作用下,稳定安全系数最小为2.12,有地震力作用时稳定安全系数最小为1.92,均大于规范规定的坝坡抗滑稳定最小安全系数1.25,坝体安全。
2)全包和状态、无地震力和有地震力作用下的稳定安全系数最小值分别为0.98和0.88,均小于1.0,坝体不稳定。
坝体可能产生破坏的位置(滑动面位置)详见附图二。
由上可见,在采取有效降水措施,满足初期坝后的浸润线深度值到16m 以下的条件,则坝体加高20m是可行的。
5结论与建议
1)现状坝体天然状态、无地震力作用下,稳定安全系数最小值为1.17,小于规范规定的坝坡抗滑稳定最小安全系数1.25,现状条件下坝体是不安全的;天然状态、有地震力作用下,最小稳定安全系数为1.00,小于规范规定的1.10,坝体不安全。
全包和状态、有地震力和无地震力作用下稳定安全系数最小值分别为0.92和0.86,均小于1.0,坝体不稳定。
现状坝体各种状态下的稳定安全系数均不满足规范的要求。
2)坝体中较高的浸润线是影响坝体稳定的主要因素。
建议尽快采取措施降低坝体内的地下水位。
3)降水后(浸润线降至附图二所示位置时),坝体加高20m,(坝顶标高1001.70m),天然状态、有地震力或无地震力作用下的坝体稳定性系数最小值分别为2.12和1.92,均大于规范规定的坝坡抗滑稳定最小安全系数,坝体安全;全包和状态、无地震力和有地震力作用下的稳定安全系数最小值分别为0.98和0.88,均小于1.0,坝体不稳定。
4)在尾矿库的生产运营中应避免出现坝体全饱和的情况,干面滩长度不得小于50m。
各级子坝堆筑应规范,应委托设计单位进行堆积坝的设计,给出安全的各级坝高度及坡比,并建议在后期子坝堆筑过程中在子坝坝体内设置排渗设施。
5)雨季必须确保尾矿库排水涵管及其放水孔、泄洪口以及坝顶左右坝肩处排洪渠的溢洪畅通,应制定严格的尾矿库管理制度,确保尾矿库安全有效的运行。
6)本次勘察评价只对垂直坝轴线的中间剖面进行了工作,建议业主在有条件时补充两侧剖面勘察评价工作。