二次函数的应用同步测试

合集下载

《二次函数》(同步精品测试题) (3)

《二次函数》(同步精品测试题) (3)

备战2021年中考数学真题分类汇编(浙江专版)专题09二次函数一.选择题(共12小题)1.(2020•嘉兴)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值2.(2020•衢州)二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是()A.向左平移2个单位,向下平移2个单位B.向左平移1个单位,向上平移2个单位C.向右平移1个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位3.(2020•宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c4.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y25.(2020•杭州)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c 是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0 B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0 D.若M1=0,M2=0,则M3=06.(2020•杭州)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0 B.若h=5,则a>0C.若h=6,则a<0 D.若h=7,则a>07.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.8.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2C.M=N或M=N+1 D.M=N或M=N﹣19.(2019•舟山)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时得到如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④10.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位11.(2019•温州)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣212.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)二.解答题(共6小题)13.(2020•温州)已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值.(2)若(5,y1),(m,y2)是抛物线上不同的两点,且y2=12﹣y1,求m的值.14.(2020•台州)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.15.(2019•宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.16.(2020•萧山区一模)如图,二次函数y=ax2﹣3ax+c的图象与x轴交于点A、B,与y轴交于点C直线y=﹣x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线交抛物线于点M,交直线BC于点N.①点N位于x轴上方时,是否存在这样的点M,使得AM:NM=5:3?若存在,求出点M的坐标;若不存在,请说明理由.②连接AC,当直线AM与直线BC的夹角∠ANB等于∠ACB的2倍时,请求出点M的横坐标.17.(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.。

九年级数学下册第2章二次函数2.4二次函数的应用2.4.1二次函数的应用同步练习新版北师大版

九年级数学下册第2章二次函数2.4二次函数的应用2.4.1二次函数的应用同步练习新版北师大版

2.4.1二次函数的应用一、夯实基础1.如图所示的抛物线的解析式是 ( )A.y=x2-x+2 B.y=-x2-x+2C.y=x2+x+2 D.y=-x2+x+22.如图所示的是二次函数y=ax2-x+a2-1的图象,则a的值是.3.已知抛物线y=4x2-11x-3,则它的对称轴是,与x轴的交点坐标是,与y轴的交点坐标是 .4.抛物线y=x2+bx+c与x轴的正半轴交于A,B两点,与y轴交于C点,且线段AB的长为1,△ABC的面积为l,则b的值是.5.用12米长的木料做成如图2-111所示的矩形窗框(包括中间的十字形),当长、宽各为多少时,矩形窗框的面积最大?最大面积是多少?二、能力提升6.(xx·青海西宁·3分)如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm27.如图2-112所示,△ABC的面积为2400c m2,底边BC的长为80cm,若点D在BC上,点E 在AC上,点F在AB上,且四边形BDEF为平行四边形,设BD=x cm,S BDEF=y cm2.(1)求y与x之间的函数关系式;(2)求自变量x的取值范围;(3)当x为何值时,y最大?最大值是多少?8.如图所示,在ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,延长FE与DC的延长线交于点G,设BE=x,△DEF的面积为S.(1)求证△BEF∽△CEG;(2)用x表示S的函数关系式,并写出x的取值范围;(3)当E运动到何处时,S有最大值,最大值为多少?三、课外拓展9.如图所示,在边长为8cm的正方形ABCD中,E,F是对角线AC上的两个点,它们分别从点A、点C同时出发,沿对角线以1 cm/s的相同速度运动,过E作EH垂直AC,交Rt△ADC的直角边于H;过F作FG垂直AC,交Rt△ADC的直角边于G,连接HG,EB. 设HE,EF,FG,GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0).若E到达C,F到达A,则停止运动.若E的运动时间为x s,解答下列问题.(1)当0<x<8时,直接写出以E,F,G,H为顶点的四边形是什么四边形,并求x为何值时,S1=S2;(2)①若y是S1与S2的和,求y与x之间的函数关系式;(图2-115为备用图)②求y的最大值.四、中考链接1.(xx•菏泽第8题3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.2.(xx•广西贺州,第26题12分)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.答案1.D2.1[提示:抛物线开口向上,故a>0.因为图象过原点,所以a2-1=0,所以a=±1,所以a=1.]3.x= (3,0), (-,0) (0,-3)4.-35.解:设窗框的长为x米,则窗框的宽为米,矩形窗框的面积y=x()=-x2+4x.配方得y =-(x-2)2+4.∵a=-l<0,∴函数y=-(x-2)2+4有最大值.当x=2时,y最大值=4平方米,此时=4-2=2(米),即当长、宽各为2米时,矩形窗框的面积最大,最大值为4平方米.6.解:∵tan∠C=,AB=6cm,∴=,∴BC=8,由题意得:AP=t,BP=6﹣t,BQ=2t,设△PBQ的面积为S,则S=×BP×BQ=×2t×(6﹣t),S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ的最大面积为9cm2;故选C.7.解:(1)设A到BC的距离为d cm,E到BC的距离为h cm,则y=SBDEF=xh.∵S△ABC=BC·d,∴2400=×80d,∴d=60.∵ED∥AB,∴△EDC∽△ABC,∴,即,∴h=,∴y=x=-x2+60x.(2)自变量x的取值范围是0<x<80.(3)∵a=-<0,-=40,0<40<80,∴当x=40时,y最大值=1200.8.(1)证明:∵AB∥CD,∴∠B=∠ECG.又∠BEF=∠CEG,∴△BEF∽△CEG.(2)解:由(1)得,∠G=∠BFE=90°,∴DG为△DEF中EF边上的高.在Rt△BFE中,∠B=60°,EF=BEsin B=x.在Rt△CGE中,CE=3-x,CG=(3-x)cos 60°=,∴DG=DC+CG=,∴S=EF·DG=-x2+x,其中0<x≤3.(3)解:∵a=-<0,对称轴x=,∴当0<x≤3时,S随x的增大而增大,∴当x=3,即E与C重合时,S有最大值,S最大值=3.9.解:(1)以E,F,G,H为顶点的四边形是矩形.∵正方形ABCD的边长为8,∴AC=16.∵AE =x,过点B作BO⊥AC于O,如图2-116所示,则BO=8,∴S2=4x.∵HE=x,EF=16-2x,∴S1=x(16-2x).当S1=S2,即x(16-2x)=4x时,解得x1=0(舍去),x2=6.∴当x=6时,S1=S2.(2)①当0≤x<8时,如图2-116所示.y=x(16-2x)+4x=-2x2+20x.当8≤x≤16时,如图所示,AE=x,CE=HE=16-x,EF=16-2(16-x)=2x-16,∴S1=(16-x)(2x-16),∴y=(16-x)(2x-16)+4x=-2x2+52x-256.(2)解法1:②当0≤x<8时,y=-2x2+20x=-2(x2-10x+25)+50=-2(x-5)2+50,∴当x =5时,y的最大值为50.当8≤x≤16时,y=-2x2+52x-256=-2(x-13)2+82,∴当x=13时,y的最大值为82.综上可得,y的最大值为82.解法2:②y=-2x2+20x(0≤x<8),当x=-=5时,y最大值==50.y=-2x2+52x-256(8≤x≤16),当x=-=13时,y最大值==82.综上可得,y的最大值为82.中考链接:1.A2.解答:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,)代入y=ax2得:a=,∴二次函数的解析式为y=x2;(2)证明:∵点P在抛物线y=x2上,∴可设点P的坐标为(x,x2),过点P作PB⊥y轴于点B,则BF=x2﹣1,PB=x,∴Rt△BPF中,PF==x2+1,∵PM⊥直线y=﹣1,∴PM=x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥x轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴x2+1=4,解得:x=±2,∴x2=×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).。

【人教版】九年级下册数学《二次函数》同步检测题(含答案)

【人教版】九年级下册数学《二次函数》同步检测题(含答案)

《二次函数》同步检测一、精心选一选(每小题4分,共40分.每小题有4个选项,其中只有一个选项是符合题目要求的)1.二次函数y=x 2+2x -7的函数值是8,那么对应的x 的值是( )A .3B .5C .-3和5D .3和-52.若二次函数y=x 2-x 与y=-x 2+k 的图象的顶点重合,则下列结论不正确的是( )A .这两个函数图象有相同的对称轴B .这两个函数图象的开口方向相反C .方程-x 2+k=0没有实数根D .二次函数y=-x 2+k 的最大值为12 3.已知二次函数c bx ax y ++=2(a ≠0)的图象如右图所示,则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )A .l 个B .2个C .3个D .4个 4.已知抛物线c bx x y ++=2的部分图象如右图所示,若y<0,则x 的取值范围是( )A .-1<x<4 B.-1<x<3 C.x<-1或x>4 D.x<-1或x>35. 已知二次函数y=3(x-1)2+k 的图象上有三点A(2,y 1),B(2,y 2),C(-5,y 3),则y 1、y 2、y 3的大小关系为( )A .y 1.> y 2> y 3 B..y 2> y 1> y 3 C .y 3> y 1> y 2 D .y 3> y 2> y 16.已知二次函数,2c bx ax y ++=且0,0>+-<c b a a ,则一定有( )A .042>-ac bB .042=-ac bC .042<-ac bD .042≤-ac b7.已知抛物线m m x m x y (141)1(22--++=为整数)与x 轴交于点A ,与y 轴交于点B ,且OB OA =,则m 等于( )A 、52+B 、52-C 、2D 、2-8.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )9.小敏在某次投篮中,球的运动路线是抛物线的x y O x y O B x y O y O一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( ).A .3.5mB .4mC .4.5mD .4.6m10.用列表法画二次函数2y x bx c =++的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650。

最新浙教版九年级数学上学期《二次函数的应用》同步练习题2及解析.docx

最新浙教版九年级数学上学期《二次函数的应用》同步练习题2及解析.docx

1.4 二次函数的应用(一)1.已知二次函数y =(a -1)x 2+2ax +3a -2的图象的最低点在x 轴上,则a =__2__,此时函数的表达式为y =x 2+4x +4.(第2题)2.用长为8 m 的铝合金材料做成如图所示的矩形窗框,要使窗户的透光面积最大,那么这个窗户的最大透光面积是__83__m 2.(第3题)3.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C) A. 60 m 2 B. 63 m 2 C. 64 m 2 D. 66 m 24.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3).D 是抛物线y =-x 2+6x 上一点,且在x 轴上方.求△BCD 面积的最大值.(第4题)【解】 ∵点C(4,3), ∴菱形OABC 的边长=32+42=5.∵抛物线y =-x 2+6x 的顶点坐标为(3,9), ∴△BCD 面积的最大值为S =12×5×(9-3)=15.5.如图,在梯形ABCD 中,AB ∥DC ,∠ABC =90°,∠A =45°,AB =30,BC =x ,其中15<x<30.过点D 作DE ⊥AB 于点E ,将△ADE 沿直线DE 折叠,使点A 落在点F 处,DF 交BC 于点G.(1)用含x 的代数式表示BF 的长.(2)设四边形DEBG 的面积为S ,求S 关于x 的函数表达式. (3)当x 为何值时,S 有最大值?并求出这个最大值.(第5题)【解】 (1)∵DE =BC =x ,∠A =45°,DE ⊥AE , ∴AE =DE =x.由折叠知,EF =AE =x , ∴BF =AF -AB =2x -30. (2)∵S △DEF =12EF ·DE =12x 2,S △BFG =12BF ·BG =12(2x -30)2,∴S =12x 2-12(2x -30)2=-32x 2+60x -450. (3)∵15<x<30, ∴当x =602×32=20时,S 有最大值,S 最大=150.6.竖直上抛的小球离地高度是关于它运动时间的二次函数,小军相隔1 s 依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1 s 时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =__1.6__.【解】 设各自抛出后1.1 s 时到达相同的最大离地高度为h ,则小球的高度y =a(t -1.1)2+h.由题意,得a(t -1.1)2+h =a(t -1-1.1)2+h , 解得t =1.6.7.如图,从1×2的矩形ABCD 的较短边AD 上找一点E ,过这点剪下两个正方形,它们的边长分别是AE ,DE ,当剪下的两个正方形的面积之和最小时,点E 应选在(A)(第7题)A. AD 的中点B. AE ∶ED =(5-1)∶2C. AE ∶ED =2∶1D. AE ∶ED =(2-1)∶2【解】 设AE =x ,剪下的两个正方形的面积之和为y ,则DE =1-x ,y =AE 2+DE 2=x 2+(1-x)2=2⎝ ⎛⎭⎪⎫x -122+12. ∴当x =12时,y 取得最小值,此时E 是AD 的中点.(第8题)8.如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y =kx(k >0)的图象与BC 边交于点E.(1)当F 为AB 的中点时,求该函数的表达式.(2)当k 为何值时,△EFA 的面积最大,最大面积是多少. 【解】 (1)∵在矩形OABC 中,OA =3,OC =2, ∴点B(3,2).∵F 为AB 的中点,∴点F(3,1).∵点F 在反比例函数y =kx(k >0)的图象上,∴k =3,∴该函数的表达式为y =3x(x >0).(2)由题意知E ,F 两点的坐标分别为E ⎝ ⎛⎭⎪⎫k 2,2,F ⎝ ⎛⎭⎪⎫3,k 3,∴S △EFA =12AF ·BE =12×13k ⎝ ⎛⎭⎪⎫3-12k ,=12k -112k 2 =-112(k 2-6k +9-9) =-112(k -3)2+34. ∴当k =3时,△EFA 的面积最大,最大面积是34.9.如图,BD 是正方形ABCD 的对角线,BC =2,边BC 在其所在的直线上平移,将通过平移得到的线段记为PQ ,连结PA ,QD ,并过点Q 作QO ⊥BD ,垂足为O ,连结OA ,OP .(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形? (2)请判断OA ,OP 之间的数量关系和位置关系,并加以证明.(3)在平移变换过程中,设y =S △OPB ,BP =x(0≤x ≤2),求y 与x 之间的函数表达式,并求出y 的最大值.(第9题)【解】 (1)四边形APQD 为平行四边形. (2)OA =OP ,OA ⊥OP .理由如下: ∵四边形ABCD 是正方形,∴AB =BC =PQ ,∠ABO =∠OBQ =45°. ∵OQ ⊥BD ,∴∠PQO =45°,∴∠ABO =∠OBQ =∠PQO ,∴OB =OQ , ∴△AOB ≌△OPQ(SAS). ∴OA =OP ,∠AOB =∠POQ , ∴∠AOP =∠BOQ =90°,∴OA ⊥OP .(第9题解①)(3)如解图①,过点O 作OE ⊥BC 于点E. ①当点P 在点B 右侧时, BQ =x +2,OE =x +22,∴y =12·x +22·x=14()x +12-14. 又∵0≤x ≤2,∴当x =2时,y 有最大值2.(第9题解②)②如解图②,当点P 在点B 左侧时, BQ =2-x ,OE =2-x 2,∴y =12·2-x 2·x=-14()x -12+14. 又∵0≤x ≤2,∴当x =1时,y 有最大值14.综上所述,y 的最大值为2.。

[9549528]1.4 二次函数的应用 同步练习(含解析)

[9549528]1.4 二次函数的应用 同步练习(含解析)

初中数学浙教版九年级上册1.4 二次函数的应用同步练习一、单选题1.二次函数的图象与x轴交点的个数为()A. 0个B. 1个C. 2个D. 1个或2个2.如图,矩形中,,,抛物线的顶点在矩形内部或其边上,则的取值范围是()A. B. C. D.3.如图,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC、BC.已知△ABC的面积为3.将抛物线向左平移h(h>0)个单位,记平移后抛物线中y随着x的增大而增大的部分为H.当直线BC与H没有公共点时,h的取值范围是()A. h>B. 0<h≤C. h>2D. 0<h<24.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,每人的单价就降低10元,若这个旅行社要获得最大营业额,此时旅行团人数为()人A. 56B. 55C. 54D. 535.已知一次函数,二次函数,对于x的同一个值,这两个函数所对应的函数值分别为和,则下列表述正确的是()A. B. C. D. ,的大小关系不确定6.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A. 20B. 1508C. 1550D. 15587.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为,由此可知小宇此次实心球训练的成绩为()A. 米B. 8米C. 10米D. 2米8.实数a,b,c满足4a﹣2b+c=0,则()A. b2﹣4ac>0B. b2﹣4ac≥0C. b2﹣4ac<0D. b2﹣4ac≤09.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A. ①②B. ②③C. ①③④D. ①②③10.二次函数y=x2+2kx+k2﹣1(k为常数)与x轴的交点个数为()A. 1B. 2C. 0D. 无法确定11.小明在一次训练中,掷出的实心球飞行高度y(米)与水平距离x(米)之间的关系大致满足二次函数,则小明此次成绩为()A. 8米B. 10米C. 12米D. 14米12.如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系13.已知抛物线与x轴的一个交点为,则代数式的值为()A. 2018B. 2019C. 2020D. 202114.已知二次函数的图象与轴交于点、,且,与轴的负半轴相交.则下列关于、的大小关系正确的是()15.当时,二次函数的图象与x轴所截得的线段长度之和为()A. B. C. D.二、填空题16.教练对小明推铅球的录像进行技术分析,发现铅球行进高度与水平距离之间的关系为,由此可知铅球推出的距离是________m.17.以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=________.18.某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是________元.19.已知抛物线与轴的一个交点的横坐标大于1且小于2,则m的取值范围是________.20.如图,直线与抛物线交于点,且点A在y轴上,点B在x 轴上,则不等式的解集为________.下函数关系:,则该球从弹起回到地面需要经过________秒,距离地面的最大高度为________米.22.如图,在平面直角坐标系中,抛物线与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为________.23.如图,已知直线分别交轴、轴于点、,点是抛物线上的一个动点,其横坐标为.过点且平行于轴的直线与直线交于点,当时,的值是________.24.如图,小明抛投一个沙包,沙包被抛出后距离地面的高度h(米)和飞行时间t(秒)近似满足函数关系式,则沙包在飞行过程中距离地面的最大高度是________米.25.二次函数y=ax2+bx+c的图象与y轴交于点(0,-3),与x轴两个交点的横坐标分别为m,n,则a(m2+n2)+b(m+n)的值为________三、计算题26.已知函数y=2x2-(3-k)x+k2-3k-10的图象经过原点,试确定k的值。

二次函数的应用测试题(含答案)

二次函数的应用测试题(含答案)

二次函数的应用测试题(含答案)一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米 B.3米 C.5米 D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元 B.40万元 C.45万元 D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D.y= (x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米 B.5米 C.6米 D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/s B.20 m/s C.10 m/s D.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26.3.3二次函数的应用参考答案与试题解析一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A. 1米 B.3米 C.5米 D. 6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A. 30万元 B.40万元 C.45万元 D. 46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售(15﹣x)量,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:= =46(万元),故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D. y= (x﹣3)2考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(﹣3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(﹣3,0),∴右边抛物线的顶点C的坐标为(3,0),设右边抛物线的解析式为y=a(x﹣3)2,把D(1,1)代入得1=a×(1﹣3)2,解得a= ,故右边抛物线的解析式为y= (x﹣3)2.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 2s B.4s C.6s D. 8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度h(m)与飞行时间t(s)的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A. 2米 B.5米 C.6米 D. 14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5(t2﹣4t)﹣14=﹣5(t2﹣4t+4)+20﹣14=﹣5(t﹣2)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A. 3s B.4s C.5s D. 6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A. 40 m/s B.20 m/s C.10 m/s D. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.解答:解:当刹车距离为5m时,即可得y=5,代入二次函数解析式得:5= x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.点评:本题考查了二次函数的应用,明确x、y代表的实际意义,刹车距离为5m,即是y=5,难度一般.二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x= ,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是(,5).考点:二次函数的应用.专题:压轴题.分析:分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.解答:解:线段AB的解析式是y= x+1(0≤x≤4),此时w=x(x+1)= +x,则x=4时,w最大=8;线段AC的解析式是y= x+1(0≤x≤2),此时w=x(x+1)= +x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10 )=﹣2x2+10x,此时x= 时,w最大=12.5 .综上所述,当w=xy取得最大值时,点P的坐标是(,5).点评:此题综合考查了二次函数的一次函数,能够熟练分析二次函数的最值.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值= = =2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为(60+x)件(用含x的代数式表示).考点:二次函数的应用.分析:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,设销售量为a,代入函数的解析式,即可得到a和x的关系.解答:解:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,∴,解得:,∴w=﹣x2+3600,设销售量为a,则a(60﹣x)=w,即a(60﹣x)=﹣x2+3600,解得:a=(60+x ),故答案为:(60+x).点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题,用的知识点为:因式分解,题目设计比较新颖,同时也考查了学生的逆向思维思考问题.三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?考点:二次函数的应用.分析:(1)由原来的销量﹣每天减少的销量就可以得出现在每天的销量而得出结论;(2)由每件的利润×数量=总利润建立方程求出其解即可.解答:解:(1)由题意,得32﹣×4=80﹣2x.答:每天的现售价为x元时则每天销售量为(80﹣2x)件;(2)由题意,得(x﹣20)(80﹣2x)=150,解得:x1=25,x2=35.∵x≤28,∴x=25.答:想要每天获得150元的销售利润,销售价应当为25元.点评:本题考查了销售问题的数量关系每件的利润×数量=总利润的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据销售问题的等量关系建立方程是关键.16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用.专题:销售问题.分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是19 2元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?考点:二次函数的应用.专题:应用题;数形结合.分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA﹣yB的函数关系式,进而求出最值即可.解答:解:(1)由题意可得出:yB= (x﹣60)2+m经过(0,1000),则1000= (0﹣60)2+m,解得:m=100,∴yB= (x﹣60)2+100,当x=40时,yB= ×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB= (44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20)2+100,∴当x=20时,两组材料温差最大为100℃.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得方程求解即可;(2)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得函数关系式,进而求出最值.解答:解:(1)设每箱应涨价x元,则每天可售出(50﹣2x)箱,每箱盈利(10+x)元,依题意得方程:(50﹣2x)(10+x)=600,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10,∵要使顾客得到实惠,∴应取x=5,答:每箱产品应涨价5元.(2)设利润为y元,则y=(50﹣2x)(10+x),整理得:y=﹣2x2+30x+500,配方得:y=﹣2(x﹣7.5)2+612.5,当x=7.5元,y可以取得最大值,∴每箱产品应涨价7.5元才能获利最高.点评:此题考查了一元二次方程的应用以及二次函数应用,解答此题的关键是熟知等量关系是:盈利额=每箱盈利×日销售量.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.专题:销售问题.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.。

北师大版九年级下册2.4二次函数的应用 同步练习(含答案)

北师大版九年级下册2.4二次函数的应用 同步练习(含答案)

初中数学北师大版九年级下册2.4二次函数的应用同步练习(含答案)一、单选题(共10题;共20分)1.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m2.小明以二次函数y=2x2-4x+8的图象为灵感为“某国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,加DE=3,则杯子的高CE为( )A. 14B. 11C. 6D. 33.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C 在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2B. y= (x+3)2C. y= (x﹣3)2D. y= (x﹣3)24.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t ﹣14,则小球距离地面的最大高度是()A. 2米B. 5米C. 6米D. 14米5.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A. 第9.5秒B. 第10秒C. 第10.5秒D. 第11秒6.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A. 153B. 218C. 100D. 2167.黄石市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则企业停产的月份为( )A. 2月和12月B. 2月至12月C. 1月D. 1月、2月和12月8.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A. B. C. D.9.如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q 从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A. B.C. D.10.如图,隧道的截面是抛物线,可以用y=表示,该隧道内设双行道,限高为3m,那么每条行道宽是()A. 不大于4mB. 恰好4mC. 不小于4mD. 大于4m,小于8m二、填空题(共6题;共9分)11.矩形的周长为,当矩形的长为________ 时,面积有最大值是________ .12.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为________ s时,四边形EFGH的面积最小,其最小值是________ cm2.13.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是________.14.如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH=________米.15.小英存入银行2000元人民币,年利率为x,两年到期时,本息和为y元,则y与x之间的函数关系式是________,若年利率为7%,两年到期时的本息和为________元.16.如图,在平面直角坐标系中,抛物线y= -与直线交于A、B,直线AB交于y 轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.三、综合题(共9题;共105分)17.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一条矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带BC边长为xm,绿化带的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.18.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?19.如图,在平面直角坐标系中,三个小正方形的边长均为1,且正方形的边与坐标轴平行,边DE 落在x轴的正半轴上,边AG落在y轴的正半轴上,A、B两点在抛物线y= x2+bx+c上.(1)直接写出点B的坐标;(2)求抛物线y= x2+bx+c的解析式;(3)将正方形CDEF沿x轴向右平移,使点F落在抛物线y= x2+bx+c上,求平移的距离.20.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x 的函数关系式分别为y A=kx+b,y B= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?21.如图,是一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是,拱桥的跨度为,桥洞与水面的最大距离是,桥洞两侧壁上各有一盏距离水面的景观灯,把拱桥的截面图放在平面直角坐标系中。

【新人教版九年级数学上册同步测试及答案】专题六 二次函数的应用同步测试 (新版)新人教版

【新人教版九年级数学上册同步测试及答案】专题六 二次函数的应用同步测试 (新版)新人教版

二次函数的应用一 二次函数的实际应用教材P51探究3)图1中是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降1 m 时,水面宽度增加多少?图1教材母题答图解:以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系(如图), 可设这条抛物线表示的二次函数为y =ax 2.由抛物线经过点(2,-2),可得-2=a ×22,a =-12. 这条抛物线表示的二次函数为y =-12x 2. 当水面下降1 m 时,水面的纵坐标为y =-3.由y =-3解得x 1=6,x 2=-6,所以此时水面宽度为2 6 m ,所以水面宽度增加(26-4)m.【思想方法】 建模:把问题中各个量用两个变量x ,y 来表示,并建立两种量的二次函数关系,再求二次函数的最大(小)值,从而解决实际问题.应用最多的是根据二次函数的最值确定最大利润,最节省方案等问题.注意:建立平面直角坐标系时,遵从就简避繁的原则,这样求解析式就比较方便.某隧道横断面由抛物线与矩形的三边组成,尺寸如图2所示.(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立直角坐标系,求该抛物线对应的函数解析式;(2)某卡车空车时能通过此隧道,现装载一集装箱,集装箱宽3 m ,车与集装箱共高4.5 m ,此车能否通过隧道?并说明理由.图2解:(1)设抛物线对应的函数解析式为y =ax 2 抛物线的顶点为原点,隧道宽6 m ,高5 m ,矩形的高为2 m ,所以抛物线过点A (-3,-3),代入得-3=9a ,解得a =-13所以函数关系式为y =-x 23. (2)如果此车能通过隧道,集装箱处于对称位置,将x =1.5代入抛物线方程,得y =-0.75,此时集装箱上部的角离隧道的底为5-0.75=4.25米,不及车与集装箱总高4.5米,即4.25<4.5.所以此车不能通过此隧道.如图3,排球运动员站在点O 处练习发球,将球从点O 正上方2 m 的A 处发出,把球看成点,其运行的高度y (m)与运行的水平距离x (m)满足关系式y =a (x -6)2+h .已知球网与点O 的水平距离为9 m ,高度为2.43 m ,球场的边界距点O 的水平距离为18 m.(1)当h =2.6时,求y 与x 的关系式.(不要求写出自变量x 的取值范围)(2)当h =2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h 的取值范围.图3解:(1)∵h =2.6,球从点O 正上方2 m 的A 处发出,∴y =a (x -6)2+h 过点(0,2),∴2=a (0-6)2+2.6,解得:a =-160, 故y 与x 的关系式为y =-160(x -6)2+2.6, (2)当x =9时,y =-160(x -6)2+2.6=2.45>2.43, 所以球能越过球网;当y =0时,-160(x -6)2+2.6=0, 解得:x 1=6+239>18,x 2=6-239(舍去)故会出界;(3)当球正好过点(18,0)时,y =a (x -6)2+h 还过点(0,2),代入解析式得:⎩⎪⎨⎪⎧2=36a +h ,0=144a +h ,解得:⎩⎪⎨⎪⎧a =-154,h =83,此时二次函数解析式为:y =-154(x -6)2+83, 此时球若不出边界则h ≥83, 当球刚能过网,此时函数图象过(9,2.43),y =a (x -6)2+h 还过点(0,2),代入解析式得:⎩⎪⎨⎪⎧2.43=a (9-6)2+h ,2=a (0-6)2+h , 解得:⎩⎪⎨⎪⎧a =-432700,h =19375,此时球要过网则h ≥19375, ∵83>19375,∴h ≥83, 故若球一定能越过球网,又不出边界,h 的取值范围是h ≥83. 二 二次函数的综合应用教材P47习题22.2第4题)抛物线y =ax 2+bx +c 与x 轴的公共点是(-1,0),(3,0),求这条抛物线的对称轴. 解:解法一:∵点(-1,0),(3,0)的纵坐标相等,∴这两点是抛物线上关于对称轴对称的两个点,∴这条抛物线的对称轴是x =(-1)+32=1. 解法二:∵函数y =ax 2+bx +c 的图象与x 轴的交点的横坐标就是方程ax 2+bx +c =0的两根x 1,x 2,∴x 1+x 2=-b a=(-1)+3=2,∴这条抛物线的对称轴是x =-b2a=1. 【思想方法】 (1)二次函数的图象是抛物线,是轴对称图形,充分利用 抛物线的轴对称性是研究二次函数的性质的关键;(2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求解;(3)已知二次函数图象上的一个点(除顶点外)和对称轴,便能确定与此点关于对称轴对称的另一个点的坐标.[2012·南通改编]如图4,经过点A (0,-4)的抛物线y =12x 2+bx +c 与x 轴相交于B (-2,0),C 两点,O 为坐标原点.图4(1)求抛物线的解析式;(2)将抛物线y =12x 2+bx +c 向上平移72个单位长度,再向左平移m (m >0)个单位长度得到新抛物线.若新抛物线的顶点P 在△ABC 的内部,求m 的取值范围.解:(1)∵点A (0,-4),B (-2,0)在抛物线y =12x 2+bx +c 上,∴⎩⎪⎨⎪⎧c =-4,2-2b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-4, ∴抛物线的解析式为y =12x 2-x -4. (2)将抛物线y =12x 2-x -4=12(x -1)2-92向上平移72个单位长度,再向左平移m (m >0)个单位长度后,得到的新抛物线的顶点P 的坐标为(1-m ,-1).设直线AB 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =-4,-2k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =-4,∴y =-2x -4,当y =-1时,x =-32; 同理求得直线BC 的解析式为y =x -4,当y =-1时,x =3. ∵新抛物线的顶点P 在△ABC 的内部,∴-32<1-m <3且m >0,解得0<m <52. 5,已知抛物线y =ax 2+bx +c (a ≠0)的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为(3,-3).(1)求该抛物线的函数关系式及点A 的坐标;(2)在抛物线上求点P ,使S △POA =2S △AOB ;图5解:(1)∵抛物线的顶点为B (3,-3),∴设抛物线的函数关系式为y =a (x -3)2- 3.∵抛物线经过原点(0,0),∴0=a (0-3)2-3,∴a =39,∴y =39(x -3)2-3, 即抛物线的函数关系式为y =39x 2-233x . 令y =0,得39x 2-233x =0, 解得x 1=0,x 2=6,∴点A 坐标为(6,0).(2)如图,∵△AOB 与△POA 同底不同高,且S △POA =2S △AOB ,∴△POA中OA边上的高是△AOB中OA边上的高的2倍,即P点纵坐标是2 3.令23=39x2-233x,即x2-6x-18=0,解得x1=3+33,x2=3-33,∴所求的点为P1(3+33,23),P2(3-33,23).如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的应用 一 二次函数的实际应用
(教材P51探究3)
图1中是抛物线形拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降1 m 时,水面宽度增加多少?
图1
教材母题答图
解:以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系(如图),
可设这条抛物线表示的二次函数为y =ax 2.
由抛物线经过点(2,-2),可得
-2=a ×22,a =-12
. 这条抛物线表示的二次函数为y =-12
x 2. 当水面下降1 m 时,水面的纵坐标为y =-3.
由y =-3解得x 1=6,x 2=-6,
所以此时水面宽度为2 6 m ,
所以水面宽度增加(26-4)m.
【思想方法】 建模:把问题中各个量用两个变量x ,y 来表示,并建立两种量的二次函数关系,再求二次函数的最大(小)值,从而解决实际问题.应用最多的是根据二次函数的最值确定最大利润,最节省方案等问题.注意:建立平面直角坐标系时,遵从就简避繁的原则,这样求解析式就比较方便.
某隧道横断面由抛物线与矩形的三边组成,尺寸如图2所示.
(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y 轴,建立直角坐标系,求该抛物线对应的函数解析式;
(2)某卡车空车时能通过此隧道,现装载一集装箱,集装箱宽3 m ,车与集装箱共高4.5 m ,此车能否通过隧道?并说明理由.
图2
解:(1)设抛物线对应的函数解析式为y =ax 2 抛物线的顶点为原点,隧道宽6 m ,高5 m ,矩形的高为2 m ,
所以抛物线过点A (-3,-3),
代入得-3=9a ,
解得a =-13
所以函数关系式为y =-x 2
3
. (2)如果此车能通过隧道,集装箱处于对称位置,
将x =1.5代入抛物线方程,得y =-0.75,
此时集装箱上部的角离隧道的底为5-0.75=4.25米,不及车与集装箱总高4.5米,即4.25<4.5.
所以此车不能通过此隧道.
如图3,排球运动员站在点O 处练习发球,将球从点O 正上方2 m 的A 处发出,把球看成点,其运行的高度y (m)与运行的水平距离x (m)满足关系式y =a (x -6)2+h .已知球网与点O 的水平距离为9 m ,高度为2.43 m ,球场的边界距点O 的水平距离为18 m.
(1)当h =2.6时,求y 与x 的关系式.(不要求写出自变量x 的取值范围)
(2)当h =2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h 的取值范围.
图3
解:(1)∵h =2.6,球从点O 正上方2 m 的A 处发出,
∴y =a (x -6)2+h 过点(0,2),
∴2=a (0-6)2+2.6,
解得:a =-160
, 故y 与x 的关系式为y =-160
(x -6)2+2.6, (2)当x =9时,y =-160
(x -6)2+2.6=2.45>2.43, 所以球能越过球网;
当y =0时,-160
(x -6)2+2.6=0, 解得:x 1=6+239>18,x 2=6-239(舍去)
故会出界;
(3)当球正好过点(18,0)时,y =a (x -6)2+h 还过点(0,2),
代入解析式得:⎩
⎪⎨⎪⎧2=36a +h ,0=144a +h ,
解得:⎩
⎨⎧a =-154,h =83, 此时二次函数解析式为:y =-154(x -6)2+83
, 此时球若不出边界则h ≥83
, 当球刚能过网,此时函数图象过(9,2.43),y =a (x -6)2+h 还过点(0,2),代入解析式得:

⎪⎨⎪⎧2.43=a (9-6)2+h ,2=a (0-6)2+h , 解得:⎩⎨⎧a =-43
2700,
h =19375,
此时球要过网则h ≥19375
, ∵83>19375,∴h ≥83
, 故若球一定能越过球网,又不出边界,h 的取值范围是h ≥83
. 二 二次函数的综合应用
(教材P47习题22.2第4题)
抛物线y =ax 2+bx +c 与x 轴的公共点是(-1,0),(3,0),求这条抛物线的对称轴. 解:解法一:∵点(-1,0),(3,0)的纵坐标相等,
∴这两点是抛物线上关于对称轴对称的两个点,
∴这条抛物线的对称轴是x =(-1)+32=1. 解法二:∵函数y =ax 2+bx +c 的图象与x 轴的交点的横坐标就是方程ax 2+bx +c =0的两根x 1,x 2,
∴x 1+x 2=-b a
=(-1)+3=2, ∴这条抛物线的对称轴是x =-b 2a
=1. 【思想方法】 (1)二次函数的图象是抛物线,是轴对称图形,充分利用 抛物线的轴对称性是研究二次函数的性质的关键;(2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求解;(3)已知二次函数图象上的一个点(除顶点外)和对称轴,便能确定与此点关于对称轴对称的另一个点的坐标.
[2012·南通改编]如图4,经过点A (0,-4)的抛物线y =12
x 2+bx +c 与x 轴相交于B (-2,0),C 两点,O 为坐标原点.
图4 (1)求抛物线的解析式; (2)将抛物线y =12x 2+bx +c 向上平移72
个单位长度,再向左平移m (m >0)个单位长度得到新抛物线.若新抛物线的顶点P 在△ABC 的内部,求m 的取值范围.
解:(1)∵点A (0,-4),B (-2,0)在抛物线y =12x 2+bx +c 上,∴⎩⎪⎨⎪⎧c =-4,2-2b +c =0,解得⎩
⎪⎨⎪⎧b =-1,c =-4, ∴抛物线的解析式为y =12
x 2-x -4. (2)将抛物线y =12x 2-x -4=12(x -1)2-92向上平移72
个单位长度,再向左平移m (m >0)个单位长度后,得到的新抛物线的顶点P 的坐标为(1-m ,-1).
设直线AB 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =-4,-2k +b =0,解得⎩
⎪⎨⎪⎧k =-2,b =-4, ∴y =-2x -4,当y =-1时,x =-32
; 同理求得直线BC 的解析式为y =x -4,当y =-1时,x =3.
∵新抛物线的顶点P 在△ABC 的内部,
∴-32<1-m <3且m >0,解得0<m <52
. 如图5,已知抛物线y =ax 2+bx +c (a ≠0)的图象经过原点O ,交x 轴于点A ,其顶点B 的坐标为(3,-3).
(1)求该抛物线的函数关系式及点A 的坐标;
(2)在抛物线上求点P ,使S △POA =2S △AOB ;
图5
解:(1)∵抛物线的顶点为B (3,-3),
∴设抛物线的函数关系式为y =a (x -3)2- 3.
∵抛物线经过原点(0,0),∴0=a(0-3)2-3,
∴a=
3
9,∴y=
3
9(x-3)
2-3,
即抛物线的函数关系式为y=
3
9x
2-
23
3x.
令y=0,得
3
9x
2-
23
3x=0,
解得x1=0,x2=6,∴点A坐标为(6,0).
(2)如图,∵△AOB与△POA同底不同高,且S△POA=2S△AOB,
∴△POA中OA边上的高是△AOB中OA边上的高的2倍,即P点纵坐标是2 3.
令23=
3
9x
2-
23
3x,即x
2-6x-18=0,
解得x1=3+33,x2=3-33,
∴所求的点为P1(3+33,23),P2(3-33,23).。

相关文档
最新文档