高中数学 第一章 章末检测(B)新人教A版选修11(1)
09-章末培优专练高中数学必修一人教A版

= {|是高三(2)班参加田赛的学生},card = 11, = {|是高三
(2)班参加径赛的学生},card = 10, = {|是高三(2)班既参加
田赛也参加径赛的学生},card = 4,那么高三(2)班参加田径运动会
的学生人数为( D )
A.25
B.14
C.15
D.17
【解析】 由题意得 = ∩ ,且 ∪ = {|是高三(2)班参加田径
运动会的学生},所以
card ∪ = card + card − card ∩ = 11 + 10 − 4 = 17.
2.(多选)[2024黑龙江龙东五地市联考]中国古代重要的数学著作《孙子
+2 = 5 × 46 + 3 = 7 × 33 + 2,故233 ∈ ∩ ∩ ,故D正确.
3.已知是非空数集,若非空集合1,2满足以下三个条件,则称 1, 2
为集合的一种真分拆,并规定 1, 2 与 2, 1 为集合的同一种真分拆.
①1 ∩ 2 = ⌀ ;②1 ∪ 2 = ;③ = 1,2 的元素个数不是 中的元素.
C.∁ ∩
D. ∪ ∁
【解析】 ∪ = {| < 2},所以∁ ( ∪ ) = {| ≥ 2},故选A.
8.[2023新课标Ⅱ卷·2,5分]设集合 = {0,−}, = {1, − 2,2 − 2},若
⊆ ,则 =( B
A.2
)
B.1
2
C.
> 0且 ≠ 1,为使 最小,则 = {0,± ,±+1 ,±+2 } ∈ ,此
2019-2020年高中数学 第一章 单元检测卷(B)新人教A版必修1

2019-2020年高中数学 第一章 单元检测卷(B )新人教A 版必修1一、选择题(本大题共12小题,每小题5分,共60分)1.下列各组对象中不能构成集合的是( )A .北京尼赏文化传播有限公司的全体员工B .xx 年全国经济百强县C .xx 年全国“五一”劳动奖章获得者D .美国NBA 的篮球明星2.能表示直线x +y =2与直线x -y =4的公共点的集合是( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}3.设全集U =R ,集合A ={x ||x |≤3},B ={x |x <-2或x >5},那么如图所示的阴影部分所表示的集合为( )A .[-3,5)B .[-2,3]C .[-3,-2)D .(-∞,3]∪[5,+∞)4.设全集U =R ,集合A ={x |0<x <2},B ={x |x >1},则集合A ∩∁U B 等于( )A .{x |1<x <2}B .{x |1≤x <2}C .{x |0<x <1}D .{x |0<x ≤1}5.若集合A 、B 、C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系是( )A .ACB .CAC .A ⊆CD .C ⊆A6.已知f (x )、g (x )为实数函数,且M ={x |f (x )=0},N ={x |g (x )=0},则方程[f (x )]2+[g (x )]2=0的解集是( )A .MB .NC .M ∩ND .M ∪N7.满足M ⊆{a 1,a 2,a 3,a 4}且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1个B .2个C .3个D .4个8.方程组⎩⎪⎨⎪⎧x -y =-32x +y =6的解集的正确表示方法为( ) A .{1,4} B .{4,1}C .{(1,4)}D .{x =1,y =4}9.已知集合A ={0,2,3},B ={x |x =a ·b ,a ,b ∈A },则集合B 的子集的个数是( )A .4个B .8个C .15个D .16个10.集合M 由正整数的平方组成,即M ={1,4,9,16,25,…},若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的.M 对下列运算封闭的是( )A .加法B .减法C .乘法D .除法11.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ∩N ≠∅,则k 的取值范围是( )A .(-∞,2]B .[-1,+∞)C .(-1,+∞)D .[-1,2]12.设P 、Q 为两个非空实数集合,定义集合运算:P *Q ={z |z =ab (a +b ),a ∈P ,b ∈Q },若P ={0,1},Q ={2,3},则P *Q 中元素之和是( )A .0B .6C.12二、填空题(13.设集合A={x|-3≤x≤2},B={x|2k-1≤x≤2k+1},且A⊇B,则实数k的取值范围为________.14.定义两个数集A,B之间的距离是|x-y|min(其中x∈A,y∈B).若A={y|y=x2-1,x ∈Z},B={y|y=5x,x∈Z},则数集A,B之间的距离为______________.15.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x组成的集合为____________.16.若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},B⊆A,则实数m的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)已知全集U={1,2,3,4,5},集合A={x|x2-5x+q=0,x∈U},求q的值及∁U A. 18.(12分)已知全集U=R,集合M={x|x≤3},N={x|x<1},求M∪N,(∁U M)∩N,(∁U M)∪(∁U N).19.(12分)已知全集U={x∈P|-1≤x≤2},集合A={x|0≤x<2}、集合B={x|-0.1<x≤1}.(1)若P=R,求∁U A中最大元素m与∁U B中最小元素n的差m-n的值;(2)若P=Z,证明:(∁U B)∪A=U.20.(12分)已知全集U={|a-1|,(a-2)(a-1),4,6};(1)若∁U(∁U B)={0,1},求实数a的值;(2)若∁U A={3,4},求实数a的值.21.(12分)设集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}.(1)若m=4,求A∪B;(2)若B⊆A,求实数m的取值范围.22.(12分)已知集合A ={x |ax 2+2x +1=0,a ∈R ,x ∈R }.(1)若A 中只有一个元素,求a 的值,并求出这个元素;(2)若A 中至多只有一个元素,求a 的取值范围.第一章 集 合(B)1.D [根据集合中元素的确定性来判断是否构成集合.因为A 、B 、C 中所给对象都是确定的,从而可以构成集合;而D 中所给对象不确定,原因是没有具体的标准衡量一位美国NBA 球员是否是篮球明星,故不能构成集合.]2.D [选项A 不是集合的表示方法;选项B 代表点的坐标,也不是集合的表示;选项C 是表示了集合,但里面的元素是3和-1,而两条直线的公共点是一个坐标,表示由这样的点构成的集合应把点的坐标放在集合中.]3.B [化简集合A ,得A ={x |-3≤x ≤3},集合B ={x |x <-2或x >5},所以A ∩B ={x |-3≤x <-2},阴影部分为∁A (A ∩B ),即为{x |-2≤x ≤3}.]4.D [因为∁U B ={x |x ≤1},所以A ∩∁U B ={x |0<x ≤1}.]5.C [∵A ∩B =A ,∴A ⊆B ,∵B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选C.]6.C [若[f (x )]2+[g (x )]2=0,则f (x )=0且g (x )=0,故[f (x )]2+[g (x )]2=0的解集是M ∩N .]7.B 8.C9.A [B ={0,6},子集的个数为22=4个.]10.C [设a 、b 表示任意两个正整数,则a 2、b 2的和不一定属于M ,如12+22=5∉M ;a 2、b 2的差也不一定属于M ,如12-22=-3∉M ;a 2、b 2的商也不一定属于M ,如1222=14∉M ;因为a 、b 表示任意两个正整数,a 2·b 2=(ab )2,ab 为正整数,所以(ab )2属于M ,即a 2、b 2的积属于M .故选C.]11.B12.D [∵P ={0,1},Q ={2,3},a ∈P ,b ∈Q ,故对a ,b 的取值分类讨论.当a =0时,z =0;当a =1,b =2时,z =6;当a =1,b =3时,z =12.综上可知:P *Q ={0,6,12},元素之和为18.]13.[-1,12] 解析 由题意,∴实数k 的取值范围为[-1,12]. 14.0解析 集合A 表示函数y =x 2-1的值域,由于x ∈Z ,所以y 的值为-1,0,3,8,15,24,….集合B 表示函数y =5x 的值域,由于x ∈Z ,所以y 的值为0,5,10,15,….因此15∈A ∩B .所以|x -y |min =|15-15|=0.15.{-3,2}解析 ∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3和2符合集合中元素的互异性,故所求的集合为{-3,2}.16.[-1,+∞)解析 ∵B ⊆A ,当B =∅时,得2m -1>m +1,∴m >2,当B ≠∅时,解得-1≤m ≤2.综上所述,m 的取值范围为m ≥-1.17.解 设方程x 2-5x +q =0的两根为x 1、x 2,∵x ∈U ,x 1+x 2=5,∴q =x 1x 2=1×4=4或q =x 1·x 2=2×3=6.当q =4时,A ={x |x 2-5x +4=0}={1,4},∴∁U A ={2,3,5};当q =6时,A ={x |x 2-5x +6=0}={2,3},∴∁U A ={1,4,5}.18.解 由题意得M ∪N ={x |x ≤3},∁U M ={x |x >3},∁U N ={x |x ≥1},则(∁U M )∩N ={x |x >3}∩{x |x <1}=∅,(∁U M )∪(∁U N )={x |x >3}∪{x |x ≥1}={x |x ≥1}.19.(1)解 ∁U A ={x |-1≤x <0,或x =2},∴m =2,又∁U B ={x |-1≤x ≤0.1,或1<x ≤2},∴n =-1,∴m -n =2-(-1)=3;(2)证明 ∵P =Z ,∴U ={-1,0,1,2},A ={0,1},B ={0,1},∴∁U B ={-1,2},从而(∁U B )∪A =U .20.解 (1)∵∁U (∁U B )=B ={0,1},且B ⊆U ,∴|a -1|=0,且(a -2)(a -1)=1;或|a -1|=1,且(a -2)(a -1)=0;第一种情况显然不可能,在第二种情况中由|a -1|=1得a =0或a =2,而a =2适合(a -2)(a -1)=0,∴所求a 的值是2;(2)依题意知|a -1|=3,或(a -2)(a -1)=3,若|a -1|=3,则a =4或a =-2;若(a -2)(a -1)=3,则a =3±132, 经检验知a =4时,(4-2)(4-1)=6,与集合中元素的互异性相矛盾,∴所求的a 的值是-2,或3±132. 21.解 (1)当m =4时,A ={x ∈R|2x -8=0}={4},B ={x ∈R|x 2-10x +16=0}={2,8}, ∴A ∪B ={2,4,8}.(2)若B ⊆A ,则B =∅或B =A .当B =∅时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)<0,得m <-12; 当B =A 时,有Δ=[-2(m +1)]2-4m 2=4(2m +1)=0,且--2m +12=4,解得m 不存在. 故实数m 的取值范围为(-∞,-12).22.解 A 中元素x 即为方程ax 2+2x +1=0(a ∈R ,x ∈R)的解.(1)∵A 中只有一个元素,∴ax 2+2x +1=0只有一解.当a =0时,方程为2x +1=0,解得x =-12符合题意; 当a ≠0且Δ=4-4a =0即a =1时,方程的解x 1=x 2=-1,此时A 中也只有一元素-1.综上可得:当a =0时,A 中的元素为-12;当a =1时,A 中的元素为-1. (2)若A 中只有一个元素,由(1)知a =0或a =1,若A 中没有元素,即方程ax 2+2x +1=0无解,解得a >1,综上可得:a >1或a =0或a =1..。
人教版A版第一章高二数学选择性必修第一册第一章空间向量与立体几何章末测试(解析版)

人教版A 版第一章高二数学选择性必修第一册第一章空间向量与立体几何章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个正确的选项,5分/题,共40分)1.(2020·宜昌天问教育集团高二期末)在正四面体P ABC -中,棱长为2,且E 是棱AB 中点,则PE BC ⋅的值为()A .1-B .1C D .73【答案】A 【解析】如图所示由正四面体的性质可得:PA BC ⊥可得:0PA BC ⋅=E 是棱AB 中点()12PE PA PB \=+u u u r u u u r u u u r ()111122cos12012222PE BC PA PB BCPA BC PB BC \+-o u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选:A【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.2.(2020·宜昌高二期末)已知PA =(2,1,﹣3),PB =(﹣1,2,3),PC =(7,6,λ),若P ,A ,B ,C 四点共面,则λ=()A .9B .﹣9C .﹣3D .3【答案】B【解析】由P ,A ,B ,C 四点共面,可得,,PA PB PC 共面,(2,2,33)(7,6,)xPA yPB x y x y C y P x λ∴=+=-+-+=,272633x y x y x y λ-=⎧⎪+=⎨⎪-+=⎩,解得419x y λ=⎧⎪=⎨⎪=-⎩.故选:B.3.(2020·全国高二课时练习)下列说法正确的是()A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底,所以A 错.B 项,空间基底有无数个,所以B 错.D 项中因为基底不唯一,所以D 错.故选C .4.(2020·全国高二课时练习)若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则()A .l α⊂B .//l αC .l α⊥D .l 与α相交【答案】C【解析】∵直线l 的方向向量为()1,2,3a =-,平面α的法向量为()3,6,9n =--,∴13a n =-,∴a n ,∴l α⊥.故选C .5.(2020·河北新华.石家庄二中高一期末)在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为()A .16B .14C .16-D .14-【答案】A【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系.设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,,∴()()11,1,2,1,2,1MN OD =-=--.则1111cos ,6MN OD MN OD MN OD ⋅===.∴异面直线MN 与1OD 所成角的余弦值为16,故选A.6.(2020·吉化第一高级中学校)已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于()A .23B.3C .23D .13【答案】A【解析】设1AB=11BD BC DC ∴===,1BDC ∆面积为3211C BDC C BCDV V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴==7.(2020·延安市第一中学高二月考)在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为()A 3λB .22C .23λD .55【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1),设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d =||5||55EM n n ⋅==,N 为EM 中点,所以N 到该面的距离为55故选:D.8.(2019·黑龙江大庆四中高二月考)已知空间直角坐标系O xyz -中,()1,2,3OA =u u u r ,()2,1,2OB =u u u r,()1,1,2OP =uu u r,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为()A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭【答案】C【解析】设(,,)Q x y z ,由点Q 在直线OP 上,可得存在实数λ使得OQ OP λ=,即(,,)(1,1,2)x y z λ=,可得(,,2)Q λλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+,根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q .故选:C.二、多选题(每题不止一个正确的选项,5分/题,共20分)9.(2020·河北省盐山中学高一期末)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则()A .11B E A B⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B uuu r不垂直,故A 错误;1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误;在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△,故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2242R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确.故选:CD.10.(2020·福建厦门。
人教A版高中数学选修一第一章测试题

第一章测试题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“a >0”是“|a |>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 本题考查充要条件的判断,∵a >0⇒|a |>0,|a |>0D ⇒/a >0,∴“a >0”是“|a |>0”的充分不必要条件.答案 A2.命题“∀x ∈R ,x 2-2x +4≤0”的否定为( )A .∀x ∈R ,x 2-2x +4≥0B .∀x ∉R ,x 2-2x +4≤0C .∃x ∈R ,x 2-2x +4>0D .∃x ∉R ,x 2-2x +4>0答案 C3.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 tan(2k π+π4)=tan π4=1,所以充分;但反之不成立,如tan 5π4=1.答案 A4.下列命题中的假命题是( )A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0C.∃x∈R,lg x<1 D.∃x∈R,tan x=2解析对于B选项x=1时,(x-1)2=0,故选B.答案 B5.如果命题“綈p”为真,命题“p∧q”为假,那么()A.q为假B.q为真C.p或q为真D.p或q不一定为真解析∵命题“綈p”为真,∴命题“p”为假,又“p∧q”为假,∴q可真也可以假.∴p或q可真也可以假,故应选D.答案 D6.下列说法正确的是()①原命题为真,它的否命题为假;②原命题为真,它的逆命题不一定为真;③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真.A.①②B.②③C.③④D.②③④答案 B7.设{a n}是首项大于零的等比数列,则“a1<a2”是“数列{a n}是递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案 C8.下列命题中的假命题是()A. ∀x >0且x ≠1,都有x +1x >2B. ∀a ∈R ,直线ax +y =a 恒过定点(1,0)C. ∀φ∈R ,函数y =sin(x +φ)都不是偶函数D .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减解析 A .当x >0时,x +1x ≥2 x ·1x =2,∵x ≠1,∴x +1x >2,故A 为真命题.B .将(1,0)代入直线ax +y =a 成立,B 为真命题.C .当φ=π2时,函数y =sin(x +π2)是偶函数,C 为假命题.D .当m =2时,f (x )=x -1是幂函数,且在(0,+∞)上单调递减,∴D 为真命题,故选C.答案 C9.下列选项中,p 是q 的必要不充分条件是( )A .p :a +c >b +d ,q :a >b ,且c >dB .p :a >1,b >1,q :f (x )=a x -b (a >0,且a ≠1)的图象不过第二象限C. p :x =1,q :x 2=xD .p :a >1,q :f (x )=log a x (a >0,且a ≠1)在(0,+∞)上为增函数答案 A10.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B.命题“∀x∈N,x3>x”的否定是“∃x0∈N,x30>x0”C.“a=1”是“函数f(x)=cos2ax-sin2ax的最小正周期为π”的必要不充分条件D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充要条件解析∵“负数的平方是正数”即∀x<0,则x2>0,是全称命题,∴A不正确;∵对全称命题“∀x∈N,x3>x”的否定是“∃x0∈N,x30≤x0”,∴B不正确;∵f(x)=cos2ax-sin2ax=cos2ax,当最小正周期为π时,有2π|2a|=π.∴|a|=1D⇒a=1,∴a=1是“函数f(x)=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故C不正确;D正确.答案 D11.下列四个命题中,其中真命题是()①“若xy=1,则lg x+lg y=0”的逆命题;②“若a·b=a·c,则a⊥(b-c)”的否命题;③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“等边三角形的三个内角均为60°”的逆命题.A.①②B.①②③④C.②③④D.①③④解析①逆命题:“若lg x+lg y=0,则xy=1”为真命题.②逆命题:“若a⊥(b-c),则a·b=a·c”为真命题,根据逆命题与否命题的等价性,则否命题也为真命题.③当b≤0时,Δ=4b2-4(b2+b)=-4b≥0,知方程有实根,故原命题为真命题,所以逆否命题也为真命题.④真命题.答案 B12.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析 ∀x ∈[1,2],x 2-a ≥0,即a ≤x 2,当x ∈[1,2]时恒成立,∴a ≤1.∃x 0∈R ,x 20+2ax 0+2-a =0,即方程x 2+2ax +2-a =0有实根,∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎨⎧ a ≤1,a ≤-2,或a ≥1.∴a ≤-2,或a =1.答案 A 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.写出命题:“若方程ax 2-bx +c =0的两根均大于0,则ac >0”的一个等价命题是________.解析 一个命题与其逆否命题等价,因此只要写出原命题的逆否命题即可.答案 若ac ≤0,则方程ax 2-bx +c =0的两根不都大于014.已知p :x 2-x ≥2,q :|x -2|≤1,且p ∧q 与綈q 同时为假命题,则实数x 的取值范围为________.解析 由x 2-x ≥2,得x ≥2,或x ≤-1,|x -2|≤1,得1≤x ≤3,∵p ∧q 与綈q 同时为假命题,∴q 为真命题,p 为假命题,∴1≤x <2.答案 1≤x <215.已知直线l 1:2x -my +1=0与l 2:x +(m -1)y -1=0,则“m =2”是l 1⊥l 2的________条件.解析 若l 1⊥l 2,只需2×1+(-m )(m -1)=0,即m 2-m -2=0,即m =2,或m =-1,∴m =2是l 1⊥l 2的充分不必要条件.答案 充分不必要16.下列四种说法:①命题“∀x ∈R ,都有x 2-2<3x ”的否定是“∃x ∈R ,使得x 2-2≥3x ”;②若a ,b ∈R ,则2a <2b 是log 12a >log 12b 的必要不充分条件;③把函数y =sin(-3x )(x ∈R )的图象上所有的点向右平移π4个单位即可得到函数y =sin(-3x -π4)(x ∈R )的图象;④若向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为2π3,则|a+b |= 3.其中正确的说法是________.解析 ①正确.②若2a <2b ,则a <b ,当a 或b 为负数时,log 12a >log 12b 不成立,若log 12a >log 12b ,∴0<a <b ,∴2a <2b .故②正确.③把y =sin(-3x )的图象上所有点向右平移π4,得到y =sin[-3(x-π4)]=sin(-3x +3π4),故③不正确.④由题可知,a ·b =1×2cos 2π3=-1,∴|a +b |2=a 2+2a ·b +b 2=3,∴|a +b |=3,故④正确.答案 ①②④三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假.(1)平面内,凸多边形的外角和等于360°;(2)有一些奇函数的图象过原点;(3)∃x 0∈R,2x 20+x 0+1<0;(4)∀x ∈R ,sin x +cos x ≤ 2.解 (1)可以改写为“平面内,所有凸多边形的外角和等于360°”,故是全称命题,且为真命题.(2)“有一些”是存在量词,故该命题为特称命题,显然是真命题.(3)是特称命题.∵2x 20+x 0+1=2(x 0+14)2+78>0,∴不存在x 0∈R ,使2x 20+x 0+1<0,故该命题为假命题.(4)是全称命题.∵sin x +cos x =2sin(x +π4)≤2恒成立,∴对任意的实数x ,sin x +cos x ≤2都成立,故该命题是真命题.18.(12分)写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题,并判断其真假.解 逆命题为:“已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集”.由a 2≥4b 知,Δ=a 2-4b ≥0.这说明抛物线y =x 2+ax +b 与x 轴有交点,那么x 2+ax +b ≤0必有非空解集.故逆命题是真命题.19.(12分)设集合M ={x |y =log 2(x -2)},P ={x |y =3-x },则“x ∈M 或x ∈P ”是“x ∈(M ∩P )”的什么条件?解 由题设知,M ={x |x >2},P ={x |x ≤3}.∴M ∩P =(2,3],M ∪P =R当x ∈M ,或x ∈P 时x ∈(M ∪P )=RD ⇒/x ∈(2,3]=M ∩P .而x ∈(M ∩P )⇒x ∈R∴x∈(M∩P)⇒x∈M,或x∈P.故“x∈M,或x∈P”是“x∈(M∩P)”的必要不充分条件.20.(12分)写出下列各命题的否定形式并分别判断它们的真假.(1)面积相等的三角形是全等三角形;(2)有些质数是奇数;(3)所有的方程都不是不等式;(4)自然数的平方是正数.解原命题的否定形式:(1)面积相等的三角形不一定是全等三角形,为真命题.(2)所有质数都不是奇数,为假命题.(3)至少存在一个方程是不等式,为假命题.(4)自然数的平方不都是正数,为真命题.21.(12分)已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a-3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.解对于命题p:当0<a<1时,函数y=log a(x+3)在(0,+∞)上单调递减.当a>1时,函数y=log a(x+3)在(0,+∞)上单调递增,所以如果p为真命题,那么0<a<1.如果p为假命题,那么a>1.对于命题q:如果函数y=x2+(2a-3)x+1的图象与x轴交于不同的两点,那么Δ=(2a -3)2-4>0,即4a 2-12a +5>0⇔a <12,或a >52.又∵a >0,所以如果q 为真命题,那么0<a <12或a >52.如果q 为假命题,那么12≤a <1,或1<a ≤52.∵p ∨q 为真,p ∧q 为假,∴p 与q 一真一假.如果p 真q 假,那么⎩⎪⎨⎪⎧ 0<a <1,12≤a <1,或1<a ≤52,⇔12≤a <1. 如果p 假q 真,那么⎩⎪⎨⎪⎧ a >1,0<a <12,或a >52,⇔a >52.∴a 的取值范围是[12,1)∪(52,+∞). 22.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0.命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)当a =1,且p ∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围. 解 (1)由x 2-4ax +3a 2<0,得a <x <3a (a >0).当a =1时,1<x <3,所以p :1<x <3.由⎩⎨⎧ x 2-x -6≤0,x 2+2x -8>0,解得2<x ≤3,所以q :2<x ≤3.若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是{x |2<x <3}.(2)设A ={x |x 2-4ax +3a 2<0,a >0}={x |a <x <3a ,a >0},B =⎩⎪⎨⎪⎧ x ⎪⎪⎪⎪⎭⎪⎬⎪⎫⎩⎨⎧ x 2-x -6<0,x 2+2x -8>0={x |2<x ≤3}.根据题意可得B A ,则0<a ≤2且3a >3,即1<a ≤2. 故实数a 的取值范围是{a |1<a ≤2}.。
新人教A版必修5高中数学第一章解三角形章末检测(B)

第一章 解三角形章末检测(B )新人教A 版必修5(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.在△ABC 中,a =2,b =3,c =1,则最小角为( ) A.π12 B.π6 C.π4 D.π32.△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( ) A.π6 B.π3 C.π2 D.2π33.在△ABC 中,已知||=4,|AC →|=1,S △ABC =3,则AB →²AC →等于( )A .-2B .2C .±4D .±24.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 25.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C的值为( )A.85B.58C.53D.356.已知锐角三角形的边长分别为2,4,x ,则x 的取值范围是( )A .1<x < 5 B.5<x <13 C .1<x <2 5 D .23<x <2 57.在△ABC 中,a =15,b =10,A =60°,则cos B 等于( )A .-223 B.223C .-63 D.638.下列判断中正确的是( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解 C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 9.在△ABC 中,B =30°,AB =3,AC =1,则△ABC 的面积是( )A.34B.32C.3或32D.32或3410.在△ABC 中,BC =2,B =π3,若△ABC 的面积为32,则tan C为( )A. 3 B .1 C.33 D.3211.在△ABC 中,如果sin A sin B +sin A cos B +cos A sin B +cos A cos B =2,则△ABC 是( )A .等边三角形B .钝角三角形C .等腰直角三角形D .直角三角形 12.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则角C 的度数是( ) A .60° B .45°或135°13.在△ABC 中,若sin A a=cos Bb,则B =________.14.在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为________.15.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔64海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/小时.16.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A =________.三、解答题(本大题共6小题,共70分)17.(10分)如图,H 、G 、B 三点在同一条直线上,在G 、H 两点用测角仪器测得A的仰角分别为α,β,CD=a,测角仪器的高是h,用a,h,α,β表示建筑物高度AB.18.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2b sin A.(1)求B的大小.(2)若a=33,c=5,求b.19.(12分)如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;(2)求四边形OPDC面积的最大值.20.(12分)为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如示意图).飞机能够测量的数据有俯角和A ,B 间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.21.(12分)在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b . (2)若sin B =2sin A ,求△ABC 的面积.22.(12分) 如图所示,扇形AOB ,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.第一章 解三角形 章末检测 答案 (B)1.B [∵a >b >c ,∴C 最小.∵cos C =a 2+b 2-c 22ab =22+32-122³2³3=32,又∵0<C <π,∴C =π6.]2.B [∵p ∥q ,∴(a +c )(c -a )-b (b -a )=0. ∴c 2=a 2+b 2-ab ,∵c 2=a 2+b 2-2ab cos C ,∴cos C =12,又∵0<C <π,∴C =π3.]∴||²|AC →|²sin A =12³4³1³sin A = 3. ∴sin A =32.又∵0°<A <180°,∴A =60°或120°.²AC →=|AB →|²|AC →|cos A=4³1³cos A =±2.] 4.D [由正弦定理得b sin B =csin C, ∴sin C =c ²sin B b =2sin 120°6=12,∵c <b ,∴C 为锐角.∴C =30°,∴A =180°-120°-30°=30°. ∴a =c = 2.]5.D [由余弦定理得BC 2=AB 2+AC 2-2AB ²AC ²cos A , 即72=52+AC 2-10AC ²cos 120°,∴AC =3.由正弦定理得sin B sin C =AC AB =35.]6.D [由题意,x 应满足条件⎩⎪⎨⎪⎧22+42-x 2>022+x 2-42>0解得:23<x <2 5.]7.D [由正弦定理得15sin 60°=10sin B.∴sin B =10²sin 60°15=33.∵a >b ,A =60°,∴B <60°. ∴cos B =1-sin 2B =1-332=63.]8.B [A :a =b sin A ,有一解; B :A >90°,a >b ,有一解; C :a <b sin A ,无解;D :c >b >c sin B ,有两解.]9.D [由余弦定理AC 2=AB 2+BC 2-2AB ²BC cos B ,∴12=(3)2+BC 2-2³3³BC ³32.整理得:BC 2-3BC +2=0. ∴BC =1或2.当BC =1时,S △ABC =12AB ²BC sin B =12³3³1³12=34.当BC =2时,S △ABC =12AB ²BC sin B =12³3³2³12=32.]10.C [由S △ABC =12BC ²BA sin B =32得BA =1,由余弦定理得AC 2=AB 2+BC 2-2AB ²BC cos B ,∴AC =3,∴△ABC 为直角三角形, 其中A 为直角,∴tan C =AB AC =33.]11.C [由已知,得cos(A -B )+sin(A +B )=2, 又|cos(A -B )|≤1,|sin(A +B )|≤1, 故cos(A -B )=1且sin(A +B )=1, 即A =B 且A +B =90°,故选C.] 12.B [由a 4+b 4+c 4=2c 2a 2+2b 2c 2,得cos 2C =a 2+b 2-c 22ab2=a 4+b 4+c 4+2a 2b 2-2c 2a 2-2b 2c 24a 2b 2=12⇒cos C =±22.∴角C 为45°或135°.]13.45°解析 由正弦定理,sin A a =sin Bb.∴sin B b =cos Bb.∴sin B =cos B .∴B =45°.14.10 3解析 设AC =x ,则由余弦定理得: BC 2=AB 2+AC 2-2AB ²AC cos A ,∴49=25+x 2-5x ,∴x 2-5x -24=0. ∴x =8或x =-3(舍去).∴S △ABC =12³5³8³sin 60°=10 3.15.8 6解析 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =64³32=326,∴v =MN4=86(海里/小时).16.33解析 由(3b -c )cos A =a cos C ,得(3b -c )²b 2+c 2-a 22bc=a ²a 2+b 2-c 22ab,即b 2+c 2-a 22bc =33,由余弦定理得cos A =33.17.解 在△ACD 中,∠DAC =α-β, 由正弦定理,得AC sin β=DCα-β,∴AC =a sin βα-β∴AB =AE +EB =AC sin α+h =a sin βsin αα-β+h .18.解 (1)∵a =2b sin A ,∴sin A =2sin B ²sin A ,∴sin B =12.∵0<B <π2,∴B =30°.(2)∵a =33,c =5,B =30°. 由余弦定理b 2=a 2+c 2-2ac cos B=(33)2+52-2³33³5³cos 30°=7. ∴b =7.19.解 (1)在△POC 中,由余弦定理, 得PC 2=OP 2+OC 2-2OP ²OC ²cos θ =5-4cos θ, 所以y =S △OPC +S △PCD =12³1³2sin θ+34³(5-4cos θ) =2sin ⎝ ⎛⎭⎪⎫θ-π3+534.(2)当θ-π3=π2,即θ=5π6时,y max =2+534.答 四边形OPDC 面积的最大值为2+534.20.解 ①需要测量的数据有:A 点到M 、N 点的俯角α1、β1;B 点到M 、N 点的俯角α2、β2;A 、B 的距离d (如图所示).②第一步:计算AM ,由正弦定理AM =d sin α2α1+α2;第二步:计算AN .由正弦定理AN =d sin β2β2-β1;第三步:计算MN ,由余弦定理 MN =AM 2+AN 2-2AM ³AN α1-β1. 21.解 (1)由余弦定理及已知条件得 a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,由此得ab =4.联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由正弦定理及已知条件得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =233.22.解 ∵CP ∥OB ,∴∠CPO =∠POB =60°-θ, ∠OCP =120°.在△POC 中,由正弦定理得OP sin ∠PCO =CPsin θ,∴2sin 120°=CP sin θ,∴CP =43sin θ.又OC -θ=2sin 120°,∴OC =43sin(60°-θ).因此△POC 的面积为S (θ)=12CP ²OC sin 120°=12²43sin θ²43sin(60°-θ)³32 =43sin θsin(60°-θ)=43sin θ⎝⎛⎭⎪⎪⎫32cos θ-12sin θ =2sin θ²cos θ-23sin 2θ=sin 2θ+33cos 2θ-33=233sin ⎝⎛⎭⎪⎫2θ+π6-33∴θ=π6时,S (θ)取得最大值为33.。
高中数学 第一章 常用逻辑用语章末综合测评(含解析)新人教A版高二选修2-1数学试题

章末综合测评(一) 常用逻辑用语(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中是命题的为()①x2-3=0;②与一条直线相交的两直线平行吗?③3+1=5;④∀x∈R,5x-3>6.A.①③B.②③C.②④D.③④D[①不能判断真假,②是疑问句,都不是命题;③④是命题.]2.命题“若△ABC不是等腰三角形,则它的任何两个内角不相等”的逆否命题是() A.若△ABC是等腰三角形,则它的任何两个内角相等B.若△ABC中任何两个内角不相等,则它不是等腰三角形C.若△ABC中有两个内角相等,则它是等腰三角形D.若△ABC中任何两个内角相等,则它是等腰三角形C[将原命题的条件否定作为结论,为“△ABC是等腰三角形”,结论否定作为条件,为“有两个内角相等”,再调整语句,即可得到原命题的逆否命题,为“若△ABC中有两个内角相等,则它是等腰三角形”,故选C.]3.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数B[根据特称命题的否定是全称命题,先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.]4.命题p:x+y≠3,命题q:x≠1或y≠2,则命题p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[命题“若p,则q”的逆否命题为:“若x=1且y=2,则x+y=3”,是真命题,故原命题为真,反之不成立.]5.“关于x的不等式f(x)>0有解”等价于()A.∃x0∈R,使得f(x0)>0成立B .∃x 0∈R ,使得f (x 0)≤0成立C .∀x ∈R ,使得f (x )>0成立D .∀x ∈R ,f (x )≤0成立A [“关于x 的不等式f (x )>0有解”等价于“存在实数x 0,使得f (x 0)>0成立”.故选A .]6.若命题(p ∨(q ))为真命题,则p ,q 的真假情况为( )A .p 真,q 真B .p 真,q 假C .p 假,q 真D .p 假,q 假C [由(p ∨(q ))为真命题知,p ∨(q )为假命题,从而p 与q 都是假命题,故p 假q 真.]7.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x ≤1D .∀x ≤0,使得(x +1)e x ≤1B [因为全称命题∀x ∈M ,p (x )的否定为∃x 0∈M ,p (x ),故p :∃x 0>0,使得(x 0+1)e x 0≤1.]8.已知命题p :若(x -1)(x -2)≠0,则x ≠1且x ≠2;命题q :存在实数x 0,使2x 0<0.下列选项中为真命题的是( )A .pB .p ∨qC .q ∧pD .qC [很明显命题p 为真命题,所以p 为假命题;由于函数y =2x ,x ∈R 的值域是(0,+∞),所以q 是假命题,所以q 是真命题.所以p ∨q 为假命题,q ∧p 为真命题,故选C .]9.条件p :x ≤1,且p 是q 的充分不必要条件,则q 可以是( )A .x >1B .x >0C .x ≤2D .-1<x <0B [∵p :x ≤1,∴p :x >1,又∵p 是q 的充分不必要条件,∴p ⇒q ,q 推不出p ,即p 是q 的真子集.]10.下列各组命题中,满足“p ∨q ”为真,且“p ”为真的是( )A .p :0=∅;q :0∈∅B .p :在△ABC 中,若cos 2A =cos 2B ,则A =B ;q :函数y =sin x 在第一象限是增函数C .p :a +b ≥2ab (a ,b ∈R );q :不等式|x |>x 的解集为(-∞,0)D .p :圆(x -1)2+(y -2)2=1的面积被直线x =1平分;q :过点M (0,1)且与圆(x -1)2+(y -2)2=1相切的直线有两条C [A 中,p 、q 均为假命题,故“p ∨q ”为假,排除A ;B 中,由在△ABC 中,cos 2A =cos 2B ,得1-2sin 2A =1-2sin 2B ,即(sin A +sin B )(sin A -sin B )=0,所以A -B =0,故p 为真,从而“p ”为假,排除B ;C 中,p 为假,从而“p ”为真,q 为真,从而“p ∨q ”为真;D 中,p 为真,故“p ”为假,排除D .故选C .] 11.已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若“p ∨q ”为假命题,则实数m 的取值X 围为( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]A [由题意知p ,q 均为假命题,则p ,q 为真命题.p :∀x ∈R ,mx 2+1>0,故m ≥0,q :∃x ∈R ,x 2+mx +1≤0,则Δ=m 2-4≥0,即m ≤-2或m ≥2,由⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2得m ≥2.故选A .] 12.设a ,b ∈R ,则“2a +2b =2a +b ”是“a +b ≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [利用基本不等式,知2a +b =2a +2b ≥22a ·2b ,化简得2a +b ≥22,所以a +b ≥2,故充分性成立;当a =0,b =2时,a +b =2,2a +2b =20+22=5,2a +b =22=4,即2a +2b ≠2a +b ,故必要性不成立.故选A .]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.命题“不等式x 2+x -6>0的解为x <-3或x >2”的逆否命题是________.若-3≤x ≤2,则x 2+x -6≤0[“不等式x 2+x -6>0的解为x <-3或x >2”即为:“若x 2+x -6>0,则x <-3或x >2”,根据逆否命题的定义可得:若-3≤x ≤2,则x 2+x -6≤0.]14.写出命题“若x 2=4,则x =2或x =-2”的否命题为________.若x 2≠4,则x ≠2且x ≠-2 [命题“若x 2=4,则x =2或x =-2”的否命题为“若x 2≠4,则x ≠2且x ≠-2”.]15.若命题“∃t ∈R ,t 2-2t -a <0”是假命题,则实数a 的取值X 围是________. (-∞,-1][命题“∃t ∈R ,t 2-2t -a <0”是假命题.则∀t ∈R ,t 2-2t -a ≥0是真命题,∴Δ=4+4a ≤0,解得a ≤-1.∴实数a 的取值X 围是(-∞,-1].]16.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若p 是q 的充分条件,则实数a 的取值X 围是________.[-1,6][p :-4<x -a <4⇔a -4<x <a +4,q :(x -2)(3-x )>0⇔2<x <3.因为p 是q 的充分条件,即p ⇒q ,所以q 是p 的充分条件,即q ⇒p ,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)将命题“一组对边平行且相等的四边形是平行四边形”改写成“若p ,则q ”的形式,并写出它的逆命题、否命题和逆否命题,同时判断它们的真假.[解]“若p ,则q ”的形式:若一个四边形的一组对边平行且相等,则这个四边形是平行四边形.(真命题)逆命题:若一个四边形是平行四边形,则这个四边形的一组对边平行且相等.(真命题) 否命题:若一个四边形的一组对边不平行或不相等,则这个四边形不是平行四边形.(真命题)逆否命题:若一个四边形不是平行四边形,则这个四边形的一组对边不平行或不相等.(真命题)18.(本小题满分12分)写出下列命题的否定,并判断其真假,同时说明理由.(1)q :所有的矩形都是正方形;(2)r :∃x 0∈R ,x 20+2x 0+2≤0;(3)s :至少有一个实数x 0,使x 30+3=0.[解](1)q :至少存在一个矩形不是正方形,真命题.这是由于原命题是假命题. (2)r :∀x ∈R ,x 2+2x +2>0,真命题.这是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0恒成立.(3)s :∀x ∈R ,x 3+3≠0,假命题.这是由于当x =-33时,x 3+3=0. 19.(本小题满分12分)(1)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的充分条件?(2)是否存在实数m ,使得2x +m <0是x 2-2x -3>0的必要条件?[解](1)欲使得2x +m <0是x 2-2x -3>0的充分条件,则只要⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2⊆{x |x <-1或x >3}, 则只要-m 2≤-1,即m ≥2, 故存在实数m ≥2,使2x +m <0是x 2-2x -3>0的充分条件.(2)欲使2x +m <0是x 2-2x -3>0的必要条件,则只要⎩⎨⎧⎭⎬⎫x ⎪⎪x <-m 2⊇{x |x <-1或x >3}, 则这是不可能的,故不存在实数m 使2x +m <0是x 2-2x -3>0的必要条件.20.(本小题满分12分)已知p :x 2-8x -33>0,q :x 2-2x +1-a 2>0(a >0),若p 是q 的充分不必要条件,求正实数a 的取值X 围.[解]解不等式x 2-8x -33>0,得p :A ={x |x >11或x <-3};解不等式x 2-2x +1-a 2>0,得q :B ={x |x >1+a 或x <1-a ,a >0}.依题意p ⇒q 但q p ,说明A B .于是有⎩⎪⎨⎪⎧ a >0,1+a ≤11,1-a >-3或⎩⎪⎨⎪⎧ a >0,1+a <11,1-a ≥-3,解得0<a ≤4,所以正实数a 的取值X 围是(0,4].21.(本小题满分12分)证明:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a =1. [证明](充分性)若a =1,则函数化为f (x )=2x -12x +1(x ∈R ).因为f (-x )=2-x -12-x +1=12x-112x +1=1-2x 1+2x=-2x -12x +1=-f (x ),所以函数f (x )是奇函数. (必要性)若函数f (x )是奇函数,则f (-x )=-f (x ),所以a ·2-x +a -22-x +1=-a ·2x +a -22x +1, 所以a +(a -2)·2x 2x +1=-a ·2x +a -22x +1, 所以a +(a -2)·2x =-a ·2x -a +2,所以2(a -1)(2x +1)=0,解得a =1.综上所述,函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a =1. 22.(本小题满分12分)已知命题p :方程x 2+mx +1=0有两个不相等的实根;q :不等式4x 2+4(m -2)x +1>0的解集为R .若p ∨q 为真,q 为假,某某数m 的取值X 围.[解]由方程x 2+mx +1=0有两个不相等的实根,得Δ=m 2-4>0,解得m >2或m <-2. ∴命题p 为真时,m >2或m <-2;命题p 为假时,-2≤m ≤2.由不等式4x 2+4(m -2)x +1>0的解集为R ,得方程4x 2+4(m -2)x +1=0的根的判别式Δ′=16(m -2)2-16<0,解得1<m <3.∴命题q 为真时,1<m <3;命题q 为假时,m ≤1或m ≥3.∵p ∨q 为真,q 为假,∴p 真q 假,∴⎩⎪⎨⎪⎧m >2或m <-2,m ≤1或m ≥3,解得m <-2或m ≥3. ∴实数m 的取值X 围为(-∞,-2)∪[3,+∞).。
人教A版高中数学选修1章末检测1第一章空间向量与立体几何

第一章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系中,点P (-2,1,4)关于x 轴的对称点的坐标是( ) A .(-2,-1,-4) B .(-2,1,-4) C .(2,-1,4) D .(2,1,-4)【答案】A【解析】关于x 轴对称的点横坐标相等,纵坐标和竖坐标相反.故选A . 2.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则( ) A .x =13,y =1B .x =12,y =-4C .x =2,y =-14D .x =1,y =-1 【答案】B【解析】由题意可得,a +2b =(1+2x ,4,4-y ),2a -b =(2-x ,3,-2y -2).∵(a +2b )∥(2a -b ),∴∃λ∈R ,使a +2b =λ(2a -b ),得⎩⎪⎨⎪⎧1+2x =λ(2-x ),4=3λ,4-y =λ(-2y -2),解得⎩⎪⎨⎪⎧λ=43,x =12,y =-4.故选B . 3.已知空间三点O (0,0,0),A (-1,1,0),B (0,1,1),在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A .(-2,2,0)B .(2,-2,0)C .⎝ ⎛⎭⎪⎫-12,12,0 D .⎝ ⎛⎭⎪⎫12,-12,0【答案】C【解析】由OA →=(-1,1,0),且点H 在直线OA 上,可设H (-λ,λ,0),则BH →=(-λ,λ-1,-1).又因为BH ⊥OA ,所以BH →·OA →=0,即(-λ,λ-1,-1)·(-1,1,0)=0,即λ+λ-1=0,解得λ=12,所以H ⎝ ⎛⎭⎪⎫-12,12,0. 4.在平行六面体ABCD -A 1B 1C 1D 1中,向量AB 1→,AD 1→,BD →是( )A .有相同起点的向量B .等长的向量C .不共面向量D .共面向量【答案】D【解析】因为AD 1→-AB 1→=B 1D 1→=BD →,所以AB 1→,AD 1→,BD →共面.5.已知E ,F 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( )A .23B .23C .53D .233【答案】C【解析】以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则A (1,0,0),E ⎝ ⎛⎭⎪⎫12,1,0,F ⎝ ⎛⎭⎪⎫0,1,12,D 1(0,0,1),所以AD 1→=(-1,0,1),AE →=⎝ ⎛⎭⎪⎫-12,1,0.设平面AEFD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x 2+y =0,所以x =2y =z .取y =1,则n =(2,1,2).而平面ABCD 的一个法向量u =(0,0,1),因为cos 〈n ,u 〉=23,所以sin 〈n ,u 〉=53.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.若EF →=xAB →+yAD →+zAA 1→,则x +y +z =( )A .-1B .0C .13D .1【答案】C【解析】因为EF →=AF →-AE →=AD →+DF →-(AB →+BE →)=AD →+23DD 1→-AB →-13BB 1→=-AB →+AD →+13AA 1→,所以x =-1,y =1,z =13,所以x +y +z =13.7.在以下命题中,不正确的个数为( ) ①|a|-|b|=|a +b|是a ,b 共线的充要条件; ②若a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面;④若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ⑤|(a ·b )·c|=|a|·|b|·|c|. A .5 B .4 C .3 D .2【答案】B【解析】①|a |-|b |=|a +b |⇒a 与b 的夹角为π,故是充分不必要条件,故不正确;②b 需为非零向量,故不正确;③因为2-2-1≠1,由共面向量定理知,不正确;④由基底的定义知,正确;⑤由向量的数量积的性质知,不正确.8.如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )A .15B .25C .55D .255【答案】C【解析】如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1,所以PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF→=⎝ ⎛⎭⎪⎫-12,12,1.设n =(x ,y ,z )是平面DEF 的法向量,由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧12y =0,-12x +12y +8=0,取x =2,则z =1,y =0,所以n =(2,0,1)是平面DEF 的一个法向量.设直线PA 与平面DEF 所成的角为θ,所以sin θ=|cos 〈PA →,n 〉|=22×5=55.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列各选项中,不正确的是( )A .若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0B .对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等C .若AB →,CD →共线,则AB ∥CDD .对空间任意一点O 与不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面【答案】BCD【解析】显然A 正确;若a ,b 为非零向量,则〈a ,b 〉与〈a ,-b 〉互补,故B 错误;若AB →,CD →共线,则直线AB ,CD 可能重合,故C 错误;只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故D 错误.10.若A ,B ,C ,D 为空间不同的四点,则下列各式的结果为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC → C .AB →+CA →+BD → D .AB →-CB →+CD →-AD →【答案】BD【解析】A 中,原式=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →,不符合题意;B 中,原式=2(AB →+BC →+CD →+DA →)+(AC →+CD →+DA →)=0;C 中,原式=CD →,不符合题意;D 中,原式=(AB →-AD →)+(CD →-CB →)=0.11.已知正方体ABCD -A ′B ′C ′D ′的中心为O ,则在下列各结论中正确的有( )A .OA →+OD →与OB ′→+OC ′→是一对相反向量 B .OB →-OC →与OA ′→-OD ′→是一对相反向量C .OA →+OB →+OC →+OD →与OA ′→+OB ′→+OC ′→+OD ′→是一对相反向量 D .OA ′→-OA →与OC →-OC ′→是一对相反向量 【答案】ACD【解析】如图,A 中,OA →=-OC ′→,OD →=-OB ′→,所以OA →+OD →=-(OB ′→+OC ′→),是一对相反向量;B 中,OB →-OC →=CB →,OA ′→-OD ′→=D ′A ′→,而CB →=D ′A ′→,故不是相反向量;C 中,同A 也是正确的;D 中,OA ′→-OA →=AA ′→,OC →-OC ′→=C ′C →=-AA ′→,是一对相反向量.12.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,CD =23,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B -ACQ 的体积为6 2D .四棱锥Q -ABCD 外接球的内接正四面体的表面积为24 3 【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接OE ,OP ,因为三角形PAD 为等边三角形,所以OP ⊥AD .因为平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD .因为AD ⊥OE ,所以OD ,OE ,OP 两两垂直,如图,以O 为坐标原点,OD ,OE ,OP 所在的直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则O (0,0,0),D (6,0,0),A (-6,0,0),P (0,0,32),C (6,23,0),B (-6,23,0).因为点Q 是PD 的中点,所以Q ⎝⎛⎭⎪⎫62,0,322,平面PAD 的一个法向量m =(0,1,0),QC →=⎝ ⎛⎭⎪⎫62,23,-322,显然m 与QC →不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;PC →=(6,23,-32),AQ →=⎝ ⎛⎭⎪⎫362,0,322,AC →=(26,23,0),设平面AQC 的法向量n=(x ,y ,z ),则⎩⎨⎧n ·AQ →=362x +322z =0,n ·AC →=26x +23y =0,令x =1,则y =-2,z =-3,所以n =(1,-2,-3),设PC 与平面AQC 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪n ·PC→|n ||PC →|=2666=13,所以cos θ=223,所以B 正确;三棱锥B -ACQ 的体积为V B -ACQ =V Q -ABC =13S △ABC ·12OP =13×12×23×26×12×32=6,所以C 不正确;设四棱锥Q -ABCD 外接球的球心为M (0,3,a ),则MQ=MD ,故⎝ ⎛⎭⎪⎫622+(3)2+⎝ ⎛⎭⎪⎫a -3222=()62+()32+a 2,解得a =0,即M (0,3,0)为矩形ABCD 对角线的交点,所以四棱锥Q -ABCD 外接球的半径为3,设四棱锥Q -ABCD 外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以3⎝ ⎛⎭⎪⎫22x 2=62,得x 2=24,所以正四面体的表面积为4×34x 2=243,所以D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.(2021年潮州模拟)由空间向量a =(1,2,3),b =(1,-1,1)构成向量集合A ={x |x =a +k b ,k ∈Z },则向量x 的模|x |的最小值为________.【答案】13【解析】因为a =(1,2,3),b =(1,-1,1),所以x =a +k b =(1+k ,2-k ,3+k ), 所以|x |=(1+k )2+(2-k )2+(3+k )2=14+4k +3k 2=3⎝ ⎛⎭⎪⎫k +232+383.因为k ∈Z ,所以k =-1时,|x |的值最小,最小值为13.14.下列命题:①已知λ∈R ,则|λa |=λ|a |;②在正方体ABCD -A 1B 1C 1D 1中,BC →=B 1C 1→;③若两个平面的法向量不垂直,则这两个平面一定不垂直. 其中正确的命题的序号是________. 【答案】②③【解析】①|λa |=|λ||a |,故①错误;②正确;③若两个平面垂直,则它们的法向量一定垂直,若两个平面的法向量不垂直,则这两个平面一定不垂直,故③正确.15.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE →=12OD →+xOB →+yOA →,则x +y =________.【答案】-1【解析】AE →=OE →-OA →=12OC →-OA →=12(OB →+BC →)-OA →=12(OB →+AD →)-OA →=12(OB →+OD →-OA →)-OA→=-32OA →+12OB →+12OD →,所以x =12,y =-32.所以x +y =-1.16.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动,则直线D 1E 与A 1D 所成角的大小是________;若D 1E ⊥EC ,则AE =________.【答案】90° 1【解析】在长方体ABCD -A 1B 1C 1D 1中,如图,以D 为原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴建立空间直角坐标系,又因为AD =AA 1=1,AB =2,则D (0,0,0),D 1(0,0,1), A (1,0,0),A 1(1,0,1),C (0,2,0),设E (1,m ,0),0≤m ≤2,则D 1E →=(1,m ,-1),A 1D →=(-1,0,-1),所以D 1E →·A 1D →=-1+0+1=0,所以直线D 1E 与A 1D 所成角的大小是90°.因为D 1E →=(1,m ,-1),EC →=(-1,2-m ,0),D 1E ⊥EC, 所以D 1E →·EC→=-1+m (2-m )+0=0,解得m =1,所以AE =1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b|;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)? 解:(1)因为a =(1,-3,2),b =(-2,1,1), 所以2a +b =(0,-5,5).所以|2a +b |=02+(-5)2+52=52. (2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),所以⎩⎪⎨⎪⎧x =λ-3,y =-λ-1,z =-2λ+4,所以E (λ-3,-λ-1,-2λ+4),所以OE →=(λ-3,-λ-1,-2λ+4). 又因为b =(-2,1,1),OE →⊥b ,所以OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0, 所以λ=95,所以E ⎝ ⎛⎭⎪⎫-65,-145,25.所以在直线AB 上存在点E ⎝ ⎛⎭⎪⎫-65,-145,25,使OE →⊥b .18.(12分)已知空间三点A (1,2,3),B (2,-1,5),C (3,2,-5),试求: (1)△ABC 的面积; (2)△ABC 的AB 边上的高.解:(1)AB →=(2,-1,5)-(1,2,3)=(1,-3,2), AC →=(3,2,-5)-(1,2,3)=(2,0,-8), AB →·AC →=1×2+(-3)×0+2×(-8)=-14,|AB →|=14,|AC →|=217,cos 〈AB →,AC →〉=-1414×217=-734,sin 〈AB →,AC →〉=2734, S △ABC =12|AB →|·|AC →|sin 〈AB →,AC →〉=1214×217×2734=321. (2)|AB →|=14,设AB 边上的高为h , 则12|AB |·h =S △ABC =321,所以h =36. 19.(12分)如图,在三棱锥S -ABC 中,侧面SAC 与底面ABC 垂直,E ,O 分别是SC ,AC 的中点,且SA =SC =2,BC =12AC ,∠ASC =∠ACB =90°.(1)求证:OE ∥平面SAB ;(2)若点F 在线段BC 上,问:无论点F 在BC 的何处,是否都有OE ⊥SF ?请证明你的结论.(1)证明:因为E ,O 分别是SC ,AC 的中点,所以OE ∥SA . 又因为OE ⊄平面SAB ,SA ⊂平面SAB , 所以OE ∥平面SAB .(2)解:方法一,在△SAC 中,因为OE ∥AS ,∠ASC =90°,所以OE ⊥SC . 又因为平面SAC ⊥平面ABC ,∠BCA =90°,BC ⊂平面SAC ,所以BC ⊥平面SAC . 又因为OE ⊂平面SAC ,所以BC ⊥OE . 因为SC ∩BC =C ,所以OE ⊥平面BSC . 又因为SF ⊂平面BSC ,所以OE ⊥SF . 所以无论点F 在BC 的何处,都有OE ⊥SF . 方法二,连接SO .因为O 是AC 的中点,SA =SC , 所以SO ⊥AC .又因为平面SAC ⊥平面ABC , 所以SO ⊥平面ABC .同理可得BC ⊥平面SAC .如图,在平面ABC 内,过点O 作OM ⊥AC ,以O 为原点,OM ,OC ,OS 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则点O (0,0,0),A (0,-1,0),B (1,1,0),C (0,1,0),S (0,0,1),E ⎝⎛⎭⎪⎫0,12,12,OE →=⎝ ⎛⎭⎪⎫0,12,12.由于点F ∈BC ,故可设点F (x ,1,0), 则SF →=(x ,1,-1),SF →·OE →=0恒成立, 所以无论点F 在BC 的何处,都有OE ⊥SF .20.(12分)在直角梯形ABCD 中,AD ∥BC ,BC =2AD =2AB =22,∠ABC =90°,如图1把△ABD 沿BD 翻折,使得平面ABD ⊥平面BCD (如图2).(1)求证:CD ⊥AB .(2)若点M 为线段BC 的中点,求点M 到平面ACD 的距离.(3)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BN BC的值;若不存在,说明理由.(1)证明:由已知条件可得BD =2,CD =2,CD ⊥BD .因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD . 又因为AB ⊂平面ABD ,所以CD ⊥AB .(2)解:如图,以点D 为原点,DB 所在的直线为x 轴,DC 所在的直线为y 轴,建立空间直角坐标系,由已知可得A (1,0,1),B (2,0,0),C (0,2,0),D (0,0,0),M (1,1,0),所以CD →=(0,-2,0),AD →=(-1,0,-1),MC →=(-1,1,0).设平面ACD 的法向量n =(x ,y ,z ),则CD →⊥n ,AD →⊥n ,所以⎩⎪⎨⎪⎧-2y =0,-x -z =0,令x =1,得平面ACD 的一个法向量n =(1,0,-1), 所以点M 到平面ACD 的距离d =|n ·MC →||n |=22.(3)解:假设在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60°,设BN →=λBC →,0≤λ≤1,则N (2-2λ,2λ,0),所以AN →=(1-2λ,2λ,-1).又因为平面ACD 的一个法向量n =(1,0,-1),且直线AN 与平面ACD 所成角为60°,所以sin60°=|AN →·n ||AN →||n |=32, 可得8λ2+2λ-1=0,所以λ=14或λ=-12(舍去). 综上,在线段BC 上存在点N ,使AN 与平面ACD 所成角为60°,此时BN BC =14. 21.(12分)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =2.(1)求线段BC 1的长度;(2)求异面直线BC 1与DC 所成角的余弦值.解:(1)以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (2,0,0),B (2,4,0),C (0,2,0),C 1(0,2,2),所以DC →=(0,2,0),BC 1→=(-2,-2,2),|DC →|=2,|BC 1→|=4+4+4=23.(2)由(1)可知,DC →=(0,2,0),BC 1→=(-2,-2,2),所以cos 〈DC →,BC 1→〉=DC →·BC 1→|DC →||BC 1→|=-42×23=-13=-33. 所以异面直线BC 1与DC 所成的角的余弦值为33.22.(12分)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB ︵的中点,D为AC 的中点.(1)求证:平面POD ⊥平面PAC ;(2)求二面角B -PA -C 的余弦值.解:如图,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0. (1)证明:设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1,取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2,从而平面POD ⊥平面PAC .(2)因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量n 3=(0,1,0).由(1)知,平面PAC 的一个法向量n 2=(-2,2,1).设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2||n 3|=25=105. 由图可知,二面角B -PA -C 的平面角为锐角,所以二面角B -PA -C 的余弦值为105.。
【步步高】高中数学 第一章 章末检测(B)新人教A版选修1-1

第一章 章末检测 (B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分).1.函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A .ab =0B .a +b =0C .a =bD .a 2+b 2=02.若“a ≥b ⇒c >d ”和“a <b ⇒e ≤f ”都是真命题,其逆命题都是假命题,则“c ≤d ”是“e ≤f ”的( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分也非必要条件3.在下列结论中,正确的是( )①“p ∧q ”为真是“p ∨q ”为真的充分不必要条件;②“p ∧q ”为假是“p ∨q ”为真的充分不必要条件;③“p ∨q ”为真是“綈p ”为假的必要不充分条件;④“綈p ”为真是“p ∧q ”为假的必要不充分条件.A .①②B .①③C .②④D .③④4.“a ≠1或b ≠2”是“a +b ≠3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假6.条件p :x >1,y >1,条件q :x +y >2,xy >1,则条件p 是条件q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.2x 2-5x -3<0的一个必要不充分条件是( )A .-12<x <3B .-12<x <0 C .-3<x <12D .-1<x <6 8.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( ) A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件9.下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0D .∀x ∈R,2x >010.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D.原命题与逆命题均为假命题11.下列命题中为全称命题的是( )A.圆内接三角形中有等腰三角形B.存在一个实数与它的相反数的和不为0C.矩形都有外接圆D.过直线外一点有一条直线和已知直线平行12.以下判断正确的是( )A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N,x3>x”的否定是“∃x∈N,x3>x”C.“a=1”是“函数f(x)=sin 2ax的最小正周期为π”的必要不充分条件2二、填空题(本大题共4小题,每小题5分,共20分)13.下列命题中________为真命题.(填序号)①“A∩B=A”成立的必要条件是“A B”;②“若x2+y2=0,则x,y全为0”的否命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.14.命题“正数的绝对值等于它本身”的逆命题是__________________________________,这是__________命题.15.若“∀x∈R,x2-2x-m>0”是真命题,则实数m的取值范围是____________.16.给出下列四个命题:①∀x∈R,x2+2>0;②∀x∈N,x4≥1;③∃x∈Z,x3<1;④∃x∈Q,x2=3.其中正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.(1)矩形的对角线相等且互相平分;(2)正偶数不是质数.18.(12分)写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的命题,并指出所构成的这些命题的真假.(1)p:连续的三个整数的乘积能被2整除,q:连续的三个整数的乘积能被3整除;(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形.19.(12分)已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.20.(12分)已知二次函数f (x )=ax 2+x .对于∀x ∈[0,1],|f (x )|≤1成立,试求实数a 的取值范围.21.(12分)下列三个不等式:①2-x 2+ax -254>1; ②(a -3)x 2+(a -2)x -1>0;③a >x 2+1x 2. 若其中至多有两个不等式的解集为空集,求实数a 的取值范围.22.(12分)已知命题p :x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立;命题q :不等式ax 2+2x -1>0有解;若命题p 是真命题,命题q 是假命题,求a 的取值范围.第一章 常用逻辑用语(B)答案1.D [若a 2+b 2=0,即a =b =0时,f (-x )=(-x )|-x +0|+0=-x |x |=-f (x ),∴a 2+b 2=0是f (x )为奇函数的充分条件.又若f (x )为奇函数即f (-x )=-x |(-x )+a |+b=-(x |x +a |+b ),则必有a =b =0,即a 2+b 2=0,∴a 2+b 2=0是f (x )为奇函数的必要条件.]2.B [由a ≥b ⇒c >d 可得c ≤d ⇒a <b ,又a <b ⇒e ≤f ,所以c ≤d ⇒e ≤f ;而e ≤f ⇒c ≤d 显然不成立,故“c ≤d ”是“e ≤f ”的充分非必要条件.]3.B4.B [∵a =1且b =2⇒a +b =3,∴a +b ≠3⇒a ≠1或b ≠2.]5.B [由“非p ”为真可得p 为假,若同时“p 或q ”为真,则可得q 必须为真.]6.A [由我们学习过的不等式的理论可得p ⇒q ,但x =100,y =0.1满足q :x +y >2,xy >1,但不满足q ,故选项为A.]7.D [由2x 2-5x -3<0,解得-12<x <3,记为P ,则①P ⇔A ,②B P ,B 是P 的充分非必要条件,③,C 既不是P 的充分条件,也不是P 的必要条件,④P D ,D 是P 的必要不充分条件.]8.A [tan ⎝⎛⎭⎪⎫2k π+π4=tan π4=1,所以充分; 但反之不成立,如tan 5π4=1.] 9.C10.A [举例:a =1.2,b =0.3,则a +b =1.5<2,∴逆命题为假.]11.C12.D [∵“负数的平方是正数”即为∀x <0,则x 2>0,是全称命题,∴A 不正确;又∵对全称命题“∀x ∈N ,x 3>x ”的否定为“∃x ∈N ,x 3≤x ”,∴B 不正确;又∵f (x )=sin 2ax ,当最小正周期T =π时,有2π|2a |=π,∴|a |=1⇒a =1. 故“a =1”是“函数f (x )sin 2ax 的最小正周期为π”的充分不必要条件.]13.②④解析 ①A ∩B =A ⇒A ⊆B 但不能得出A B ,∴①不正确;②否命题为:“若x 2+y 2≠0,则x ,y 不全为0”,是真命题;③逆命题为:“若两个三角形是相似三角形,则这两个三角形全等”,是假命题; ④原命题为真,而逆否命题与原命题是两个等价命题,∴逆否命题也为真命题.14.如果一个数的绝对值等于它本身,那么这个数一定是正数 假15.(-∞,-1)解析 由Δ=(-2)2-4×(-m )<0,得m <-1.16.①③17.解 (1)逆命题:若一个四边形的对角线相等且互相平分,则它是矩形(真命题). 否命题:若一个四边形不是矩形,则它的对角线不相等或不互相平分(真命题). 逆否命题:若一个四边形的对角线不相等或不互相平分,则它不是矩形(真命题).(2)逆命题:如果一个正数不是质数,那么这个正数是正偶数(假命题).否命题:如果一个正数不是偶数,那么这个数是质数(假命题).逆否命题:如果一个正数是质数,那么这个数不是偶数(假命题).18.解 (1)p 或q :连续的三个整数的乘积能被2或能被3整除.p 且q :连续的三个整数的乘积能被2且能被3整除.非p :存在连续的三个整数的乘积不能被2整除.∵连续的三整数中有一个(或两个)是偶数,而另一个是3的倍数,∴p 真,q 真,∴p 或q 与p 且q 均为真,而非p 为假.(2)p 或q :对角线互相垂直的四边形是菱形或对角线互相平分的四边形是菱形. p 且q :对角线互相垂直的四边形是菱形且对角线互相平分的四边形是菱形. 非p :存在对角线互相垂直的四边形不是菱形.∵p 假q 假,∴p 或q 与p 且q 均为假,而非p 为真.19.证明 充分性:∵a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)∴(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,即a ≠0且b ≠0,∴a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -b 22+34b 2>0. ∴a +b -1=0,∴a +b =1.必要性:∵a +b =1,即a +b -1=0,∴a 3+b 3+ab -a 2-b 2=(a +b -1)(a 2-ab +b 2)=0.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.20.解 |f (x )|≤1⇔-1≤f (x )≤1⇔-1≤ax 2+x ≤1,x ∈[0,1]. ①当x =0时,a ≠0,①式显然成立;当x ∈(0,1]时,①式化为-1x 2-1x ≤a ≤1x 2-1x在x ∈(0,1]上恒成立. 设t =1x,则t ∈[1,+∞), 则有-t 2-t ≤a ≤t 2-t ,所以只需⎩⎪⎨⎪⎧ a -t 2-t max =-a t 2-t min =0⇒-2≤a ≤0,又a ≠0,故-2≤a <0.综上,所求实数a 的取值范围是[-2,0).21.解 对于①,2-x 2+ax -254>1,即-x 2+ax -254>0,故x 2-ax +254<0,Δ=a 2-25,所以不等式的解集为空集,实数a 的取值范围是-5≤a ≤5.对于②,当a =3时,不等式的解集为{x |x >1},不是空集;当a ≠3时,要使不等式(a -3)x 2+(a -2)x -1>0的解集为空集.则⎩⎪⎨⎪⎧a -3<0,a -2+a -,解得-22≤a ≤2 2. 对于③,因为x 2+1x 2≥2x 2·1x2=2, 当且仅当x 2=1,即x =±1时取等号.所以,不等式a >x 2+1x2的解集为空集时,a ≤2. 因此,当三个不等式的解集都为空集时,-22≤a ≤2.所以要使三个不等式至多有两个不等式的解集为空集,则实数a 的取值范围是{a|a<-22或a>2}.22.解∵x1,x2是方程x2-mx-2=0的两个实根,则x1+x2=m且x1x2=-2,∴|x1-x2|=x1+x22-4x1x2=m2+8,当m∈[-1,1]时,|x1-x2|max=3,由不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立可得:a2-5a-3≥3,∴a≥6或a≤-1.所以命题p为真命题时,a≥6或a≤-1.命题q:不等式ax2+2x-1>0有解,当a>0时,显然有解;当a=0时,2x-1>0有解;当a<0时,∵ax2+2x-1>0有解,∴Δ=4+4a>0,∴-1<a<0,从而命题q:不等式ax2+2x-1>0有解时a>-1.又命题q为假命题,∴a≤-1.综上得,若p为真命题且q为假命题则a≤-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 章末检测 (B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分).1.函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A .ab =0B .a +b =0C .a =bD .a 2+b 2=02.若“a ≥b ⇒c >d ”和“a <b ⇒e ≤f ”都是真命题,其逆命题都是假命题,则“c ≤d ”是“e ≤f ”的( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分也非必要条件3.在下列结论中,正确的是( )①“p ∧q ”为真是“p ∨q ”为真的充分不必要条件;②“p ∧q ”为假是“p ∨q ”为真的充分不必要条件;③“p ∨q ”为真是“綈p ”为假的必要不充分条件;④“綈p ”为真是“p ∧q ”为假的必要不充分条件.A .①②B .①③C .②④D .③④4.“a ≠1或b ≠2”是“a +b ≠3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假6.条件p :x >1,y >1,条件q :x +y >2,xy >1,则条件p 是条件q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.2x 2-5x -3<0的一个必要不充分条件是( )A .-12<x <3B .-12<x <0 C .-3<x <12D .-1<x <6 8.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( ) A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件9.下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0D .∀x ∈R,2x >010.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D.原命题与逆命题均为假命题11.下列命题中为全称命题的是( )A.圆内接三角形中有等腰三角形B.存在一个实数与它的相反数的和不为0C.矩形都有外接圆D.过直线外一点有一条直线和已知直线平行12.以下判断正确的是( )A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N,x3>x”的否定是“∃x∈N,x3>x”C.“a=1”是“函数f(x)=sin 2ax的最小正周期为π”的必要不充分条件2题号123456789101112 答案二、填空题(本大题共4小题,每小题5分,共20分)13.下列命题中________为真命题.(填序号)①“A∩B=A”成立的必要条件是“A B”;②“若x2+y2=0,则x,y全为0”的否命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.14.命题“正数的绝对值等于它本身”的逆命题是__________________________________,这是__________命题.15.若“∀x∈R,x2-2x-m>0”是真命题,则实数m的取值范围是____________.16.给出下列四个命题:①∀x∈R,x2+2>0;②∀x∈N,x4≥1;③∃x∈Z,x3<1;④∃x∈Q,x2=3.其中正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.(1)矩形的对角线相等且互相平分;(2)正偶数不是质数.18.(12分)写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的命题,并指出所构成的这些命题的真假.(1)p:连续的三个整数的乘积能被2整除,q:连续的三个整数的乘积能被3整除;(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形.19.(12分)已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.20.(12分)已知二次函数f (x )=ax 2+x .对于∀x ∈[0,1],|f (x )|≤1成立,试求实数a 的取值范围.21.(12分)下列三个不等式:①2-x 2+ax -254>1; ②(a -3)x 2+(a -2)x -1>0;③a >x 2+1x 2. 若其中至多有两个不等式的解集为空集,求实数a 的取值范围.22.(12分)已知命题p :x 1和x 2是方程x 2-mx -2=0的两个实根,不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立;命题q :不等式ax 2+2x -1>0有解;若命题p 是真命题,命题q 是假命题,求a 的取值范围.第一章 常用逻辑用语(B)答案1.D [若a 2+b 2=0,即a =b =0时,f (-x )=(-x )|-x +0|+0=-x |x |=-f (x ),∴a 2+b 2=0是f (x )为奇函数的充分条件.又若f (x )为奇函数即f (-x )=-x |(-x )+a |+b=-(x |x +a |+b ),则必有a =b =0,即a 2+b 2=0,∴a 2+b 2=0是f (x )为奇函数的必要条件.]2.B [由a ≥b ⇒c >d 可得c ≤d ⇒a <b ,又a <b ⇒e ≤f ,所以c ≤d ⇒e ≤f ;而e ≤f ⇒c ≤d 显然不成立,故“c ≤d ”是“e ≤f ”的充分非必要条件.]3.B4.B [∵a =1且b =2⇒a +b =3,∴a +b ≠3⇒a ≠1或b ≠2.]5.B [由“非p ”为真可得p 为假,若同时“p 或q ”为真,则可得q 必须为真.]6.A [由我们学习过的不等式的理论可得p ⇒q ,但x =100,y =0.1满足q :x +y >2,xy >1,但不满足q ,故选项为A.]7.D [由2x 2-5x -3<0,解得-12<x <3,记为P ,则①P ⇔A ,②B P ,B 是P 的充分非必要条件,③,C 既不是P 的充分条件,也不是P 的必要条件,④P D ,D 是P 的必要不充分条件.]8.A [tan ⎝⎛⎭⎪⎫2k π+π4=tan π4=1,所以充分; 但反之不成立,如tan 5π4=1.] 9.C10.A [举例:a =1.2,b =0.3,则a +b =1.5<2,∴逆命题为假.]11.C12.D [∵“负数的平方是正数”即为∀x <0,则x 2>0,是全称命题,∴A 不正确;又∵对全称命题“∀x ∈N ,x 3>x ”的否定为“∃x ∈N ,x 3≤x ”,∴B 不正确;又∵f (x )=sin 2ax ,当最小正周期T =π时,有2π|2a |=π,∴|a |=1⇒a =1. 故“a =1”是“函数f (x )sin 2ax 的最小正周期为π”的充分不必要条件.]13.②④解析 ①A ∩B =A ⇒A ⊆B 但不能得出A B ,∴①不正确;②否命题为:“若x 2+y 2≠0,则x ,y 不全为0”,是真命题;③逆命题为:“若两个三角形是相似三角形,则这两个三角形全等”,是假命题; ④原命题为真,而逆否命题与原命题是两个等价命题,∴逆否命题也为真命题.14.如果一个数的绝对值等于它本身,那么这个数一定是正数 假15.(-∞,-1)解析 由Δ=(-2)2-4×(-m )<0,得m <-1.16.①③17.解 (1)逆命题:若一个四边形的对角线相等且互相平分,则它是矩形(真命题). 否命题:若一个四边形不是矩形,则它的对角线不相等或不互相平分(真命题). 逆否命题:若一个四边形的对角线不相等或不互相平分,则它不是矩形(真命题).(2)逆命题:如果一个正数不是质数,那么这个正数是正偶数(假命题).否命题:如果一个正数不是偶数,那么这个数是质数(假命题).逆否命题:如果一个正数是质数,那么这个数不是偶数(假命题).18.解 (1)p 或q :连续的三个整数的乘积能被2或能被3整除.p 且q :连续的三个整数的乘积能被2且能被3整除.非p :存在连续的三个整数的乘积不能被2整除.∵连续的三整数中有一个(或两个)是偶数,而另一个是3的倍数,∴p 真,q 真,∴p 或q 与p 且q 均为真,而非p 为假.(2)p 或q :对角线互相垂直的四边形是菱形或对角线互相平分的四边形是菱形. p 且q :对角线互相垂直的四边形是菱形且对角线互相平分的四边形是菱形. 非p :存在对角线互相垂直的四边形不是菱形.∵p 假q 假,∴p 或q 与p 且q 均为假,而非p 为真.19.证明 充分性:∵a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2)∴(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,即a ≠0且b ≠0,∴a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -b 22+34b 2>0. ∴a +b -1=0,∴a +b =1.必要性:∵a +b =1,即a +b -1=0,∴a 3+b 3+ab -a 2-b 2=(a +b -1)(a 2-ab +b 2)=0.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.20.解 |f (x )|≤1⇔-1≤f (x )≤1⇔-1≤ax 2+x ≤1,x ∈[0,1]. ①当x =0时,a ≠0,①式显然成立;当x ∈(0,1]时,①式化为-1x 2-1x ≤a ≤1x 2-1x在x ∈(0,1]上恒成立. 设t =1x ,则t ∈[1,+∞),则有-t 2-t ≤a ≤t 2-t ,所以只需 ⎩⎪⎨⎪⎧ a ≥-t 2-t max =-2a ≤t 2-t min =0⇒-2≤a ≤0, 又a ≠0,故-2≤a <0.综上,所求实数a 的取值范围是[-2,0).21.解 对于①,2-x 2+ax -254>1,即-x 2+ax -254>0,故x 2-ax +254<0,Δ=a 2-25,所以不等式的解集为空集,实数a 的取值范围是-5≤a ≤5.对于②,当a =3时,不等式的解集为{x |x >1},不是空集;当a ≠3时,要使不等式(a -3)x 2+(a -2)x -1>0的解集为空集.则⎩⎪⎨⎪⎧a -3<0,a -22+4a -3≤0,解得-22≤a ≤2 2. 对于③,因为x 2+1x 2≥2x 2·1x2=2, 当且仅当x 2=1,即x =±1时取等号.所以,不等式a >x 2+1x2的解集为空集时,a ≤2. 因此,当三个不等式的解集都为空集时,-22≤a ≤2.所以要使三个不等式至多有两个不等式的解集为空集,则实数a 的取值范围是{a|a<-22或a>2}.22.解∵x1,x2是方程x2-mx-2=0的两个实根,则x1+x2=m且x1x2=-2,∴|x1-x2|=x1+x22-4x1x2=m2+8,当m∈[-1,1]时,|x1-x2|max=3,由不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立可得:a2-5a-3≥3,∴a≥6或a≤-1.所以命题p为真命题时,a≥6或a≤-1.命题q:不等式ax2+2x-1>0有解,当a>0时,显然有解;当a=0时,2x-1>0有解;当a<0时,∵ax2+2x-1>0有解,∴Δ=4+4a>0,∴-1<a<0,从而命题q:不等式ax2+2x-1>0有解时a>-1.又命题q为假命题,∴a≤-1.综上得,若p为真命题且q为假命题则a≤-1.。