数学高一分段函数知识点
分段函数知识点总结

分段函数知识点总结一、分段函数的定义分段函数是指在定义域上将函数分成若干段,每一段上使用不同的函数表达式来描述函数的行为。
它可以是由有限个函数组成的,也可以是由无限个函数组成的。
一般来说,分段函数的定义域可以被划分成有限个不相交的区域,每个区域内使用不同的函数表达式描述函数的行为。
例如,一个简单的分段函数可以是这样的:\[f(x) = \begin{cases}2x, & \text{ if } x < 0 \\x^2, & \text{ if } x \geq 0\end{cases}\]在这个例子中,定义域被分成两段:$x < 0$和$x \geq 0$,分别在这两个区域内使用不同的函数表达式来描述函数的行为。
二、分段函数的图像分段函数的图像通常是由多个部分组成的,每个部分对应于函数定义域中的一个区域。
因此,对于一个有限段的分段函数,其图像是由一些部分图像组成的;对于一个无限段的分段函数,则可能包含无限个部分图像。
以前面的例子$f(x) = \begin{cases}2x, & \text{ if } x < 0 \\x^2, & \text{ if } x \geq 0\end{cases}$为例,其图像可以通过分别画出$y = 2x$和$y = x^2$的图像来得到。
当然,我们也可以直接画出$f(x)$的图像,只需在$x = 0$处将两个部分对接起来即可。
对于无限段的分段函数,我们可能无法通过直接画出所有部分图像来得到完整的图像,但是我们可以通过分析函数表达式的性质来对函数的整体行为有所了解。
三、分段函数的性质分段函数可以具有各种不同的性质,这取决于定义域内不同区域上使用的函数表达式。
首先,在定义域的各个区域内,分段函数可以具有不同的函数性质。
在一个区域上,它可能是线性的;在另一个区域上,它可能是二次的,甚至是高次的多项式函数;在另一个区域上,它可能是指数函数、对数函数或者三角函数等。
新高一数学分段函数知识点

新高一数学分段函数知识点近年来,高一数学分段函数在教学中越来越受到重视,因为它能够很好地解决现实生活中的实际问题。
分段函数,顾名思义,是由多个线段组成的函数。
在这篇文章中,我将介绍一些新高一数学分段函数的知识点,希望能对学生们的学习有所帮助。
首先,我们需要了解分段函数的定义。
分段函数由若干段曲线组成,每一段曲线都可以用一个公式来表示。
这些公式在不同的区间内有效,并且在连续的区间之间分界。
例如,y = |x| 就是一个分段函数,其中包括两个区间:当x ≥ 0 时,用公式 y = x 表示;当 x < 0 时,用公式 y = -x 表示。
接下来,让我们来看看如何求解分段函数的定义域。
要求解分段函数的定义域,我们需要先求解每个段上的定义域,然后取所有定义域的交集。
举个例子,考虑函数f(x) ={ x+1, x<0{ x^2, x≥0我们需要分别求解 x+1 和 x^2 的定义域。
很显然,x+1 在实数范围内都有定义,而 x^2 的定义域为x ≥ 0 。
因此,函数 f(x) 的定义域为 x≥ 0,即所有段的交集。
另一个需要掌握的重要知识点是分段函数的值域。
求解分段函数的值域时,我们同样需要对每个段上的值域进行求解,然后取所有值域的交集。
举个例子,考虑函数g(x) ={ x+1, x < 0{ √x, x ≥ 0可以看到,x+1 的值域为 (-∞, +∞),而√x 的值域为y ≥ 0。
因此,函数 g(x) 的值域为[0, +∞),即所有段的交集。
除了求解定义域和值域,我们还需要学会如何求解分段函数的零点。
零点是指函数取值为 0 的点。
对于分段函数而言,我们需要分别求解每个段上的零点,并将其进行合并。
举个例子,考虑函数h(x) ={ 2x+1, x<0{ x^2, x≥0我们需要求解 2x+1 = 0 和 x^2 = 0 的零点。
很显然,2x+1 = 0 的零点为 x = -1/2,而 x^2 = 0 的零点为 x = 0。
高中数学 新北师大版必修第一册 第二章 2 第2课时 分段函数 课件

5,15 < ≤ 19,∈N+.
根据这个函数解析式,可画出函数图象,如以下图.
探究一
探究二
探究三
探究四
素养形成
当堂检测
分段函数的理解与应用
典例如以下图,底角为45°的等腰梯形ABCD,底边BC长为7 cm,腰长
为2
cm,当垂直于底边BC(垂足为F)的直线l从左至右移动(与梯
当堂检测
解:设票价为y元,里程为x千米,根据题意,
如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),
那么汽车行驶的里程约为19千米,所以自变量x的取值范围是
{x∈N+|x≤19}.
由空调汽车票价制定的规定,可得到以下函数解析式:
2,0 < ≤ 5,∈N+,
y=
3,5 < ≤ 10,∈N+ ,
第2课时
分段函数
课标阐释
思维脉络
1.了解分段函数的概念.(数学抽象)
2.会求分段函数的函数值,能画出分段
函数的图象.(直观想象)
3.能在实际问题中列出分段函数,并能
解决有关问题.(数学建模)
激趣诱思
知识点拨
根据我国地理学家的估算,我国的水资源总量约为27 000亿m3,
而可利用的水资源缺乏总量的1%,现我国属于水资源贫困的国家,
3.写分段函数的定义域时,区间端点应不重不漏.分段函数的定义域
是各段自变量取值区间的并集.
4.分段函数值域的求法是分别求出各段上的因变量的取值集合后
取并集;分段函数的最大(小)值的求法是先求出每段函数的最大(小)
值,然后比较各段的最大(小)值,其中最大(小)的为分段函数的最大
分段函数知识点总结整理

分段函数知识点总结整理分段函数是一种函数表达式,其定义域被分为几个部分,在每个部分,函数的表达式都是不同的。
分段函数在实际问题中有着广泛的应用,而对于学习者而言,掌握分段函数的知识是非常重要的。
本文将通过总结和整理分段函数的知识点,帮助读者更好地理解和掌握这一部分的数学知识。
1.分段函数的基本概念分段函数是由若干个部分组成的函数,每个部分都有自己的定义域和函数表达式。
通常来说,一般形式的分段函数可以表示为:\[ f(x) = \begin{cases} f_1(x), & a_1 \leq x < b_1 \\ f_2(x), & a_2 \leq x < b_2 \\ \vdots \\f_n(x), & a_n \leq x < b_n \\ \end{cases} \]其中,\[ f_1(x), f_2(x), \cdots, f_n(x) \] 分别为不同的函数表达式,\[ a_1, b_1, a_2, b_2,\cdots, a_n, b_n \] 分别为定义域的分割点。
在每个分段区间,函数的表达式可能不同,也可能相同。
2. 分段函数的图像分段函数的图像通常是由若干个部分的图像组成的。
在每个分段区间内,函数的图像可能是一条直线、一个曲线或者其他形式。
需要注意的是,不同分段区间之间可能存在间断点,这些间断点通常需要特别关注。
3. 分段函数的定义域和值域在讨论分段函数的定义域和值域时,需要分别对每个函数表达式的定义域和值域进行分析。
需要注意的是,整个分段函数的定义域和值域需要考虑到每个部分的定义域和值域的并集或交集。
4. 分段函数的性质分段函数的性质通常是由其各个部分的函数表达式决定的。
当各个函数表达式的性质不同的时候,在整体上,分段函数可能具有一些特殊的性质。
例如,分段函数可能是一个单调递增的函数、单调递减的函数或者是非单调的函数。
5. 分段函数的应用分段函数在实际问题中有着广泛的应用。
高一数学必修1第一章分段函数

(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.7.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B 中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)8.集合相等与真子集的概念定义符号表示图表示集合相等如果A⊆B且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是B的真子集A B(或B A)9.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.10.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.11.并集和交集的概念及其表示类别概念自然语言符号语言图形语言并集由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)A∪B={x|x∈A,或x∈B}交集由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)A∩B={x|x∈A,且x∈B}12.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩AA∪A=A A∩A=AA∪∅=A A∩∅=∅A⊆B⇔A∪B=B A⊆B⇔A∩B=A13.全集(1)定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.14.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言15.补集的性质∁U U=∅,∁U∅=U,∁U(∁U A)=A.【新知识梳理与重难点点睛】1.函数的概念(1)函数的定义:设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域与值域:函数y =f (x )中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.2.区间概念(a ,b 为实数,且a <b)定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ) {x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b }半开半闭区间(a ,b ]3.其他区间的表示定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )4.函数相等如果两个函数定义域相同,并且对应关系完全一致,我们称这两个函数相等.要点一 分段函数求值例1 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f [f (-52)]的值;(2)若f (a )=3,求实数a 的值.解 (1)由-5∈(-∞,-2],-3∈(-2,2), -52∈(-∞,-2],知f (-5)=-5+1=-4,f (-3)=(-3)2+2(-3)=3-2 3.∵f ⎝⎛⎭⎫-52=-52+1=-32,而-2<-32<2, ∴f [f (-52)]=f ⎝⎛⎭⎫-32=⎝⎛⎭⎫-322+2×⎝⎛⎭⎫-32=94-3=-34. (2)当a ≤-2时,a +1=3, 即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0. 所以(a -1)(a +3)=0,得a =1,或a =-3. ∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意. 当a ≥2时,2a -1=3,即a =2符合题意. 综上可得,当f (a )=3时,a =1,或a =2.规律方法 1.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求值.2.已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围;也可先判断每一段上的函数值的范围,确定解析式再求解. 跟踪演练1 已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <1,x -1,x >1,则f (2)等于( )A .0 B.13 C .1 D .2答案 C解析 f (2)=2-1=1.要点二 分段函数的图象及应用例2 已知f (x )=⎩⎪⎨⎪⎧x 2 (-1≤x ≤1),1 (x >1或x <-1),(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].规律方法 1.分段函数的解析式因其特点可以分成两个或两个以上的不同解析式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段或射线,而分段函数的定义域与值域的最好求法也是“图象法”.2.对含有绝对值的函数,要作出其图象,首先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数来画图象. 3.画分段函数图象时还要注意端点是“实心点”还是“空心点”. 跟踪演练2 作出y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞) 的图象,并求y 的值域.解 y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞). 值域为y ∈[-7,7].图象如下图.要点三 映射的概念例3 以下给出的对应是不是从集合A 到集合B 的映射?(1)集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应;(2)集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;(3)集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;(4)集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生. 解 (1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有唯一的一个实数对与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射. (4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f :A →B 不是从集合A 到集合B 的一个映射.规律方法 映射是一种特殊的对应,它具有:(1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的;(2)唯一性:集合A 中的任意一个元素在集合B 中都有唯一元素关系,可以是:一对一,多对一,但不能一对多.跟踪演练3 下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2,x ∈M ,y ∈N ;③M =N =R ,f :x →y =1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N .A .①②B .②③C .①④D .②④ 答案 D解析 对于①,集合M 中的元素0在N 中无元素与之对应,所以①不是映射.对于③,M 中的元素0及负实数在N 中没有元素与之对应,所以③不是映射.对于②④,M 中的元素在N 中都有唯一的元素与之对应,所以②④是映射.故选D.1.下列集合A 到集合B 的对应中,构成映射的是( )答案 D解析 在A 、B 选项中,由于集合A 中的元素2在集合B 中没有对应的元素,故构不成映射,在C 选项中,集合A 中的元素1在集合B 中的对应元素不唯一,故构不成映射,只有选项D 符合映射的定义,故选D. 2.函数y =|x |的图象是( )答案 B解析 ∵y =|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0, ∴B 选项正确.3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤12x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 ∵f (3)=23,∴f (f (3))=⎝⎛⎭⎫232+1=139. 4.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0. 若f (α)=4,则实数α等于( )A .-4或-2B .-4或2C .-2或4D .-2或2答案 C解析 f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,画出f (x )的图象可知选C.4.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为( ) A .(1,3) B .(1,6) C .(2,4) D .(2,6) 答案 A解析 由题意得⎩⎪⎨⎪⎧ x +y =4,x -y =-2, 解得⎩⎪⎨⎪⎧x =1,y =3.5.设f :x →ax -1为从集合A 到B 的映射,若f (2)=3,则f (3)=________. 答案 5解析 由f (2)=3,可知2a -1=3,∴a =2, ∴f (3)=3a -1=3×2-1=5.6.函数f (x )=⎩⎪⎨⎪⎧x 2+1(x ≥0),2-x (-2≤x <0) 的值域是________.答案 [1,+∞)解析 当x ≥0时,f (x )≥1, 当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f [f (2)]的值; (2)若f (x 0)=8,求x 0的值. 解 (1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0, f [f (2)]=f (0)=02-4=-4. (2)当0≤x 0≤2时,由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4. 二、能力提升8.已知f (x )=⎩⎪⎨⎪⎧x -5,x ≥6,f (x +2), x <6,则f (3)为( )A .2B .3C .4D .5 答案 A解析 f (3)=f (3+2)=f (5), f (5)=f (5+2)=f (7), ∴f (7)=7-5=2.故f (3)=2.9.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f [f ⎝⎛⎭⎫13]等于( )A .-13 B.13C .-23 D.23答案 B解析 由图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,∴f ⎝⎛⎭⎫13=13-1=-23, ∴f [f ⎝⎛⎭⎫13]=f ⎝⎛⎭⎫-23=-23+1=13. 10.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f ⎝⎛⎭⎫1f (2)的值是________.答案1516解析 f (2)=22+2-2=4,∴1f (2)=14,∴f ⎝⎛⎭⎫1f (2)=f ⎝⎛⎭⎫14=1-⎝⎛⎭⎫142=1516.11.已知函数y =|x -1|+|x +2|. (1)作出函数的图象; (2)写出函数的定义域和值域.解 (1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x =1,第二个绝对值的分段点x =-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞), 所以已知函数可写为分段函数形式: y =|x -1|+|x +2|=⎩⎪⎨⎪⎧ -2x -1 (x ≤-2),3 (-2<x ≤1),2x +1 (x >1).在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象,如图.(2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞).三、探究与创新12.“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x (x ≤7)吨,试计算本季度他应交的水费y (单位:元). 解 由题意知,当0<x ≤5时,y =1.2x ,当5<x ≤6时,y =1.2×5+(x -5)×1.2×2=2.4x -6.当6<x ≤7时,y =1.2×5+(6-5)×1.2×2+(x -6)×1.2×4=4.8x -20.4.所以y =⎩⎪⎨⎪⎧ 1.2x ,0<x ≤5,2.4x -6,5<x ≤6,4.8x -20.4,6<x ≤7.13.如图所示,在边长为4的正方形ABCD 边上有一点P ,由点B (起点)沿着折线BCDA ,向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数解析式.解 当0≤x ≤4时,S △APB =12×4x =2x ; 当4<x ≤8时,S △APB =12×4×4=8; 当8<x ≤12时,。
高中数学一轮复习之分段函数

第3节分段函数【基础知识】1.在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.2.分段函数是一个函数,而不是几个函数;3.分段函数的定义域是各段“定义域”的并集,其值域是各段“值域”的并集.【规律技巧】1.因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.2.“分段求解”是处理分段函数问题解的基本原则.3.研究分段函数的性质,需把求函数的定义域放在首位,即遵循“定义域优先”的原则.4. 含绝对值的函数是分段函数另一类表现形式.【典例讲解】例1、设函数f(x)=2-x,x ∈-∞,1,x 2,x ∈[1,+,若f(x)>4,则x 的取值范围是______.【方法技巧】求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.【变式探究】已知f(x)的图象如图,则f(x)的解析式为________.例2已知实数0a ,函数1,21,2x a x x a x xf ,若a f a f 11,则a 的值为()A .B .C .D.【答案】A例3在2014年APEC 会议期间,北京某旅行社为某旅行团包机去旅游,其中旅行社的包机费为12000元,旅行团中每人的飞机票按以下方式与旅行社结算:若旅行团的人数在30人或30人以下,每张机票收费800元;若旅行团的人数多于30人,则给予优惠,每多1人,旅行团每张机票减少20元,但旅行团的人数最多不超过45人,当旅行社获得的机票利润最大时,旅行团的人数是A. 32人B. 35人C. 40人D. 45 人【答案】B 【针对训练】1、作出函数||()x f x xx的图象.【答案】见解析2、已知函数1,1(),1xex f x x x,那么(2)f 的值是()A .0 B. C.21eD .2【答案】D3、设函数,0,22xxx x xxf 若2af f ,则实数a 的取值范围是______【答案】2a 4、设函数246,0()6,0xx xf x x x,则不等式()(1)f x f 的解集是()A.B. C. D.【答案】A5、已知函数2log ,0,()3,0,xx x f x x ≤,则14ff.【答案】19【练习巩固】1.设)10()],6([)10(,2)(xxf f x x x f 则5f 的值为()A .10B .11C .12 D.13【答案】B【解析】这是分段函数,求值时一定注意自变量所在的范围,不同范围选用不同的表达式.(5)119151311f f f f f f f ,故选B .2.设()f x 是定义在R 上且周期为2的函数,在区间[11],上,0111()201xx ax f x bxx ≤≤≤,,,,其中a bR ,.若1322ff,则3a b 的值为.【答案】10 【解析】∵()f x 是定义在R 上且周期为2的函数,∴11f f ,即21=2b a ①.又∵311=1222ff a ,1322f f,∴141=23b a ②. 联立①②,解得,=2. =4a b 。
高考分段函数知识点

高考分段函数知识点高考是每个学生都将经历的一次重要考试,它对于一个人的人生道路具有至关重要的影响。
其中,数学科目一直被认为是让人头疼的科目之一。
而在数学中,分段函数是一个重要的知识点。
本文将向大家介绍高考分段函数的相关知识点。
一、分段函数的定义分段函数是指由两个或多个函数组成的函数,其定义域上按照不同的条件来确定函数表达式。
通常情况下,每个函数表达式只在特定的子区间上有效。
二、分段函数的表示方式在数学中,对于分段函数的表示方式有两种常见的形式,分别是符号函数和条件函数。
1. 符号函数:符号函数是一种用数系的符号表示函数。
一般来说,符号函数的定义可以写成 f(x) = {±1, x>0或x<0},表示在不同的区间上函数取不同的值。
2. 条件函数:条件函数是一种用条件表达式表示函数的形式。
它的定义可以写成 f(x) = {f₁(x), x ∈ D₁;f₂(x), x ∈ D₂;f₃(x), x ∈D₃……},其中D₁、D₂、D₃……表示不同的区间,f₁(x)、f₂(x)、f₃(x)……表示不同的函数表达式。
三、分段函数的性质1. 连续性:一段函数在其定义域上是否连续是其性质之一。
对于分段函数而言,每个子区间内的函数表达式都是连续的,即在各个子区间的边界处函数值存在且相等。
2. 求导性质:在求导过程中,需要根据不同的子区间分别对函数进行求导。
首先,找到函数在定义域内的各个子区间,然后对每个子区间内的函数进行求导,最后将求导结果合并。
3. 极值问题:对于分段函数来说,极值问题也是一个值得关注的问题。
因为分段函数在定义域的不同子区间内可能存在多个极值点,所以需要根据实际题目的条件来确定具体的极值点。
四、解题技巧1. 确定分段函数的子区间:在解答分段函数的题目时,首先需要确定函数的定义域和区间。
这一步是解题的基础,也是问题的关键。
2. 绘制函数图像:根据所给的函数表达式和子区间,可以尝试绘制出函数的图像。
高一数学分段函数练习题.docx

高三 数 学 分 段 函 数 练 习 题知识点: 1、分段函数的定义在函数定义域内, 对于自变量 x 的不同取值范围, 有着不同的对应法则, 这样的函数叫做分段函数;2、分段函数定义域,值域;分段函数定义域各段定义域的并集,其值域是各段值域的 并 集 (填“并”或“交” ) 3、分段函数图象画分段函数的图象,应在各自定义域之下画出定义域所对应的解析式的图象;练习:1、设f ( x)2e x 1,x 2,则 f ( f (2)) 的值为()log 3 x 2 1 , x 2A. 0B.1C.2D.3| x 1 | 2,| x | 1 12、设 f(x)=1 2 ,|x |1 ,则 f[f( )]=()1 x2A.1 B.4 C. -9 D.252135413、 (2009 山东卷 ) 定义在 R 上的函数log 2 (4 x), x 0f ( x) 满足 f ( x) =1) f (x 2), x,f ( x则 f (3) 的值为( )A . -1B. -2C. 1D. 21 x4),则 f (log 2 3)4、给出函数f (x)( 2 ) 1)(x()f ( x ( x 4)A.-23B.1 C.1 D.1 81119245、函数 f ( x)sin( x 2 ), 1 x 0, 1f a 2, 则 a 的所有可能值为(ex 1, x 0., 若 f)A.1B.6、( 2009 天津卷)设函数2 C. 1,2 D.12,222x 2 4x 6, x 0 f ( x)f (1) 的解集是(f ( x)6, x ,则不等式)x 0A. ( 3,1) (3,)B. ( 3,1) (2, )C. (1,1) (3, )D. (, 3) (1,3)2 x 1,x0,7、设函数f (x)1若f (x 0 ) 1 ,则 x 0 的取值范围是()x 2 ,xA . ( 1,1)B . (-1, )C .( , 2) (0, )D .( , 1) (1,)8、设函数 f ( x)x 2 bx c( x 0),若 f ( 4) f (0), f ( 2) 2 ,则关于 x 的方程 f (x)x2( x 0)的解的个数为( )A . 1B . 2C . 3D . 4f (x)log 2 x( x 0),若 f (a) f ( a) ,则实数 a 的取值范围是 (9、(2010 天津卷)设函数log 1 ( x) ( x 0) )2A . ( 1,0) (0,1)B .(, 1) (1, )C . ( 1,0) (1,)D . (, 1) (0,1)lg x , (0 x 10)10、( 2010 全国卷)已知函数 f ( x) 1 x 6,( x,若 a,b,c 互不相等,且10)2f (a)f (b)f (c) ,则实数 abc 的取值范围是()A . (1,10)B . (5,6)C . (10,12)D . ( 20,24)11、( 2010 天津卷)设函数 g(x)x22( x g(x) x 4, x g( x) R) , f ( x)g( x) x ,x,则 f (x) 的g( x)值域是( )A . [9,0] (1, )B .43 xa( x 0)12、设 f ( x)1)( x,若f ( x 0)[0, )C .[9,) D .[ 9,0](2, )44f (x)x 有且仅有三个解,则实数a 的取值范围是()A . [1,2]B .,2 C . 1,D . ,1x 2 2, (x 2)则 f( -4)=___________,若 f(x 0 ,则2)2 x, ( xlog 2 x 1 , x 0, 。