(江苏专用)202x版高考数学大一轮复习 第二章 4 第四节 函数的图象
江苏专用2020版高考数学大一轮复习第二章函数2.1函数及其表示第1课时教案含解析

第二章 函数§2.1 函数及其表示考情考向分析 以基本初等函数为载体,考查函数的表示法、定义域;分段函数以及函数与其他知识的综合是高考热点,题型既有填空题,又有解答题,中档偏上难度.1.函数与映射2.函数的有关概念 (1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,所有的输入值x 组成的集合A 叫做函数y =f (x )的定义域;对于A中的每一个x,都有一个输出值y与之对应.我们将所有输出值y组成的集合称为函数的值域.(2)函数的三要素:定义域、对应法则和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.概念方法微思考请你概括一下求函数定义域的类型.提示(1)分式型;(2)根式型;(3)对数式型;(4)指数函数、对数函数型;(5)三角函数型.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域就是集合B.( ×)(2)若两个函数的定义域与值域相同,则这两个函数表示同一函数.( ×)(3)函数f(x)的图象与直线x=1最多有一个交点.( √)(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.( ×)(5)分段函数是由两个或几个函数组成的.( ×)题组二教材改编2.[P26练习T6]函数f(x)=4-xx-1的定义域是________.答案(-∞,1)∪(1,4]3.[P30练习T2]函数y=f(x)的图象如图所示,那么,f(x)的定义域是________;值域是________;其中只有唯一的x值与之对应的y值的范围是________.答案[-3,0]∪[2,3][1,5] [1,2)∪(4,5]题组三易错自纠4.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列各对应关系f 不能表示从P 到Q 的函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .答案 ③解析 对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是从P 到Q 的函数.5.已知f (x )=x -1,则f (x )=____________. 答案 x 2-1(x ≥0)解析 令t =x ,则t ≥0,x =t 2, 所以f (t )=t 2-1(t ≥0), 即f (x )=x 2-1(x ≥0).6.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为____________.答案 (-∞,-2]∪[0,10] 解析 ∵f (x )是分段函数, ∴f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0, ∴x ≤-2或0≤x <1.当x ≥1时,f (x )≥1⇒4-x -1≥1, 即x -1≤3,∴1≤x ≤10. 综上所述,x ≤-2或0≤x ≤10, 即x ∈(-∞,-2]∪[0,10].第1课时 函数的概念与解析式题型一 函数的概念1.已知A ={1,2,3,k },B ={4,7,a 4,a 2+3a },a ∈N *,k ∈N *,x ∈A ,y ∈B ,f :x →y =3x +1是从定义域A 到值域B 的一个函数,求a ,k 的值. 解 由对应法则知,1→4,2→7,3→10,k →3k +1. 由a 4≠10,故a 2+3a =10,解得a =2或a =-5(舍去), 所以a 4=16.于是3k +1=16,所以k =5. 2.有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;②f (x )=x 2-2x +1与g (t )=t 2-2t +1表示同一函数;③若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中判断正确的序号是________. 答案 ②解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数,故①不正确;对于②,f (x )与g (t )的定义域、值域和对应法则均相同,所以f (x )和g (t )表示同一函数,故②正确;对于③,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1,故③不正确. 综上可知,正确的判断是②.3.已知映射f :A →B ,其中A =B =R ,对应法则f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是________. 答案 (1,+∞)解析 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. ∴Δ=4(1-k )<0,∴k >1时满足题意.思维升华函数的值域可由定义域和对应法则唯一确定;当且仅当定义域和对应法则都相同的函数才是同一函数.值得注意的是,函数的对应法则是就结果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同). 题型二 求函数的解析式例1 (1)设二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,求f (x )的解析式. 解 (1)方法一 由f (3)=f (-1),知抛物线y =f (x )的对称轴为x =1, 故设f (x )=a (x -1)2+13(a <0),将点(3,5)的坐标代入,求得a =-2. 故f (x )=-2(x -1)2+13=-2x 2+4x +11. 方法二 由f (3)=f (-1)=5, 可设f (x )-5=a (x -3)(x +1)(a <0),即f (x )=a (x 2-2x -3)+5=a (x -1)2-4a +5, 故-4a +5=13,得a =-2,从而f (x )=-2(x -1)2+13=-2x 2+4x +11. (2)令1-x 1+x =t ,因1-x 1+x =-1+2x +1≠-1,故t ≠-1,且x =1-t 1+t.由f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2, 得f (t )=1-⎝ ⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=2t 1+t 2(t ≠-1).于是得f (x )=2x1+x2,其定义域是{x |x ≠-1}. 思维升华函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.跟踪训练1(1)已知函数f (x )是二次函数,且满足f (2x +1)+f (2x -1)=16x 2-4x +6,则f (x )=________. 答案 2x 2-x +1解析 设二次函数f (x )=ax 2+bx +c (a ≠0),则a (2x +1)2+b (2x +1)+c +a (2x -1)2+b (2x -1)+c =16x 2-4x +6, 可得⎩⎪⎨⎪⎧8a =16,4b =-4,2a +2c =6,解得⎩⎪⎨⎪⎧a =2,b =-1,c =1,则f (x )=2x 2-x +1.(2)已知f (3x +1)=2x 2-x +3,则f (1-x )=________________. 答案 2x 29+x3+3解析 令3x +1=t ,于是x =t -13,得f (t )=2⎝⎛⎭⎪⎫t -132-t -13+3=2t 29-7t 9+329, 所以f (x )=2x 29-7x 9+329,所以f (1-x )=2(1-x )29-7(x -1)9+329=2x 29+x3+3.题型三 分段函数命题点1 求分段函数的函数值例2(1)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.答案 2解析 由题意得f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝ ⎛⎭⎪⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2.(2)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≥3,f (x +1),x <3,则f (2+log 32)的值为________.答案154解析 ∵2+log 31<2+log 32<2+log 33,即2<2+log 32<3,∴f (2+log 32)=f (2+log 32+1)=f (3+log 32),又3<3+log 32<4,∴f (3+log 32)=33log 213+⎛⎫⎪⎝⎭=⎝ ⎛⎭⎪⎫133×3log 213⎛⎫ ⎪⎝⎭=127×3log 21(3)-=127×3log 23-=127×31log 23=127×12=154,∴f (2+log 32)=154. 命题点2 分段函数与方程、不等式问题例3 已知函数f (x )=21,0,21,1x c cx x c c x -+<<⎧⎪⎨⎪+<⎩≤满足f (c 2)=98.(1)求常数c 的值; (2)解不等式f (x )>28+1. 解 (1)因为0<c <1,所以c 2<c . 由f (c 2)=98,得c 3+1=98,所以c =12.(2)由(1)得f (x )=⎩⎪⎨⎪⎧12x +1,0<x <12,2-4x+1,12≤x <1.当0<x <12时,由12x +1>28+1,解得24<x <12; 当12≤x <1时,由2-4x+1>28+1, 解得12≤x <58.所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪24<x <58. 思维升华 (1)分段函数的求值问题的解题思路①求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.②求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.(2)分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.跟踪训练2(1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a的值为________. 答案 -34解析 当a >0时,1-a <1,1+a >1, 由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a , 解得a =-32,不合题意;当a <0时,1-a >1,1+a <1, 由f (1-a )=f (1+a ),可得 -(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.综上,a =-34.(2)(2018·全国Ⅰ改编)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是________. 答案 (-∞,0)解析 方法一 ①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0).方法二 ∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x . 此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).1.已知集合A ={a ,b ,c },B ={1,2},那么可建立从A 到B 的映射个数是________,从B 到A 的映射个数是________. 答案 8 9解析 依题意,建立从A 到B 的映射,即集合A 中的每一个元素在集合B 中都能找到对应元素,从而从A 到B 的映射个数为23=8,从B 到A 的映射个数是32=9.2.已知一个函数的解析式为y =x 2,它的值域为{1,4},这样的函数有________个. 答案 9解析 列举法:定义域可能是{1,2}、{-1,2}、{1,-2}、{-1,-2}、{1,-2,2}、{-1,-2,2}、{-1,1,2}、{-1,1,-2}、{-1,1,-2,2}. 3.(2019·江苏省扬州中学月考)已知函数f (x )=xx 2+1,x ∈R ,若f (a )=14,则f (-a )=________. 答案 -14解析 因为f (x )=xx 2+1,则f (-x )=-xx 2+1=-f (x ),故函数为奇函数, 则f (-a )=-f (a )=-14.4.给出下列三个函数:①f (x )=1-x 2;②f (x )=log 2x ;③f (x )=x 2+1x 2+x +2.其中以实数2为函数值的函数是________.(填序号) 答案 ②解析 逐一验证方程f (x )=2在其定义域内是否有解. 5.已知f (x +1)=x +2x ,则f (x )=________. 答案 x 2-1(x ≥1)解析 令x +1=t ,则x =(t -1)2(t ≥1),代入原式得f (t )=(t -1)2+2(t -1)=t 2-1,所以f (x )=x 2-1(x ≥1).6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x+1,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14的值是________.答案109解析 因为函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x+1,x ≤0,14>0, 所以f ⎝ ⎛⎭⎪⎫14=log 214=-2<0, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫14=f (-2)=3-2+1=109.7.(2019·江苏省海安高级中学月考)已知函数f (x )满足f ⎝⎛⎭⎪⎫2-1x +2f ⎝ ⎛⎭⎪⎫2+1x =3x ,则f (-2)=________. 答案 -34解析 由题意可得⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫2-1x +2f ⎝ ⎛⎭⎪⎫2+1x =3x ,f ⎝ ⎛⎭⎪⎫2+1x +2f ⎝ ⎛⎭⎪⎫2-1x =-3x ,解得⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫2-1x =-3x ,f ⎝ ⎛⎭⎪⎫2+1x =3x ,令2+1x =-2,可得x =-14,则f (-2)=3×⎝ ⎛⎭⎪⎫-14=-34. 8.已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________.答案 12x 2-32x +2 解析 设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2, f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1,即2ax +a +b =x -1, ∴⎩⎪⎨⎪⎧ 2a =1,a +b =-1,即⎩⎪⎨⎪⎧ a =12,b =-32.∴f (x )=12x 2-32x +2. 9.设f (x )=⎩⎨⎧ x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =________. 答案 6 解析 由当x ≥1时f (x )=2(x -1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a +1)得a =2(a +1-1),解得a =14,则f ⎝ ⎛⎭⎪⎫1a =f (4)=2(4-1)=6. 10.已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=________. 答案 x 2-x +1(x ≠1) 解析 f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1, 令x +1x=t (t ≠1),则f (t )=t 2-t +1, 即f (x )=x 2-x +1(x ≠1).11.已知f (x )=6x +14x -2,求f ⎝ ⎛⎭⎪⎫12011+f ⎝ ⎛⎭⎪⎫22011+…+f ⎝ ⎛⎭⎪⎫20112011的值. 解 因为f (x )=6x +14x -2, 则f (1-x )=6-6x +14-4x -2=7-6x 2-4x ,f (x )+f (1-x )=6x +14x -2+7-6x 2-4x =12x -64x -2=3, 所以f ⎝ ⎛⎭⎪⎫12011+f ⎝ ⎛⎭⎪⎫22011+…+f ⎝ ⎛⎭⎪⎫20112011=3×1005+72=60372. 12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (m)与汽车的车速x (km/h)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (m)与汽车的车速x (km/h)的关系图.(1)求y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2m ,求行驶的最大速度.解 (1)由题意及函数图象,得⎩⎪⎨⎪⎧ 402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0). (2)令x 2200+x 100≤25.2,得-72≤x ≤70. 因为x ≥0,所以0≤x ≤70.故行驶的最大速度是70km/h.13.设函数f (x )=⎩⎪⎨⎪⎧ x 2+2x ,x <0,-x 2,x ≥0,若f (f (a ))≤3,则实数a 的取值范围是________.答案 (-∞, 3 ]解析 令f (a )=t ,则f (t )≤3等价于⎩⎪⎨⎪⎧ t <0,t 2+2t ≤3或⎩⎪⎨⎪⎧ t ≥0,-t 2≤3,解得t ≥-3,则f (a )≥-3等价于⎩⎪⎨⎪⎧ a <0,a 2+2a ≥-3或⎩⎪⎨⎪⎧ a ≥0,-a 2≥-3,解得a ≤3,则实数a 的取值范围是(-∞, 3 ].14.已知函数f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________. 答案 7解析 由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2,f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2,f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2,又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1, ∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.15.已知具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称f (x )为满足“倒负”变换的函数,下列函数:①f (x )=x -1x ; ②f (x )=2x; ③f (x )=log 2x ; ④f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是____________.(填序号)答案 ①③④解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =12x ≠-2x ,不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =log 21x=-log 2x =-f (x ),满足; 对于④,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足. 综上,满足“倒负”变换的函数是①③④.16.如图,动点P 从矩形ABCD 的顶点A 开始,顺次经B ,C ,D 绕边界一周,已知AB =2,AD =1,设x 表示点P 的行程,y =PA ,求y 关于x 的解析式.解 当P 在AB 上运动时,y =x (0≤x ≤2);当P 在线段BC 上运动时,y =4+(x -2)2(2<x ≤3); 当P 在线段CD 上运动时,y =1+(5-x )2(3<x ≤5); 当P 在线段DA 上运动时,y =6-x (5<x ≤6),∴y =⎩⎪⎨⎪⎧ x ,0≤x ≤2,4+(x -2)2,2<x ≤3,1+(5-x )2,3<x ≤5,6-x ,5<x ≤6.。
(课标通用)2020版高考数学大一轮复习第二章4第四节函数的图象课件理

函数图象的识辨
典例2 (1)(2018课标全国Ⅲ,7,5分)函数y=-x +x +2的图象大致为(
4 2
D
)
ax b (2)函数f(x)= 2 的图象如图所示,则下列结论成立的是( ( x c)
C
)
A.a>0,b>0,c<0 C.a<0,b>0,c<0
B.a<0,b>0,c>0 D.a<0,b<0,c<0
(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.
( )
1 2.函数f(x)= -x的图象关于 ( x
C
)
A.y轴对称
B.直线y=-x对称
C.坐标原点对称
答案 C
D.直线y=x对称
1 ∵f(x)= -x是奇函数, x
∴图象关于原点对称.
3.甲、乙二人同时从A地赶往B地,甲先骑自行车到两地的中点再改为跑
y=f(x) y =⑩ f(|x|) ;
y=f(x)
y=
|f(x)| .
3.函数图象的对称性
(1)函数图象自身的轴对称 ①f(-x)=f(x)⇔y=f(x)的图象关于y轴对称; ②函数y=f(x)的图象关于x=a对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x)⇔f(-x)= f(2a+x);
由题中图象可知-c=xP>0,即c<0,排除B.
b b 令f(x)=0,可得x=- ,则xN=- , a a b <0.所以a,b异号,排除A,D.故选C. 又xN>0,则 a
规律总结
已知函数解析式判断函数图象的方法 (1)根据函数的定义域判断图象的左右位置,根据函数的值域判断图象 的上下位置; (2)根据函数的单调性判断图象的变化趋势;
江苏专用高考数学大一轮复习第二章函数2.8函数的图象教案含解析

江苏专用高考数学大一轮复习第二章函数2.8函数的图象教案含解析§2.8 函数的图象考情考向分析 函数图象和函数性质的综合应用;利用图象解方程或不等式,题型以填空题为主,中档难度.1.函数的图象将自变量的一个值x 0作为横坐标,相应的函数值f (x 0)作为纵坐标,就得到了坐标平面上的一个点的坐标,当自变量取遍定义域A 内的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)用符号表述为{(x ,y )|y =f (x ),x ∈A },所有这些点组成的图形就是函数的图象. 2.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 3.图象变换 (1)平移变换(2)对称变换①y =f (x )―――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x(a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x )―――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax ).②y =f (x )―――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ). (4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). 概念方法微思考1.函数f (x )的图象关于直线x =a 对称,你能得到f (x )解析式满足什么条件? 提示 f (a +x )=f (a -x )或f (x )=f (2a -x ).2.若函数y =f (x )和y =g (x )的图象关于点(a ,b )对称,则f (x ),g (x )的关系是______________. 提示 g (x )=2b -f (2a -x )题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( × ) (2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( × ) 题组二 教材改编2.[P30练习T3]若f (x )的图象如图所示,则f (x )=________.答案 ⎩⎪⎨⎪⎧x +1,x ∈[-1,0],-12x ,x ∈(0,2]3.[P31习题T6]方程|x -1|=1x的正实数根的个数是________. 答案 14.[P87习题T14改编]任取x 1,x 2∈(a ,b ),且x 1≠x 2,若f ⎝⎛⎭⎪⎫x 1+x 22>12[f (x 1)+f (x 2)],则称f (x )是(a ,b )上的凸函数.在下列图象中,为凸函数图象的是________.(填序号)答案 ④ 题组三 易错自纠5.把函数f (x )=ln x 的图象上各点的横坐标扩大到原来的2倍,得到的图象的函数解析式是________________.答案 y =ln ⎝ ⎛⎭⎪⎫12x解析 根据伸缩变换方法可得,所求函数解析式为y =ln ⎝ ⎛⎭⎪⎫12x . 6.下列图象是函数y =⎩⎪⎨⎪⎧x 2,x <0,x -1,x ≥0的图象的是________.(填序号)答案 ③7.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________. 答案 (0,+∞)解析 在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知,当a >0时,方程|x |=a -x 只有一个解.题型一 作函数的图象分别画出下列函数的图象: (1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.解 (1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图②所示.(3)y =x 2-|x |-2=⎩⎪⎨⎪⎧x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x的图象向右平移1个单位,再向上平移2个单位得到,如图④所示.思维升华图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.题型二函数图象的变换例1作出函数f(x)=x2+2x-3的图象,然后根据f(x)的图象作出函数y=-f(x)的图象,并说明两函数图象的关系.解f(x)=x2+2x-3=(x+1)2-4,y=f(x)的图象是开口向上的抛物线,其顶点为(-1,-4),与x轴的两个交点是(-3,0),(1,0),和y轴交点是(0,-3),图象如图(1),y=-f(x)的图象如图(2).两图象关于x轴对称.引申探究本例中,通过图象的变换分别画出函数y=f(-x),y=-f(-x),y=f(|x|),y=|f(x)|,y=f(x+1),y=f(x)+1的图象,并说明各图象和函数f(x)图象的关系.解各个函数图象如下图实线部分所示:各图象和y=f(x)的图象关系如下:(1)函数y=f(-x)的图象与y=f(x)的图象关于y轴对称;(2)函数y =-f (-x )的图象与y =f (x )的图象关于原点对称;(3)函数y =f (|x |)=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,即在y 轴上及其右侧图象与函数y =f (x )图象相同,再将y 轴右侧图象作y 轴的对称图象可得x <0时的图象;(4)函数y =|f (x )|=⎩⎪⎨⎪⎧f (x ),f (x )≥0,-f (x ),f (x )<0,即在x 轴上及其上方的图象与函数y =f (x )图象相同,再将x 轴下方的图象作x 轴的对称图象可得f (x )<0时的图象; (5)函数y =f (x +1)的图象是将y =f (x )的图象向左平移一个单位得到的; (6)函数y =f (x )+1的图象是将y =f (x )的图象向上平移一个单位得到的.思维升华根据图象的变换作函数的草图要遵循函数的基本性质,在函数图象的应用中经常用到. 跟踪训练1若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为________.(填序号)答案 ③解析 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知③正确.题型三 函数图象的应用命题点1 研究函数的性质例2(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是________.(填序号) ①f (x )是偶函数,单调递增区间是(0,+∞) ②f (x )是偶函数,单调递减区间是(-∞,1) ③f (x )是奇函数,单调递减区间是(-1,1) ④f (x )是奇函数,单调递增区间是(-∞,0) 答案 ③解析 将函数f (x )=x |x |-2x 去掉绝对值,得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.③正确,其余错误.(2)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________. 答案 9解析 作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n 且mn =1.若f (x )在[m 2,n ]上的最大值为2, 从图象分析应有f (m 2)=2, ∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故nm=9.命题点2 解不等式例3函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f(x)cos x <0的解集为________________.答案⎝⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2解析当x∈⎝⎛⎭⎪⎫0,π2时,y=cos x>0.当x∈⎝⎛⎭⎪⎫π2,4时,y=cos x<0.结合y=f(x),x∈[0,4]上的图象知,当1<x<π2时,f(x)cos x<0.又函数y=f(x)cos x为偶函数,所以在[-4,0]上,f(x)cos x<0的解集为⎝⎛⎭⎪⎫-π2,-1,所以f(x)cos x<0的解集为⎝⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.命题点3 求参数的取值范围例4(1)已知函数12log,0,()2,0,xx xf xx≤若关于x的方程f(x)=k有两个不等的实数根,则实数k的取值范围是________.答案(0,1]解析作出函数y=f(x)与y=k的图象,如图所示,由图可知k∈(0,1].(2)已知函数f(x)=|x-2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是__________.答案⎝⎛⎭⎪⎫12,1解析先作出函数f(x)=|x-2|+1的图象,如图所示,当直线g(x)=kx与直线AB平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围为⎝ ⎛⎭⎪⎫12,1.思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题. 跟踪训练2(1)已知函数f (x )=⎩⎪⎨⎪⎧1x,x >1,x 3,-1≤x ≤1,若关于x 的方程f (x )=k (x +1)有两个不同的实数根,则实数k 的取值范围是________.答案 ⎝⎛⎭⎪⎫0,12解析 在同一个直角坐标系中,分别作出函数y =f (x )及y =k (x +1)的图象,则函数f (x )max =f (1)=1,设A (1,1),B (-1,0),函数y =k (x +1)过点B ,则由图可知,要使关于x 的方程f (x )=k (x +1)有两个不同的实数根,则0<k <k AB =12.(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是__________. 答案 [-1,+∞)解析 如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).高考中的函数图象及应用问题高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提.一、函数的图象和解析式问题例1(1)已知函数f (x )=log a (x +b )(a >0且a ≠1,b ∈R )的图象如图所示,则a +b 的值是________.答案 92解析 由图象可知,函数过点(-3,0),(0,-2),所以得⎩⎪⎨⎪⎧0=log a (-3+b ),-2=log a b 解得⎩⎪⎨⎪⎧a =12,b =4,故a +b =92.(2)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=________. 答案 e-x -1解析 与y =e x图象关于y 轴对称的函数为y =e -x.依题意,f (x )的图象向右平移一个单位长度,得y =e -x的图象.∴f (x )的图象由y =e -x的图象向左平移一个单位长度得到.∴f (x )=e-(x +1)=e-x -1.(3)已知a >0,且a ≠1,若函数y =|a x-2|与y =3a 的图象有两个交点,则实数a 的取值范围是________.答案 ⎝⎛⎭⎪⎫0,23解析 ①当0<a <1时,作出函数y =|a x-2|的图象,如图a.若直线y =3a 与函数y =|a x-2|(0<a <1)的图象有两个交点,则由图象可知0<3a <2,所以0<a <23.②当a >1时,作出函数y =|a x-2|的图象,如图b ,若直线y =3a 与函数y =|a x-2|(a >1)的图象有两个交点,则由图象可知0<3a <2,此时无解,所以a 的取值范围是⎝ ⎛⎭⎪⎫0,23.二、函数图象的应用例2(1)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是____________.答案 (3,+∞)解析 在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3. (2)不等式3sin ⎝ ⎛⎭⎪⎫π2x -12log x <0的整数解的个数为________. 答案 2解析 不等式3sin ⎝ ⎛⎭⎪⎫π2x -12log x <0,即3sin ⎝ ⎛⎭⎪⎫π2x <12log x .设f (x )=3sin ⎝ ⎛⎭⎪⎫π2x ,g (x )=12log x ,在同一坐标系中分别作出函数f (x )与g (x )的图象,由图象可知,当x 为整数3或7时,有f (x )<g (x ),所以不等式3sin ⎝ ⎛⎭⎪⎫π2x -12log x <0的整数解的个数为2.(3)已知函数f (x )=⎩⎪⎨⎪⎧sinπx ,0≤x ≤1,log 2020x ,x >1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是__________.答案 (2,2021)解析 函数f (x )=⎩⎪⎨⎪⎧sinπx ,0≤x ≤1,log 2020x ,x >1的图象如图所示,不妨令a <b <c ,由正弦曲线的对称性可知a +b =1,而1<c <2020, 所以2<a +b +c <2021.1.已知函数y =f (x )是R 上的奇函数,则函数y =f (x -3)+2的图象经过的定点为________. 答案 (3,2)解析 由于函数y =f (x )是R 上的奇函数,故它的图象过原点.又由于y =f (x )的图象向右平移3个单位长度,再向上平移2个单位长度可得到函数y =f (x -3)+2的图象,故y =f (x -3)+2的图象过点(3,2).2.若函数y =f (2x +1)是偶函数,则函数y =f (x )图象的对称轴方程是________. 答案 x =1解析 因为f (2x +1)是偶函数,所以f (2x +1)=f (-2x +1),所以f (x )=f (2-x ), 所以f (x )图象的对称轴为直线x =1.3.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.答案 -12解析 由图(图略)知,当且仅当直线y =2a 过函数y =|x -a |-1图象的最低点(a ,-1)时,符合题意,故2a =-1,即a =-12.4.方程2-x+x 2=3的实数解的个数为________. 答案 2解析 画出函数y =2-x与y =3-x 2的图象(图略),可知两函数图象有两个交点,故方程2-x+x 2=3的实数解的个数为2.5.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)=________.答案 -1解析 由图象可得-a +b =3,ln(-1+a )=0,解得a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1. 6.设函数y =f (x )的图象与y =2x -a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =________. 答案 -2解析 由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1, 可得-a -log 22-a -log 24=1,解得a =-2.7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为______________. 答案 {x |x ≤0或1<x ≤2}解析 画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧x >1,f (x )≤0或⎩⎪⎨⎪⎧x <1,f (x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.已知函数f (x )=⎩⎪⎨⎪⎧log 2(1-x )+1,-1≤x <0,x 3-3x +2,0≤x ≤a的值域为[0,2],则实数a 的取值范围是__________. 答案 [1,3]解析 先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象, 再研究f (x )=x 3-3x +2,0≤x ≤a 的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1, 由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.9.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个根,则k 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-13,0解析 由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1). 记B (2,0),由图象知,方程有四个根, 即函数f (x )与y =kx +k +1的图象有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10.给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m与函数y =f (x )的图象有3个交点,则实数m 的取值范围为__________. 答案 (4,5)解析 作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为________. 答案 (-∞,1)解析 当x ≤0时,f (x )=2-x-1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位长度得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1). 12.已知函数f (x )=2x,x ∈R .(1)当m 取何值时,方程|f (x )-2|=m 有一个解?两个解? (2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围. 解 (1)令F (x )=|f (x )-2|=|2x-2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解; 当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )=⎝ ⎛⎭⎪⎫t +122-14在区间(0,+∞)上是增函数,所以H (t)>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].13.已知定义在R 上的函数f (x )=⎩⎪⎨⎪⎧lg|x |,x ≠0,1,x =0,关于x 的方程f (x )=c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3=________. 答案 0解析 方程f (x )=c 有三个不同的实数根等价于y =f (x )与y =c 的图象有三个交点,画出函数f (x )的图象(图略),易知c =1,且方程f (x )=c 的一根为0,令lg|x |=1,解得x =-10或10,故方程f (x )=c 的另两根为-10和10,所以x 1+x 2+x 3=0. 14.已知函数f (x )=x |x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是________________.答案 ⎝ ⎛⎭⎪⎫-∞,-1+52∪⎝ ⎛⎭⎪⎫1+52,+∞解析f (x )=⎩⎪⎨⎪⎧1+1x -1,x >1,-1+11-x ,x <1,g (x )=⎩⎪⎨⎪⎧1+x ,x ≥0,1,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x =x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x=5+12.结合图象可知,满足f (x )<g (x )的x 的取值范围是⎝⎛⎭⎪⎫-∞,5-12∪⎝ ⎛⎭⎪⎫1+52,+∞.15.已知函数213,1,()log ,1,x x x f x x x≤g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为____________. 答案 ⎝ ⎛⎦⎥⎤-∞,74∪⎣⎢⎡⎭⎪⎫94,+∞ 解析 对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察213,1,()log ,1,x x x f x x x≤的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|, 所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是⎝ ⎛⎦⎥⎤-∞,74∪⎣⎢⎡⎭⎪⎫94,+∞.16.已知函数f (x )=⎩⎪⎨⎪⎧(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,则实数k 的取值范围是__________. 答案 ⎝⎛⎦⎥⎤0,16解析 由题意知,直线y =kx 与函数y =f (x )的图象至少有3个公共点.函数y =f (x )的图象如图所示,由图知k 的取值范围是⎝ ⎛⎦⎥⎤0,16.。
高考数学一轮复习 第二章 第4讲 函数的图像资料(艺术班)

高考数学一轮复习 第二章 第4讲 函数的图像资料(艺术班)第4讲 函数的图像一、必记2个知识点1.利用描点法作函数图像其基本步骤是列表、描点、连线,具体为:首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点); 最后:描点,连线.2.利用图像变换法作函数的图像 (1)平移变换:y =f (x )――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a ); y =f (x )―――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b .(2)伸缩变换:y =f (x )10111ωωωω<<>−−−−−−−−→,伸原的倍,短原的长为来缩为来 y =f (ωx ); y =f (x )――――――――――→A >1,伸为原来的A 倍0<A <1,缩为原来的A 倍y=Af (x ).(3)对称变换:y =f (x )――――――→关于x 轴对称 y =-f (x ); y =f (x )――――――→关于y 轴对称y =f (-x ); y =f (x )――――――→关于原点对称y =-f (-x ). (4)翻折变换:y =f (x )――――――――――――→去掉y 轴左边图,保留y 轴右边图将y 轴右边的图像翻折到左边去y =f (|x |); y =f (x )――――――――→留下x 轴上方图将x 轴下方图翻折上去y =|f (x )|. 二、必明2个易误区1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避免出错.2.明确一个函数的图像关于y 轴对称与两个函数的图像关于y 轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系. 三、必会2个方法1.数形结合思想借助函数图像,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质;利用函数的图像,还可以判断方程f (x )=g (x )的解的个数、求不等式的解集等.2.分类讨论思想画函数图像时,如果解析式中含参数,还要对参数进行讨论,分别画出其图像.考点一作函数的图像(1)y =|lg x |; (2)y =2x +2; (3)y =x 2-2|x |-1.解:(1)y =⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.图像如图1.(2)将y =2x的图像向左平移2个单位.图像如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.图像如图3.[类题通法]画函数图像的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图像变换法.若函数图像可由某个基本函数的图像经过平移、翻折、对称得到,可利用图像变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.考点二 识图与辨图[典例] 2( )(2)(2012·湖北高考)已知定义在区间[0,2]上的函数y =f (x )的图像如图所示,则y =-f (2-x )的图像为( )[解析] (1)f (x )=ln(x 2+1),x ∈R ,当x =0时,f (0)=ln 1=0,即f (x )过点(0,0),排除B ,D.∵f (-x )=ln[(-x )2+1]=ln(x 2+1)=f (x ),∴f (x )是偶函数,其图像关于y 轴对称,故选A.(2)法一:由y =f (x )的图像知f (x )=⎩⎪⎨⎪⎧x 0≤x ≤1,11<x ≤2.当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧10≤x ≤1,2-x 1<x ≤2,故y =-f (2-x )=⎩⎪⎨⎪⎧-10≤x ≤1,x -21<x ≤2.法二:当x =0时,-f (2-x )=-f (2)=-1;当x =1时,-f (2-x )=-f (1)=-1.观察各选项,可知应选B.[答案] (1)A (2)B[类题通法]识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. [针对训练]1.(2014·潍坊高三期末)函数y =x sin x 在[-π,π]上的图像是( )解析:选A 因为函数为偶函数,排除选项D ;f (π)=0,排除选项C ;f ⎝ ⎛⎭⎪⎫π2=π2,排除选项B.故选A.2.如图,函数f (x )的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎪⎫1f 3的值等于________.解析:∵由图像知f (3)=1,∴1f 3=1.∴f ⎝⎛⎭⎪⎫1f 3=f (1)=2.答案:2考点三函数图像的应用角度一 1.(2014·日照一模)已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________.解析:方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y=f (x )的图像,由图像知零点的个数为5.角度二 求参数的取值范围2.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f x =(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]解析:选B ∵a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1,∴函数f (x )=(x 2-2)⊗(x -1)=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2.结合图像可知,当c ∈(-2,-1]∪(1,2]时,函数f (x )与y =c 的图像有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2].课后作业[试一试]1.(2014·安徽“江南十校”联考)函数y =log 2(|x |+1)的图像大致是( )解析:选B 首先判断定义域为R .又f (-x )=f (x ).所以函数y =log 2(|x |+1)为偶函数,当x >0时,y =log 2(x +1).故选B. [练一练]2.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________. 解析:由题意a =|x |+x令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图像如图所示,故要使a =|x |+x 只有一解则a >0.答案:(0,+∞)做一做3.函数y =x |x |的图像经描点确定后的形状大致是( )解析:选A y =x |x |=⎩⎪⎨⎪⎧x 2,x >00,x =0-x 2,x <0为奇函数,奇函数图像关于原点对称.4.(2013·北京高考)函数f (x )的图像向右平移1个单位长度,所得图像与曲线y =e x关于y 轴对称,则f (x )=( )A .e x +1B .e x -1C .e-x +1D .e-x -1解析:选D 与曲线y =e x关于y 轴对称的曲线为y =e -x,函数y =e -x的图像向左平移一个单位长度即可得到函数f (x )的图像,即f (x )=e-(x +1)=e-x -1.5.已知函数f (x )的图像如图所示,则函数g (x )=2(x )的定义域是________.解析:当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图像知满足f (x )>0的x ∈(2,8]. 答案:(2,8]6.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析:如图作出函数f (x )=|x +a |与g (x )=x -1的图像,观察图像可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)7.函数f (x )=2x 3的图像( ) A .关于y 轴对称 B .关于x 轴对称 C .关于直线y =x 对称D .关于原点对称解析:选D 显然函数f (x )=2x 3是一个奇函数,所以其图像关于原点对称.8.函数y =⎩⎪⎨⎪⎧x 2,x <0,2x-1,x ≥0的图像大致是( )解析:选B 当x <0时,函数的图像是抛物线;当x ≥0时,只需把y =2x的图像在y 轴右侧的部分向下平移1个单位即可,故大致图像为B.9.为了得到函数y =2x -3-1的图像,只需把函数y =2x的图像上所有的点( )A .向右平移3个单位长度,再向下平移1个单位长度B .向左平移3个单位长度,再向下平移1个单位长度C .向右平移3个单位长度,再向上平移1个单位长度D .向左平移3个单位长度,再向上平移1个单位长度 解析:选A y =2x――――――――→向右平移3个单位长度y =2x -3――――――――→向下平移1个单位长度y =2x -3-1.故选A.10.(2013·四川高考)函数y =x 33x -1的图像大致是( )解析:选C 因为函数的定义域是非零实数集,所以A 错;当x <0时,y >0,所以B 错;当x →+∞时,y →0,所以D 错,故选C..11..函数f (x )=x +1x图像的对称中心为________. 解析:f (x )=x +1x =1+1x ,把函数y =1x的图像向上平移1个单位,即得函数f (x )的图像.由y =1x的对称中心为(0,0),可得平移后的f (x )图像的对称中心为(0,1).答案:(0,1)12.已知函数f(x)=2x,x∈R.当m取何值时方程|f(x)-2|=m有一个解?两个解?解:令F(x)=|f(x)-2|=|2x-2|,G(x)=m,画出F(x)的图像如图所示.由图像看出,当m=0或m≥2时,函数F(x)与G(x)的图像只有一个交点,原方程有一个解;当0<m<2时,函数F(x)与G(x)的图像有两个交点,原方程有两个解.13.(2013·浙江高考)已知函数y=f(x)的图像是下列四个图像之一,且其导函数y=f′(x)的图像如图所示,则该函数的图像是( )解析:选B 由函数f(x)的导函数y=f′(x)的图像自左至右是先增后减,可知函数y=f(x)图像的切线的斜率自左至右先增大后减小.。
(江苏专版)2020版高考数学一轮复习第二章第四节函数的图象教案文(含解析)苏教版

第四节 函数的图象1.描点法作图其基本步骤是列表、描点、连线,具体为:(1)①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点). (3)描点,连线. 2.图象变换 (1)平移变换①y =f (x )的图象――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. (2)对称变换①y =f (x )的图象――――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象―――――→关于原点对称 y =-f (-x )的图象; ④y =a x(a >0且a ≠1)的图象――――――→关于直线y =x 对称 y =log a x (a >0且a ≠1)的图象.(3)伸缩变换 ①y =f (x )的图象②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x )的图象. (4)翻转变换①y =f (x )的图象―――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;②y =f (x )的图象――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.[小题体验]1.f (x )的图象如图所示,则f (x )=________.答案:f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],-12x ,x ∈,2]2.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=________.解析:与曲线y =e x 关于y 轴对称的图象对应的解析式为y =e -x ,将函数y =e -x的图象向左平移1个单位长度即得y =f (x )的图象,所以f (x )=e-(x +1)=e-x -1.答案:e-x -13.(2018·扬州期末)若函数y =f (x )的图象经过点(1,2),则函数y =f (-x )+1的图象必经过的点的坐标是________.解析:把函数y =f (x )的图象关于y 轴对称,再向上平移1个单位,可得函数y =f (-x )+1的图象.把函数y =f (x )的图象上的点(1,2)关于y 轴对称,再向上平移1个单位,可得点(-1,3),故函数y =f (-x )+1的图象必定经过的点的坐标是(-1,3). 答案:(-1,3)1.函数图象的每次变换都针对自变量“x ”而言,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,其中是把x 变成x -12.2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.如函数y =f (|x |)的图象属于自身对称,而y =f (x )与y =f (-x )的图象关于y 轴对称是两个函数.[小题纠偏]1.函数y =5x与函数y =-15x 的图象关于________对称.答案:原点2.把函数y =f (2x )的图象向右平移________个单位得到函数y =f (2x -3)的图象. 答案:32考点一 作函数的图象基础送分型考点——自主练透[题组练透]分别画出下列函数的图象: (1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1.解:(1)y =⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图1.(2)将y =2x的图象向左平移2个单位.图象如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.图象如图3.[谨记通法]作函数图象的3种常用方法考点二 识图与辨图重点保分型考点——师生共研[典例引领]1.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,x +a ,x ≥-1的图象如图所示,则f (-3)=________.解析:由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,所以f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,x +,x ≥-1,故f (-3)=2×(-3)+5=-1.答案:-12.(2019·启东检测)若函数f (x )=|a x+b |(a >0,a ≠1,b ∈R)的图象如图所示,则a +b 的取值范围是________.解析:由图可得,函数f (x )的零点为12,即a +b =0.由图可得,当x >12时,函数f (x )为增函数,故a >1,所以a +b =a -a =⎝ ⎛⎭⎪⎫a -122-14∈(0,+∞). 答案:(0,+∞)[由题悟法]识图3种常用的方法[即时应用]1.已知y =f (x )的图象如图所示,则f (x )的值域为________. 解析:由图象易知f (x )的值域为(-∞,-1]∪(1,3). 答案:(-∞,-1]∪(1,3)2.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎪⎫1f=________. 解析:由图象知f (3)=1,所以1f=1,所以f ⎝⎛⎭⎪⎫1f=f (1)=2.答案:2考点三 函数图象的应用 题点多变型考点——多角探明[锁定考向]函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.常见的命题角度有: (1)研究函数的性质; (2)求参数的值或范围; (3)研究不等式;(4)确定方程根(零点)的个数.(详见本章第八节考点二)[题点全练]角度一:研究函数的性质 1.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解:f (x )=⎩⎪⎨⎪⎧x -2-1,x ∈-∞,1]∪[3,+,-x -2+1,x ∈,作出函数f (x )的图象如图所示.(1)由图知函数f (x )的单调递增区间为[1,2]和[3,+∞),单调递减区间为(-∞,1]和[2,3].(2)由图象可知,若y =f (x )与y =m 图象有四个不同的交点,则0<m <1, 所以集合M ={m |0<m <1}. 角度二:求参数的值或范围2.(2019·苏州实验中学测试)定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.解析:设g (x )=min{x ,x 2-4x +4},则f (x )=g (x )+4,故把g(x)的图象向上平移4个单位长度,可得f(x)的图象,函数f(x)=min{x,x2-4x+4}+4的图象如图所示,由直线y=m与函数y=f(x)的图象有3个交点,可得m的取值范围为(4,5).答案:(4,5)角度三:研究不等式3.(2018·启东中学测试)如图所示,函数y=f(x)的图象是圆x2+y2=2上的两段弧,则不等式f(x)>f(-x)-2x的解集是________.解析:由图象可知,函数f(x)为奇函数,故原不等式可等价转化为f(x)>-x,在同一平面直角坐标系中分别作出y=f(x)与y=-x的图象,由图象可知不等式的解集为(-1,0)∪(1,2].答案:(-1,0)∪(1,2]4.若不等式(x-1)2<log a x(a>0,且a≠1)在x∈(1,2)内恒成立,则实数a的取值范围为________.解析:要使当x∈(1,2)时,不等式(x-1)2<loga x恒成立,只需函数y=(x-1)2在(1,2)上的图象在y=log a x的图象的下方即可.当0<a<1时,显然不成立;当a>1时,如图,要使x∈(1,2)时,y=(x-1)2的图象在y=log a x的图象的下方,只需(2-1)2≤log a2,即log a2≥1,解得1<a≤2,故实数a的取值范围是(1,2].答案:(1,2][通法在握]函数图象应用的常见题型与求解策略(1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值.②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性.④从图象与x轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(范围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[演练冲关]1.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (3-a 2)<f (2a ),则实数a 的取值范围是________.解析:如图,画出f (x )的图象,由图象易得f (x )在R 上单调递减,因为f (3-a 2)<f (2a ),所以3-a 2>2a ,解得-3<a <1.答案:(-3,1)2.(2019·扬州中学高三调研)已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫π2x -1,x <0,log a x a >0,a ,x >0的图象上关于y 轴对称的点恰有9对,则实数a 的取值范围是________.解析:若x >0,则-x <0,∵x <0时,f (x )=sin ⎝ ⎛⎭⎪⎫π2x -1,∴f (-x )=sin ⎝ ⎛⎭⎪⎫-π2x -1=-sin ⎝ ⎛⎭⎪⎫π2x -1, 则若f (x )=sin ⎝⎛⎭⎪⎫π2x -1,x <0关于y 轴对称,则f (-x )=-sin ⎝ ⎛⎭⎪⎫π2x -1=f (x ), 设g (x )=-sin ⎝⎛⎭⎪⎫π2x -1,x >0,作出函数g (x )的大致图象如图所示.要满足题意,则须使g (x )=-sin ⎝ ⎛⎭⎪⎫π2x -1,x >0与f (x )=log ax ,x >0的图象恰有9个交点,则0<a <1,且满足f (17)>g (17)=-2,f (21)<g (21)=-2, 即-2<log a 17,log a 21<-2,解得2121<a <1717. 答案:⎝⎛⎭⎪⎫2121,1717一抓基础,多练小题做到眼疾手快1.已知函数f (x )=x 2+1,若0<x 1<x 2,则f (x 1)与f (x 2)的大小关系为________. 解析:作出函数图象(图略),知f (x )在(0,+∞)上单调递增,所以f (x 1)<f (x 2). 答案:f (x 2)>f (x 1)2.(2018·常州一中期末)将函数y =e x的图象上所有点的横坐标变为原来的一半,再向右平移2个单位,所得函数的解析式为________.解析:将函数y =e x 的图象上所有点的横坐标变为原来的一半,可得y =e 2x,再向右平移2个单位,可得y =e2(x -2)=e2x -4.答案:y =e2x -43.(2018·前黄中学月考)设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.解析:y =f (x +1)向右平移1个单位得到y =f (x )的图象,由已知可得f (x )的图象的对称轴为x =1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧x >1,f x 或⎩⎪⎨⎪⎧x <1,f x 由图可知符合条件的解集为(-∞,0]∪(1,2].答案:(-∞,0]∪(1,2]4.使log 2(-x )<x +1成立的x 的取值范围是________.解析:在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).答案:(-1,0)5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________. 解析:由题意a =|x |+x令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解,则a >0. 答案:(0,+∞)6.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.解析:函数f (x )的图象如图所示,令t =f (a ),则f (t )≤2,由图象知t ≥-2,所以f (a )≥-2,当a <0时,由a 2+a ≥-2,即a 2+a +2≥0恒成立,当a ≥0时,由-a 2≥-2,得0≤a ≤2,故a ≤ 2.答案:(-∞, 2 ]二保高考,全练题型做到高考达标1.已知f (x )=⎝ ⎛⎭⎪⎫13x,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设g (x )上的任意一点A (x ,y ),则该点关于直线x =1的对称点为B (2-x ,y ),而该点在f (x )的图象上.所以y =⎝ ⎛⎭⎪⎫132-x =3x -2,即g (x )=3x -2.答案:g (x )=3x -22.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0),则⎩⎪⎨⎪⎧-k +b =0,b =1,解得⎩⎪⎨⎪⎧k =1,b =1.∴当-1≤x ≤0时,f (x )=x +1.当x >0时,设解析式为f (x )=a (x -2)2-1(a >0), ∵图象过点(4,0),∴0=a (4-2)2-1,∴a =14,∴当x >0时,f (x )=14(x -2)2-1=14x 2-x .故函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x 2-x ,x >0.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x 2-x ,x >03.(2019·江阴中学检测)方程x 2-|x |+a =1有四个不同的实数解,则a 的取值范围是________.解析:方程解的个数可转化为函数y =x 2-|x |的图象与直线y =1-a 交点的个数,作出两函数的图象如图,易知-14<1-a <0,所以1<a <54.答案:⎝ ⎛⎭⎪⎫1,544.(2019·启东中学期中)设奇函数f (x )的定义域为[-5,5],若当x∈[0,5]时,f (x )的图象如图,则不等式f xx -1≤0的解集为________. 解析:不等式f xx -1≤0,等价于⎩⎪⎨⎪⎧f x ,x -1<0或⎩⎪⎨⎪⎧f x,x -1>0.由图象可知:当1<x ≤5时,由f (x )≤0,解得2≤x ≤5. 当0≤x <1时,由f (x )≥0,解得0≤x <1,因为f (x )为奇函数,当-2<x <0时,由f (x )≥0,此时无解, 当-5≤x ≤-2时,由f (x )≥0,解得-5≤x ≤-2, 故不等式的解集为[-5,-2]∪[0,1)∪[2,5]. 答案:[-5,-2]∪[0,1)∪[2,5]5.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f x -,x >0,若方程f (x )=x +a有两个不同实根,则a 的取值范围为________.解析:x ≤0时,f (x )=2-x-1, 0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.故x >0时,f (x )是周期函数, 如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点, 故a <1,即a 的取值范围是(-∞,1). 答案:(-∞,1)6.(2019·镇江中学测试)已知函数f (x )=⎩⎪⎨⎪⎧lg x ,0<x ≤10,⎪⎪⎪⎪⎪⎪-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.解析:作出函数f (x )的图象如图所示,不妨设a <b <c ,则b +c =2×12=24,a ∈(1,10),则a +b +c =24+a ∈(25,34). 答案:(25,34)7.(2019·徐州调研)设函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,fx +,x <0,其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,若直线y =kx +k (k >0)与函数y =f (x )的图象有三个不同的交点,则k 的取值范围是________.解析:∵函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,fx +,x <0,∴作出函数f (x )的图象如图所示.∵y =kx +k =k (x +1),故该直线的图象一定过点(-1,0),若y =kx +k 与y =f (x )的图象有三个不同的交点,则f (x )=kx +k 有三个不同的根, ∵k >0,∴当y =kx +k 过点(2,1)时,k =13,当y =kx +k 过点(3,1)时,k =14,要使f (x )=kx +k 有三个不同的根,则实数k 的取值范围是⎣⎢⎡⎭⎪⎫14,13. 答案:⎣⎢⎡⎭⎪⎫14,13 8.(2019·金陵中学月考)已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域均为[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )·g (x )<0的解集是________.解析:f (x )·g (x )<0⇒f (x )与g (x )在同一区间内符号相反,由图可知,当x ∈[0,π]时,两者异号的区间为⎝ ⎛⎭⎪⎫π3,π. 又f (x )为偶函数,g (x )为奇函数,∴当x ∈[-π,0)时,两者异号的区间为⎝ ⎛⎭⎪⎫-π3,0, ∴f (x )·g (x )<0的解集是⎝ ⎛⎭⎪⎫-π3,0∪⎝ ⎛⎭⎪⎫π3,π.答案:⎝ ⎛⎭⎪⎫-π3,0∪⎝ ⎛⎭⎪⎫π3,π9.(2018·盐城一中测试)已知函数f (x )=x |m -x |(x ∈R),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. 解:(1)因为f (4)=0,所以4|m -4|=0,即m =4.(2)因为f (x )=x |4-x |=⎩⎪⎨⎪⎧x x -,x ≥4,-x x -,x <4.即f (x )=⎩⎪⎨⎪⎧x -2-4,x ≥4,-x -2+4,x <4,所以函数f (x )的图象如图所示. 由图象知函数f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4].(4)从图象上观察可知:不等式f (x )>0的解集为{x |0<x <4或x >4}. (5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4, 所以集合M ={m |0<m <4}. 10.已知函数f (x )=2x,x ∈R.(1)当m 取何值时方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围. 解:(1)令F (x )=|f (x )-2|=|2x-2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝ ⎛⎭⎪⎫t +122-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0, 即所求m 的取值范围为(-∞,0]. 三上台阶,自主选做志在冲刺名校1.对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确命题的个数为________.解析:因为函数f (x )=lg(|x -2|+1),所以函数f (x +2)=lg(|x |+1)是偶函数;由y =lg x ――――――――――→图象向左平移1个单位长度y =lg(x +1)――――――――――――――――――――――――――→去掉y 轴左侧的图象,以y 轴为对称轴,作y 轴右侧的对称图象y =lg(|x |+1)――――――――――→图象向右平移2个单位长度y =lg(|x -2|+1),如图,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值为0.所以①②正确.答案:22.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+a x,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,所以y =f (x )=x +1x(x ≠0).(2)g (x )=f (x )+a x =x +a +1x, g ′(x )=1-a +1x2.因为g (x )在(0,2]上为减函数, 所以1-a +1x 2≤0在(0,2]上恒成立, 即a +1≥x 2在(0,2]上恒成立, 所以a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).命题点一 函数的概念及其表示1.(2018·江苏高考)函数f (x )=log 2x -1的定义域为________.解析:由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.答案:{x |x ≥2}2.(2016·江苏高考)函数y =3-2x -x 2的定义域是________.解析:要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].答案:[-3,1]3.(2016·浙江高考)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =____,b =________.解析:因为f (x )=x 3+3x 2+1, 所以f (a )=a 3+3a 2+1, 所以f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2.由此可得⎩⎪⎨⎪⎧2a +b =-3, ①a 2+2ab =0, ②a 3+3a 2=a 2b . ③因为a ≠0,所以由②得a =-2b ,代入①式得b =1,a =-2. 答案:-2 14.(2018·全国卷Ⅰ改编)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x的取值范围是________.解析:法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0).法二:∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0.答案:(-∞,0)[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析:因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110. 由f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,得-12+a =110,解得a =35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.答案:-252.(2013·江苏高考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.解析:由于f (x )为R 上的奇函数,所以当x =0时,f (0)=0; 当x <0时,-x >0,所以f (-x )=x 2+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎪⎨⎪⎧x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞). 答案:(-5,0)∪(5,+∞)3.(2018·全国卷Ⅱ改编)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________.解析:法一:∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).由f (1-x )=f (1+x ),得-f (x -1)=f (x +1), ∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数得f (0)=0.又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50) =f (1)+f (2)=2+0=2.法二:由题意可设f (x )=2sin ⎝ ⎛⎭⎪⎫π2x ,作出f (x )的部分图象如图所示.由图可知,f (x )的一个周期为4,∴f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=12×0+f (1)+f (2)=2.答案:24.(2017·全国卷Ⅱ改编)函数f (x )=ln(x 2-2x -8)的单调递增区间是________. 解析:由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是 (-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).答案:(4,+∞)5.(2017·全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.解析:由已知得,f (-2)=2×(-2)3+(-2)2=-12, 又函数f (x )是奇函数,所以f (2)=-f (-2)=12. 答案:126.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈ [-3,0]时,f (x )=6-x,则f (919)=________.解析:因为f (x +4)=f (x -2),所以f (x +6)=f (x ), 所以f (x )的周期为6,因为919=153×6+1,所以f (919)=f (1). 又f (x )为偶函数,所以f (919)=f (1)=f (-1)=6. 答案:6命题点三 函数的图象1.(2016·全国卷Ⅱ改编)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=________.解析:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m(x i+y i )=m .答案:m2.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 解析:因为f (x )=ax 3-2x 的图象过点(-1,4), 所以4=a ×(-1)3-2×(-1), 解得a =-2. 答案:-2。
届高考数学一轮复习讲义第二章函数图象

[难点正本 疑点清源] 1.一个函数的图象关于原点对称与两个函数的图象关于原
点对称 一个函数的图象关于原点对称与两个函数的图象关于原 点对称不是一回事.函数 y=f(x)的图象关于原点对称是 自身对称,说明该函数为奇函数;而函数 y=f(x)与函数 y=-f(-x)图象关于原点对称,是两个函数的图象对称.
5.已知函数 f(x)=x-x 1. (1)画出 f(x)的图象; (2)指出 f(x)的单调区间. 解 (1)∵f(x)=x-x 1=(x-x-1)1+1=1+x-1 1, ∴f(x)的中心在(1,1).如图.
(2)f(x)的单调减区间为(-∞,1)、(1,+∞).
作函数的图象
例 1 分别画出下列函数的图象: (1)y=|lg x|; (2)y=2x+2; (3)y=xx++23; (4)y=x2-2|x|-1.
答案 ④
探究提高
寻找图象与函数解析式之间的对应关系的方法: (1)知图选式: ①从图象的左右、上下分布,观察函数的定义域、值域; ②从图象的变化趋势,观察函数的单调性; ③从图象的对称性方面,观察函数的奇偶性; ④从图象的循环往复,观察函数的周期性. 利用上述方法,排除、筛选错误与正确的选项.
(2)知式选图: ①从函数的定义域,判断图象左右的位置;从函数的值域, 判断图象的上下位置; ②从函数的单调性,判断图象的变化趋势; ③从函数的奇偶性,判断图象的对称性; ④从函数的周期性,判断图象的循环往复. 利用上述方法,排除、筛选错误与正确的选项.
a
答案 ④
函数图象的应用
例 3 已知函数 f(x)=x|m-x| (x∈R),且 f(4)=0. (1)求实数 m 的值; (2)作出函数 f(x)的图象; (3)根据图象指出 f(x)的单调递减区间; (4)根据图象写出不等式 f(x)>0 的解集.
2020版高考数学江苏专版(文科)一轮复习学案第二章第四节函数的图象含解析

第四节函数的图象1.描点法作图其基本步骤是列表、描点、连线,具体为:(1)①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性).(2)列表(注意特殊点、零点、最大值点、最小值点以及坐标轴的交点). (3)描点,连线. 2.图象变换 (1)平移变换①y =f (x )的图象――――――――→a >0,右移a 个单位a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→b >0,上移b 个单位b <0,下移|b |个单位y =f (x )+b 的图象. (2)对称变换①y =f (x )的图象――――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象―――――→关于原点对称 y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象――――――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象. (3)伸缩变换 ①y =f (x )的图象②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x )的图象.(4)翻转变换①y =f (x )的图象―――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象. [小题体验]1.f (x )的图象如图所示,则f (x )=________.答案:f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0],-12x ,x ∈(0,2]2.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=________.解析:与曲线y =e x 关于y 轴对称的图象对应的解析式为y =e -x ,将函数y =e -x 的图象向左平移1个单位长度即得y =f (x )的图象,所以f (x )=e -(x +1)=e -x -1.答案:e-x -13.(2018·扬州期末)若函数y =f (x )的图象经过点(1,2),则函数y =f (-x )+1的图象必经过的点的坐标是________.解析:把函数y =f (x )的图象关于y 轴对称,再向上平移1个单位,可得函数y =f (-x )+1的图象.把函数y =f (x )的图象上的点(1,2)关于y 轴对称,再向上平移1个单位,可得点(-1,3), 故函数y =f (-x )+1的图象必定经过的点的坐标是(-1,3). 答案:(-1,3)1.函数图象的每次变换都针对自变量“x ”而言,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,其中是把x 变成x -12.2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.如函数y =f (|x |)的图象属于自身对称,而y =f (x )与y =f (-x )的图象关于y 轴对称是两个函数.[小题纠偏]1.函数y =5x 与函数y =-15x 的图象关于________对称.答案:原点2.把函数y =f (2x )的图象向右平移________个单位得到函数y =f (2x -3)的图象. 答案:32考点一 作函数的图象 (基础送分型考点——自主练透)[题组练透]分别画出下列函数的图象: (1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1.解:(1)y =⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图1.(2)将y =2x 的图象向左平移2个单位.图象如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.图象如图3.[谨记通法]作函数图象的3种常用方法考点二 识图与辨图 (重点保分型考点——师生共研)[典例引领]1.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)=________.解析:由图象可得-a +b =3,ln(-1+a )=0,得a =2,b =5,所以f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1.答案:-12.(2019·启东检测)若函数f (x )=|a x +b |(a >0,a ≠1,b ∈R )的图象如图所示,则a +b 的取值范围是________.解析:由图可得,函数f (x )的零点为12,即a +b =0.由图可得,当x >12时,函数f (x )为增函数,故a >1,所以a +b =a -a =⎝⎛⎭⎫a -122-14∈(0,+∞). 答案:(0,+∞)[由题悟法]识图3种常用的方法[即时应用]1.已知y =f (x )的图象如图所示,则f (x )的值域为________. 解析:由图象易知f (x )的值域为(-∞,-1]∪(1,3). 答案:(-∞,-1]∪(1,3)2.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎫1f (3)=________.解析:由图象知f (3)=1,所以1f (3)=1,所以f ⎝⎛⎭⎫1f (3)=f (1)=2.答案:2考点三 函数图象的应用 (题点多变型考点——多角探明) [锁定考向]函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.常见的命题角度有: (1)研究函数的性质; (2)求参数的值或范围; (3)研究不等式;(4)确定方程根(零点)的个数.(详见本章第八节考点二)[题点全练]角度一:研究函数的性质 1.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解:f (x )=⎩⎪⎨⎪⎧(x -2)2-1,x ∈(-∞,1]∪[3,+∞),-(x -2)2+1,x ∈(1,3).作出函数f (x )的图象如图所示.(1)由图知函数f (x )的单调递增区间为[1,2]和[3,+∞),单调递减区间为(-∞,1]和[2,3]. (2)由图象可知,若y =f (x )与y =m 图象有四个不同的交点,则0<m <1, 所以集合M ={m |0<m <1}. 角度二:求参数的值或范围2.(2019·苏州实验中学测试)定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.解析:设g (x )=min{x ,x 2-4x +4},则f (x )=g (x )+4,故把g (x )的图象向上平移4个单位长度,可得f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由直线y =m 与函数y =f (x )的图象有3个交点,可得m 的取值范围为(4,5).答案:(4,5)角度三:研究不等式3.(2018·启东中学测试)如图所示,函数y =f (x )的图象是圆x 2+y 2=2上的两段弧,则不等式f (x )>f (-x )-2x 的解集是________.解析:由图象可知,函数f (x )为奇函数,故原不等式可等价转化为f (x )>-x ,在同一平面直角坐标系中分别作出y =f (x )与y =-x 的图象,由图象可知不等式的解集为(-1,0)∪(1,2].答案:(-1,0)∪(1,2]4.若不等式(x -1)2<log a x (a >0,且a ≠1)在x ∈(1,2)内恒成立,则实数a 的取值范围为________.解析:要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需函数y =(x -1)2在(1,2)上的图象在y =log a x 的图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图,要使x ∈(1,2)时,y =(x -1)2的图象在y =log a x 的图象的下方,只需(2-1)2≤log a 2,即log a 2≥1,解得1<a ≤2,故实数a 的取值范围是(1,2].答案:(1,2][通法在握]函数图象应用的常见题型与求解策略(1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值. ②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性. ④从图象与x 轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(范围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[演练冲关]1.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≥0,x 2-2x ,x <0,若f (3-a 2)<f (2a ),则实数a 的取值范围是________.解析:如图,画出f (x )的图象,由图象易得f (x )在R 上单调递减,因为f (3-a 2)<f (2a ),所以3-a 2>2a ,解得-3<a <1.答案:(-3,1)2.(2019·扬州中学高三调研)已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝⎛⎭⎫π2x -1,x <0,log a x (a >0,a ≠1),x >0的图象上关于y 轴对称的点恰有9对,则实数a 的取值范围是________.解析:若x >0,则-x <0, ∵x <0时,f (x )=sin ⎝⎛⎭⎫π2x -1,∴f (-x )=sin ⎝⎛⎭⎫-π2x -1=-sin ⎝⎛⎭⎫π2x -1, 则若f (x )=sin ⎝⎛⎭⎫π2x -1,x <0关于y 轴对称, 则f (-x )=-sin ⎝⎛⎭⎫π2x -1=f (x ), 设g (x )=-sin ⎝⎛⎭⎫π2x -1,x >0,作出函数g (x )的大致图象如图所示.要满足题意,则须使g (x )=-sin ⎝⎛⎭⎫π2x -1,x >0与f (x )=log a x ,x >0的图象恰有9个交点,则0<a <1,且满足f (17)>g (17)=-2,f (21)<g (21)=-2, 即-2<log a 17,log a 21<-2, 解得2121<a <1717. 答案:⎝⎛⎭⎫2121,1717一抓基础,多练小题做到眼疾手快1.已知函数f (x )=x 2+1,若0<x 1<x 2,则f (x 1)与f (x 2)的大小关系为________. 解析:作出函数图象(图略),知f (x )在(0,+∞)上单调递增,所以f (x 1)<f (x 2). 答案:f (x 2)>f (x 1)2.(2018·常州一中期末)将函数y =e x 的图象上所有点的横坐标变为原来的一半,再向右平移2个单位,所得函数的解析式为________.解析:将函数y =e x 的图象上所有点的横坐标变为原来的一半,可得y =e 2x ,再向右平移2个单位,可得y =e 2(x -2)=e 2x -4.答案:y =e 2x -43.(2018·前黄中学月考)设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.解析:y =f (x +1)向右平移1个单位得到y =f (x )的图象,由已知可得f (x )的图象的对称轴为x =1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎨⎧ x >1,f (x )≤0或⎩⎨⎧x <1,f (x )≥0.由图可知符合条件的解集为(-∞,0]∪(1,2].答案:(-∞,0]∪(1,2]4.使log 2(-x )<x +1成立的x 的取值范围是________.解析:在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).答案:(-1,0)5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________. 解析:由题意a =|x |+x令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解,则a >0. 答案:(0,+∞)6.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________. 解析:函数f (x )的图象如图所示,令t =f (a ),则f (t )≤2,由图象知t ≥-2,所以f (a )≥-2,当a <0时,由a 2+a ≥-2,即a 2+a +2≥0恒成立,当a ≥0时,由-a 2≥-2,得0≤a ≤2,故a ≤ 2.答案:(-∞, 2 ]二保高考,全练题型做到高考达标1.已知f (x )=⎝⎛⎭⎫13x,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设g (x )上的任意一点A (x ,y ),则该点关于直线x =1的对称点为B (2-x ,y ),而该点在f (x )的图象上.所以y =⎝⎛⎭⎫132-x =3x -2,即g (x )=3x -2. 答案:g (x )=3x -22.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为f (x )=kx +b (k ≠0),则⎩⎪⎨⎪⎧ -k +b =0,b =1,解得⎩⎪⎨⎪⎧k =1,b =1.∴当-1≤x ≤0时,f (x )=x +1.当x >0时,设解析式为f (x )=a (x -2)2-1(a >0), ∵图象过点(4,0),∴0=a (4-2)2-1,∴a =14,∴当x >0时,f (x )=14(x -2)2-1=14x 2-x .故函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x 2-x ,x >0.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14x 2-x ,x >03.(2019·江阴中学检测)方程x 2-|x |+a =1有四个不同的实数解,则a 的取值范围是________.解析:方程解的个数可转化为函数y =x 2-|x |的图象与直线y =1-a 交点的个数,作出两函数的图象如图,易知-14<1-a <0,所以1<a <54.答案:⎝⎛⎭⎫1,544.(2019·启东中学期中)设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )x -1≤0的解集为________.解析:不等式f (x )x -1≤0,等价于⎩⎪⎨⎪⎧ f (x )≥0,x -1<0或⎩⎪⎨⎪⎧f (x )≤0,x -1>0.由图象可知:当1<x ≤5时,由f (x )≤0,解得2≤x ≤5. 当0≤x <1时,由f (x )≥0,解得0≤x <1,因为f (x )为奇函数,当-2<x <0时,由f (x )≥0,此时无解, 当-5≤x ≤-2时,由f (x )≥0,解得-5≤x ≤-2, 故不等式的解集为[-5,-2]∪[0,1)∪[2,5]. 答案:[-5,-2]∪[0,1)∪[2,5]5.已知函数f (x )的定义域为R ,且f (x )=⎩⎪⎨⎪⎧2-x-1,x ≤0,f (x -1),x >0,若方程f (x )=x +a 有两个不同实根,则a 的取值范围为________.解析:x ≤0时,f (x )=2-x -1, 0<x ≤1时,-1<x -1≤0, f (x )=f (x -1)=2-(x -1)-1. 故x >0时,f (x )是周期函数, 如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点, 故a <1,即a 的取值范围是(-∞,1). 答案:(-∞,1)6.(2019·镇江中学测试)已知函数f (x )=⎩⎪⎨⎪⎧lg x ,0<x ≤10,⎪⎪⎪⎪-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.解析:作出函数f (x )的图象如图所示,不妨设a <b <c ,则b +c =2×12=24,a ∈(1,10),则a +b +c =24+a ∈(25,34). 答案:(25,34)7.(2019·徐州调研)设函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[1.2]=1,若直线y =kx +k (k >0)与函数y =f (x )的图象有三个不同的交点,则k 的取值范围是________.解析:∵函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,∴作出函数f (x )的图象如图所示.∵y =kx +k =k (x +1),故该直线的图象一定过点(-1,0),若y =kx +k 与y =f (x )的图象有三个不同的交点,则f (x )=kx +k 有三个不同的根, ∵k >0,∴当y =kx +k 过点(2,1)时,k =13,当y =kx +k 过点(3,1)时,k =14,要使f (x )=kx +k 有三个不同的根,则实数k 的取值范围是⎣⎡⎭⎫14,13. 答案:⎣⎡⎭⎫14,138.(2019·金陵中学月考)已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域均为[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )·g (x )<0的解集是________.解析:f (x )·g (x )<0⇒f (x )与g (x )在同一区间内符号相反,由图可知,当x ∈[0,π]时,两者异号的区间为⎝⎛⎭⎫π3,π. 又f (x )为偶函数,g (x )为奇函数,∴当x ∈[-π,0)时,两者异号的区间为⎝⎛⎭⎫-π3,0, ∴f (x )·g (x )<0的解集是⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π. 答案:⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π 9.(2018·盐城一中测试)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. 解:(1)因为f (4)=0,所以4|m -4|=0,即m =4.(2)因为f (x )=x |4-x |=⎩⎪⎨⎪⎧x (x -4),x ≥4,-x (x -4),x <4.即f (x )=⎩⎪⎨⎪⎧(x -2)2-4,x ≥4,-(x -2)2+4,x <4,所以函数f (x )的图象如图所示. 由图象知函数f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4].(4)从图象上观察可知:不等式f (x )>0的解集为{x |0<x <4或x >4}. (5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4, 所以集合M ={m |0<m <4}. 10.已知函数f (x )=2x ,x ∈R .(1)当m 取何值时方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围.解:(1)令F (x )=|f (x )-2|=|2x -2|, G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0, 即所求m 的取值范围为(-∞,0]. 三上台阶,自主选做志在冲刺名校1.对于函数f (x )=lg(|x -2|+1),给出如下三个命题:①f (x +2)是偶函数;②f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;③f (x )没有最小值.其中正确命题的个数为________.解析:因为函数f (x )=lg(|x -2|+1),所以函数f (x +2)=lg(|x |+1)是偶函数;由y =lg x ――――――――――→图象向左平移1个单位长度y =lg(x +1)――――――――――――――――――――――――――→去掉y 轴左侧的图象,以y 轴为对称轴,作y 轴右侧的对称图象y =lg(|x |+1)――――――――――→图象向右平移2个单位长度y =lg(|x -2|+1),如图,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值为0.所以①②正确.答案:22.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称. (1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图象上,即2-y =-x -1x +2,所以y =f (x )=x +1x (x ≠0). (2)g (x )=f (x )+ax =x +a +1x , g ′(x )=1-a +1x2.因为g (x )在(0,2]上为减函数, 所以1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立, 所以a +1≥4,即a ≥3,故实数a 的取值范围是[3,+∞).命题点一 函数的概念及其表示1.(2018·江苏高考)函数f (x )=log 2x -1的定义域为________. 解析:由log 2x -1≥0,即log 2x ≥log 22,解得x ≥2,所以函数f (x )=log 2x -1的定义域为{x |x ≥2}.答案:{x |x ≥2}2.(2016·江苏高考)函数y =3-2x -x 2的定义域是________.解析:要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].答案:[-3,1]3.(2016·浙江高考)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2, x ∈R ,则实数a =____,b =________.解析:因为f (x )=x 3+3x 2+1,所以f (a )=a 3+3a 2+1, 所以f (x )-f (a )=(x -b )(x -a )2 =(x -b )(x 2-2ax +a 2)=x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2.由此可得⎩⎪⎨⎪⎧2a +b =-3, ①a 2+2ab =0, ②a 3+3a 2=a 2b . ③因为a ≠0,所以由②得a =-2b ,代入①式得b =1,a =-2. 答案:-2 14.(2018·全国卷Ⅰ改编)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是________.解析:法一:①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x , 即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧ x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x ,解得x <0. 因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0).法二:∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,∴x <0.答案:(-∞,0)1.(2016·江苏高考[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f (5a )的值是________. 解析:因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得 f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-2-12=f ⎝⎛⎭⎫-12=-12+a , f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫4+12=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110.由f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,得-12+a =110,解得a =35. 所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.答案:-252.(2013·江苏高考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.解析:由于f (x )为R 上的奇函数,所以当x =0时,f (0)=0; 当x <0时,-x >0,所以f (-x )=x 2+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎪⎨⎪⎧ x 2-4x >x ,x >0或⎩⎪⎨⎪⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞). 答案:(-5,0)∪(5,+∞)3.(2018·全国卷Ⅱ改编)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=________.解析:法一:∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).由f (1-x )=f (1+x ),得-f (x -1)=f (x +1), ∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数得f (0)=0. 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0. 又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50) =f (1)+f (2)=2+0=2.法二:由题意可设f (x )=2sin ⎝⎛⎭⎫π2x ,作出f (x )的部分图象如图所示.由图可知,f (x )的一个周期为4,∴f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=12×0+f (1)+f (2)=2.答案:24.(2017·全国卷Ⅱ改编)函数f (x )=ln(x 2-2x -8)的单调递增区间是________.解析:由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是 (-∞,-2)∪(4,+∞).注意到函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).答案:(4,+∞)5.(2017·全国卷Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.解析:由已知得,f (-2)=2×(-2)3+(-2)2=-12, 又函数f (x )是奇函数,所以f (2)=-f (-2)=12. 答案:126.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈ [-3,0]时,f (x )=6-x ,则f (919)=________.解析:因为f (x +4)=f (x -2),所以f (x +6)=f (x ), 所以f (x )的周期为6,因为919=153×6+1,所以f (919)=f (1). 又f (x )为偶函数,所以f (919)=f (1)=f (-1)=6. 答案:6命题点三 函数的图象1.(2016·全国卷Ⅱ改编)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=________.解析:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x 2=0,f (-x )+f (x )2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x ,故其图象也关于点(0,1)对称.所以函数y =x +1x 与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m (x i +y i )=m .答案:m2.(2015·全国卷Ⅱ)已知函数f(x)=ax3-2x的图象过点(-1,4),则a=________. 解析:因为f(x)=ax3-2x的图象过点(-1,4),所以4=a×(-1)3-2×(-1),解得a=-2.答案:-2。
(江苏专用)2020版高考数学大一轮复习 第二章 函数的概念与基本初等函数Ⅰ第4讲 函数的奇偶性与周

3.函数的周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何 值时,都有_f(_x_+__T_)_=__f(_x_) ,那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中_存__在__一__个__最__小__的正数,那么这个最 小正数就叫做f(x)的__最__小___正周期. (3)函数周期性的三个常用结论: ①若f(x+a)=-f(x),则T=2a,
答案 1e,e
5.(2018·江苏 卷 ) 函数 f(x) 满足 f(x + 4) = f(x)(x∈R) ,且 在区间 ( - 2 , 2] 上 , f(x) =
cos π2x,0<x≤2,
则
x+12,-2<x≤0,
f(f(15))的值为________.
解析 因为函数 f(x)满足 f(x+4)=f(x)(x∈R),所以函数 f(x)的最小正周期是 4.因为在区 间(-2,2]上,f(x)=cxo+s 12π2x,,-0<2x<≤x≤2,0,所以 f(f(15))=f(f(-1))=f 12=cos π4= 22.
2.(2019·苏州暑假测试)已知定义在R上的奇函数f(x),当x>0时,f(x)=2x-x2,则f(0) +f(-1)=________. 解析 因为f(x)为定义在R上的奇函数,所以f(0)=0,f(-1)=-f(1)=-(2-1)= -1,因此f(0)+f(-1)=-1. 答案 -1
3.(2017·全 国 Ⅰ 卷 改 编 ) 已 知 函 数 f(x) = ln x + ln(2 - x) , 则 下 列 说 法 正 确 的 是 ________(填序号). ①f(x)在(0,2)上单调递增; ②f(x)在(0,2)上单调递减; ③y=f(x)的图象关于直线x=1对称; ④y=f(x)的图象关于点(1,0)对称.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间[0,1)上,
f(x)=
x
2
,其x 中D 集, 合D=
x,x D ,
0的解的个数是
.
,则方x程xf(nxn)-1lg,nx=N*
(2)(2017江苏泰州中学高三月考)若函数f(x)=|2x-1|,则函数g(x)=f(f(x))+
ln x在(0,1)上不同的零点个数为
.
答案 (1)8 (2)3
解析 (1)由于f(x)∈[0,1),则只需考虑1≤x<10的情况.在此范围内,x∈Q
x2 2x(x 2), x2 2x(x 2),
∴所求函数的图象由两部分组成,如图所示.
考点二 函数图象的应用
角度一 研究函数的性质
典例2
(2019江苏镇江高三模拟)已知函数y=
2
2
x
x
1
与y=
1
x的 图1 象共有
x
k(k∈N*)个公共点:A1(x1,y1),A2(x2,y2),…,Ak(xk,yk),则 k (xi+yi)=
1-1 画出下列函数的图象:
(1)y=x2-2x(|x|>1); (2)f(x)= 1 ;
|x |
(3)y=x|2-x|.
解析 (1)∵|x|>1,∴x<-1或x>1, ∴所求函数的图象由两部分组成,如图所示.
(2)f(x)=
1 x
(x 1( x
0 ),
其图象如图所示.
x 0 ),
(3)∵y=x|2-x|=
1.直线x=a与函数y=x2+1的图象有 答案 1 2.函数y=f(x)与y=f(-x)的图象关于 答案 y轴
个公共点. 对称.
3.为了得到函数y=lg x 的3 图象,只需把函数y=lg x的图象上所有的点
10
向
平移3个单位长度,向
平移
个单位长度.
答案 左;下;1
4.已知函数f(x)=e|ln x|,则函数y=f(x+1)的图象大致为
i 1
规律总结
若函数f(x)满足f(a+x)+f(b-x)=c,则该函数的图象关于点
a
对2 b称, 2c;若
函数f(x)满足f(a+x)=f(b-x),则该函数的图象关于直线x= a 对b 称,反之也
2
成立.
角度二 确定方程实根的个数
典例3 (1)(2017江苏,14,5分)设f(x)是定义在R上且周期为1的函数,在区
(3)y=
x2 x2
的2图x象1(如x 图0)③, .
2x 1(x 0)
(4)y= x =2 1+ ,3先作出y= 的3 图象,将其图象向右平移1个单位,向上
x1 x1
x
平移1个单位,即得y= x 的2 图象,如图④.
x1
方法技巧 函数图象的常见画法 (1)直接法:当函数的解析式(或变形后的解析式)是熟悉的基本函数时, 就可根据这些函数的特征描出图象的关键点,进而直接作出图象.
且x∉Z时,设x= q ,p,q∈N*,p≥2且p,q互质,若lg x∈Q,则由lg x∈[0,1),可
p
设lg x= n
m
n
,m,n∈N*,m≥2且m,n互质,因此10 m
(2)转化法:含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数 来画图象. (3)图象变换法:若函数图象可由某个基本函数的图象经过平移、伸 缩、翻折、对称得到,则可利用图象变换作出. 易错警示 (1)画函数图象时一定要注意定义域. (2)利用图象变换法作图时要注意变换的顺序,对不能直接找到熟悉的 基本函数的要先变形.
则实数a的值是
.
答案 1
解析 问题转化为函数y=|x2-1|的图象与直线y=a有三个不同的交点,画 出y=|x2-1|的图象(图略),结合图象可知a=1.
6.(2017江苏无锡一中高三月考)函数f(x)=x2-2|x|的单调增区间是 .
答案 [-1,0],[1,+∞) 解析 在直角坐标系中作出函数f(x)的图象(图略),由图象可得f(x)的递 增区间是[-1,0],[1,+∞).
第四节 函数的图象Biblioteka 教 材1.利用描点法作图
研 2.利用图象变换作图 读
考 考点一 作函数的图象 点 突 考点二 函数图象的应用 破
教材研读
1.利用描点法作图
利用描点法作图的步骤如下: (1)确定函数的定义域; (2)化简函数的解析式; (3)讨论函数的性质,即奇偶性、周期性、单调性、最值(甚至变化趋势)等; (4)描点,连线,画出函数的图象.
.(只填序号)
答案 ④
解析 当x≥1时, f(x)=e|ln x|=eln x=x,当0<x<1时, f(x)=e|ln =e x| -ln x= 1 ,函数y=f(x+
x
1)的图象由y=f(x)的图象向左平移1个单位长度后得到,故④正确.
5.(2017南京三中高三月考)若关于x的方程|x2-1|=a有三个不等的实数解,
y=f(x) y= |f(x)| .
知识拓展 与函数图象的对称变换有关的结论 (1)与y=f(x)的图象关于直线x=m对称的图象是函数y=f(2m-x)的图象; (2)与y=f(x)的图象关于直线y=n对称的图象是函数y=2n-f(x)的图象; (3)与y=f(x)的图象关于点(a,b)对称的图象是函数y=2b-f(2a-x)的图象.
考点突破
考点一 作函数的图象
典例1 分别画出下列函数的图象:
(1)y=|lg x|;
(2)y=2x+2;
(3)y=x2-2|x|-1;
(4)y= x .2
x1
解析 (1)y=lglgx的(xx(图01象),x如1图) ①. (2)将y=2x的图象向左平移2个单位即可得到y=2x+2的图象,如图②.
.
i 1
答案 2
解析
函数y=
2
2
x
x
1
满足f(x)+f(-x)=2,则该函数的图象关于点(0,1)对称,
1
且在R上单调递增,y∈(0,2).又函数y= x 的1 图象也关于点(0,1)对称,且
x
在(0,+∞)和(-∞,0)上递减,所以两个函数的图象(如图)共有2个公共点:
2
A1(x1,y1),A2(x2,y2),且这两个交点关于点(0,1)对称,则 (xi+yi)=x1+x2+y1+y2=2.
2.利用图象变换作图
(1)平移变换
(2)伸缩变换
y=f(x)
y=⑤ f(ωx) ; y=f(x) y=⑥ Af(x) . (3)对称变换 y=f(x) y=⑦ -f(x) ;
y=f(x) y=⑧ f(-x) ; y=f(x) y=⑨ -f(-x) . (4)翻折变换
y=f(x) y=⑩ f(|x|) ;