第1讲 平面向量的概念及加减运算(教师版)
2020年高一下学期第1讲:平面向量的基本概念与线性运算(含解析)

4若两个向量相等,则它们的起点和终点分另重合;
5若a//b,b//c,则a//C.
A.0个B.1个C.2个D.3个
2.下列命题中,正确的是()
a.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点总是一平行四边形的四个顶点
十、十muruur r
和0A交于E,设AB占,AO b
(1)用向量a与b表示向量Oc,CD;
…uuumu,亠
(2)若OE OA,求实数的值.
26.如图,已知ABC的面积为14,D、E分别为边AB、BC上的点,且AD:DB BE:EC2:1,AE
(1)求及;
rr uuu
(2)用aLeabharlann b表示BP;(3)求PAC的面积.
动点
uuu
P满足OP
uur
OA
uuur
/AB
(uuu
|AB|
uuur
AC、
-uuu^),
|AC|
[0,),则P的轨迹一定通过
ABC的()
A.外心
B.内心
C.重心
D.垂心
1 2.如图,四边形ABCD是正方形,
延长CD至E,
使得
DE CD.若动点P从点A出发,沿正方形
A点,其中
UUU
AP
UUL
AB
AE,下列判断正确的是()
3
|CB|,
若
AB BC,贝U(
)
2
2
5
5
A .-
B .-
C.
D.
3
3
3
3
5.已知|a11,
rrr
初中数学教案平面向量的加法与减法

初中数学教案平面向量的加法与减法初中数学教案:平面向量的加法与减法引言:平面向量是数学中的重要概念,它们在解决几何和代数问题中起着重要作用。
平面向量的加法与减法是其中的基本运算,通过掌握这些运算,学生们将能更好地理解和应用平面向量的概念。
本教案将重点介绍初中数学中平面向量的加法与减法,并提供相应的教学活动和练习。
一、概念与性质1. 平面向量的定义:平面向量是具有大小和方向的标量,用箭头表示。
2. 平面向量的加法:平面向量的加法满足平行四边形法则。
即将两个向量的起点连接起来,构成一个平行四边形,那么这两个向量的和就是该平行四边形对角线的向量。
3. 平面向量的减法:平面向量的减法可以通过将减数取负后与被减数相加,即将减数的方向翻转180度,然后与被减数相加。
二、教学活动活动1:向量相加的可视化1. 准备一张平面坐标纸和两个向量的起点。
2. 让学生标出这两个向量,然后将它们的起点连接起来。
3. 请学生通过平行四边形法则,确定这两个向量的和。
4. 让学生将这个和向量画在纸上,观察并讨论结果。
活动2:向量相减的实际应用1. 选择一个与日常生活相关的实际场景,例如风力的影响。
2. 以箭头的形式表示不同风速和风向的向量。
3. 让学生利用相减法确定两个不同风速的合成风速,并判断合成风速对不同活动的影响。
三、练习题1. 已知向量AB = (2, 3)和向量AC = (-1, 5),求向量AB + AC的结果。
2. 已知向量CD = (-3, 2)和向量CE = (4, -1),求向量CD - CE的结果。
3. 如果向量AB = (1, 2)和向量BC = (3, -4),求向量AC的结果。
四、扩展应用1. 提供更复杂的平面向量加法与减法练习题,加强学生对概念的理解和应用能力。
2. 探索平面向量运算的几何解释,例如向量代表位移、速度或力。
结语:通过本教案的学习,学生们应该能够理解平面向量的加法与减法的概念,并能够运用这些知识解决问题。
4.1.2平面向量的概念及加减法

A
E
B
A
E
B
2、填空: 填空:
AB + BC = CB + BA = OE + ED =
AB + BE + ED =
AE + FC + EF =
AB + BC + CD + DE + EF =
3、如图,已知平行四边形ABCD,对角线AC与BD 相交于点O,设 OA = a , = b ,试用 a ,b 表 OB 示下列向量。
方向相同, 方向相同,长度相等的两个向量 相等向量: 相等向量: 方向相反, 方向相反,长度相等的两个向量 相反向量: 相反向量:
平行向量: 平行向量: 方向相同或相反的两个向量叫做平行向量
D C
D E C F B
A
B
A
区别与联系
长度 相等向量 互为相反向量 平行向量 相等 相等 无关 向量相等或相反 方向 相同 相反 相同或相反 向量平行 向量平行
不平行向量相加
OB = a + b
b a
A
a
O
b
B
a+b
平行向量相加: 已知: 平行向量相加: 已知: a b
a b
O
求: a + b
A
a
b
B
a+b a b
O
a + b = OA + AB = OB
B
a
A
a+b
a + b = OA + AB = OB
零向量: 零向量: 长度为零的向量
记作: 记作: 0 方向: 方向: 任意的 大小: 大小: a = 0
(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
平面向量的定义与加减乘法

平面向量的定义与加减乘法平面向量是数学中的一个重要概念,它在几何学、物理学等领域中有着广泛的应用。
本文将从平面向量的定义入手,逐步介绍向量的加减乘法,并探讨其几何意义和实际应用。
一、平面向量的定义平面向量是指在平面上具有大小和方向的量。
通常用有向线段来表示,线段的起点表示向量的起点,线段的长度表示向量的大小,线段的方向表示向量的方向。
在平面直角坐标系中,可以用坐标表示平面向量。
设向量A的起点为原点O,终点为点P(x,y),则向量A可以表示为A=(x,y)。
其中,x称为向量A在x轴上的投影,y称为向量A在y轴上的投影。
二、向量的加法向量的加法是指将两个向量相加得到一个新的向量。
设有两个向量A=(x1,y1)和B=(x2,y2),则它们的和C=A+B=(x1+x2,y1+y2)。
向量的加法满足交换律和结合律。
即A+B=B+A,(A+B)+C=A+(B+C)。
这意味着向量的加法不依赖于向量的起点,只与向量的大小和方向有关。
几何上,向量的加法可以理解为将一个向量的终点与另一个向量的起点相连,得到一个新的向量。
这个新向量的起点与第一个向量的起点相同,终点与第二个向量的终点相同。
三、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量。
设有两个向量A=(x1,y1)和B=(x2,y2),则它们的差C=A-B=(x1-x2,y1-y2)。
向量的减法可以理解为将第二个向量取反,然后进行向量的加法。
即A-B=A+(-B)。
几何上,向量的减法可以理解为将一个向量的终点与另一个向量的终点相连,得到一个新的向量。
这个新向量的起点与第一个向量的起点相同,终点与第二个向量的起点相同。
四、向量的数量乘法向量的数量乘法是指将一个向量乘以一个实数得到一个新的向量。
设有一个向量A=(x,y)和一个实数k,则它们的数量积B=kA=(kx,ky)。
数量乘法改变了向量的大小,但保持了向量的方向。
当k>0时,向量的数量乘法使向量的大小增大;当k<0时,向量的数量乘法使向量的大小减小,并改变了向量的方向。
平面向量的加减教案

平面向量的加减教案引言:平面向量的加减是数学中重要的概念之一。
通过掌握平面向量的加减法则,我们能够更好地理解和运用向量的性质,解决与向量相关的数学问题。
本教案将介绍平面向量的加减法则及其应用,以帮助学生深入理解和掌握这一知识点。
一、平面向量的定义和表示1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。
例如,向右箭头表示正东方向的向量,向上箭头表示正北方向的向量。
2. 平面向量的表示:平面向量可以用坐标表示,也可以用字母表示。
例如,向量AB可以记作→AB或A B,其中→表示向量,A B表示向量的长度。
二、平面向量的加法1. 平面向量的加法定义:若有向量→A和→B,它们的和记作→A + →B,表示从→A出发,沿着→B的方向走到最后的位置。
2. 平面向量的加法法则:向量的加法满足"三角形法则"。
即将两个向量的起点相连,以第一个向量的方向作为起始方向,以第二个向量的方向作为终止方向,则连接起始点和终止点的向量为和向量。
例如:→A + →B = →CA B + B C = A C3. 平面向量的加法性质:- 交换律:→A + →B = →B + →A- 结合律:(→A + →B) + →C = →A + (→B + →C)三、平面向量的减法1. 平面向量的减法定义:若有向量→A和→B,它们的差记作→A - →B,表示从→B的终止点回到→A的终止点的向量。
2. 平面向量的减法法则:向量的减法满足"平行四边形法则"。
即将两个向量的起点相连,以第二个向量的方向作为终止方向,以第一个向量的方向反向作为起始方向,则连接起始点和终止点的向量为差向量。
例如:→A - →B = →CA B - B C = A C3. 平面向量的减法性质:- 减去一个向量等于加上其负向量:→A - →B = →A + (-→B)四、平面向量的应用1. 位移向量:在平面向量的应用中,位移向量被广泛用于描述物体在平面内的移动。
平面向量加减法课件
在物理学中的应用
01
平面向量加减法在物理学中的性质和定理
02
向量的加法满足平行四边形定则
向量的减法满足三角形定则
03
在物理学中的应用
向量的数乘满足标量积定理
1
2
平面向量加减法在物理学中的实际应用
确定力的合成与分解
3
在物理学中的应用
计算物体的运动轨迹和速度
解决物理问题,如力学、电磁学等
05
平面向量加减法的练习 与巩固
平行法则适用于任何两个相同的向量 。通过将一个向量分解成两个相同的 子向量,可以找到原始向量的和。这 个法则也可以用于任何数量的相同向 量。
04
平面向量加减法的应用
解向量方程
求解向量方程的解 根据给定的向量方程,确定未知量
通过加减法运算,解出未知量的值
解向量方程
检验解的正确性,确 保解符合原始向量方 程
向量减法的几何意义
两个向量相减,得到的新的向量的方向和大小与原来的两个向量有关系。
02
平面向量加减法的运算 性质
向量的加法交换律
总结词
向量加法满足交换律
详细描述
设$\mathbf{a}$和$\mathbf{b}$是平面向量,则有$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$,即向量加法满足交换律。ຫໍສະໝຸດ 练习题一:判断题总结词
掌握平面向量加减法的基本概念
判断下列说法是否正确
向量a+向量b的和向量等于向量a与 向量b之和。(×)
判断下列说法是否正确
向量a与向量b的和向量等于向量a+ 向量b。(×)
判断下列说法是否正确
平面向量的加法和减法
平面向量的加法和减法平面向量是数学中一个重要的概念,它可以表示平面上的位置和方向。
在进行平面向量的运算时,加法和减法是两个最基本的操作。
本文将详细介绍平面向量的加法和减法的定义、性质和运算规则。
一、平面向量的定义平面向量是具有大小和方向的箭头,它可以表示平面上的位移或者方向。
平面向量通常用有向线段来表示,箭头的起点表示向量的起点,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
平面向量常用小写字母加上有向线段的箭头来表示,例如:AB →。
二、平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。
设有平面向量AB → 和CD →,它们的加法定义为:AB → + CD → = AD →。
即将向量AB → 的起点和向量CD → 的终点相连得到的向量AD → 就是它们的和向量。
三、平面向量的减法平面向量的减法是指将一个向量减去另一个向量得到一个新的向量。
设有平面向量AB → 和CD →,它们的减法定义为:AB → - CD → = AD →。
即将向量AB → 的起点和向量CD → 的终点相连得到的向量AD → 就是它们的差向量。
四、平面向量的运算规则1. 平面向量的加法满足交换律和结合律。
即对于任意两个向量AB→ 和CD →,有AB → + CD → = CD → + AB → 和(AB → + CD →) + EF → = AB → + (CD → + EF →)。
2. 零向量是一个特殊的向量,它表示大小为0的向量。
对于任意向量AB →,有AB → + 0 → = AB →。
3. 平面向量的减法可以转化为加法,即AB → - CD → = AB → + (-CD →),其中-CD → 表示向量CD → 的反向大小相等的向量。
4. 如果两个向量的大小相等,并且方向相反,则它们相互抵消,和向量为零向量。
即如果AB → = -CD →,则AB → + CD → = 0 →。
5. 平面向量的加法和减法可以通过图形法或坐标法进行计算。
平面向量的加法减法与数乘运算课件
数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向
平面向量的加减法运算教学设计
平面向量的加减法运算教学设计以平面向量的加减法运算为主题的教学设计第一节:引入引导学生回顾平面向量的定义和性质,强调向量的表示方法和运算规则。
简要介绍平面向量的加法和减法运算,以及它们的几何意义。
第二节:平面向量的加法运算1.1 向量的加法定义向量的加法是指将两个向量的对应分量相加得到一个新的向量。
引导学生根据定义进行向量的加法运算。
1.2 加法运算的性质向量的加法满足交换律、结合律和零向量的存在性。
通过示例和练习题让学生理解和应用这些性质。
1.3 加法运算的几何意义向量的加法可以用平行四边形法则来解释,即将两个向量的起点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和终点。
第三节:平面向量的减法运算2.1 向量的减法定义向量的减法是指将第二个向量取负后与第一个向量进行加法运算。
引导学生根据定义进行向量的减法运算。
2.2 减法运算的性质向量的减法满足减去一个向量等于加上其相反向量,即a-b=a+(-b)。
通过示例和练习题让学生理解和应用这个性质。
2.3 减法运算的几何意义向量的减法可以用平行四边形法则来解释,即将第二个向量的起点与第一个向量的终点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和第二个向量的终点。
第四节:应用练习通过一些实际问题和练习题,让学生应用所学的平面向量的加减法运算解决几何和物理问题。
可以设计一些场景,如力的合成、位移的计算等。
第五节:总结与拓展对平面向量的加减法运算进行总结,强调运算的规则和性质,以及几何意义。
鼓励学生进一步拓展应用平面向量的知识,如向量的数量积和向量的夹角等。
通过以上教学设计,可以帮助学生系统掌握平面向量的加减法运算,理解其几何意义,并能够应用于实际问题的求解。
同时,通过练习和拓展,培养学生的问题解决能力和数学思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 平面向量的概念及加减运算一、考点梳理考点1 基本概念既有大小,又有方向的量叫做向量.以A 为起点、B 为终点的有向线段记作AB →.|AB →|叫AB →的模或AB →的绝对值,表示向量AB →的长度.(1)零向量:长度为0的向量叫做零向量,记作0. (2)单位向量:长度等于1个单位的向量,叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于向量b ,记作a∥b . ①规定:零向量与任一向量平行. 例1.(1)下列物理量中不是向量的有( )①质量;①速度;①力;①加速度;①路程;①密度;①功;①电流强度. A .5个 B .4个 C .3个 D .2个解析:(1)看一个量是否为向量,就要看它是否具备向量的两个要素:大小和方向,特别是方向的要求,对各量从物理本身的意义作出判断,①①①既有大小也有方向,是向量,①①①①①只有大小没有方向,不是向量.(2)一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,①在四边形ABCD 中,AB ∥CD .①四边形ABCD 为平行四边形. ①AD →=BC →,①|AD →|=|BC →|=200 km.(3)判断下列命题是否正确,并说明理由.(1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)由于0方向不确定,故0不能与任意向量平行; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反; (5)起点不同,但方向相同且模相等的向量是相等向量.解析:(1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.(2)不正确.由|a |=|b |只能判断两向量长度相等,不能确定它们方向的关系. (3)不正确.依据规定:0与任意向量平行.(4)不正确.因为向量a 与向量b 若有一个是零向量,则其方向不定. (5)正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.【变式训练1】.在下列命题中,真命题为( )A .两个有共同起点的单位向量,其终点必相同B .向量AB →与向量BA →的长度相等 C .向量就是有向线段 D .零向量是没有方向的解析:由于单位向量的方向不一定相同,故其终点不一定相同,故A 错误;任何向量都有方向,零向量的方向是任意的,并非没有方向,故D 错误;有向线段是向量的形象表示,但并非说向量就是有向线段,故C 错误,故选B.【变式训练2】.在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2) 在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么? 解析:(1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(图略). 【变式训练3】.如图所示,①ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.解析:(1)因为E 、F 分别是AC 、AB 的中点, 所以EF =12BC .又因为D 是BC 的中点,所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →与CD →.考点2 向量的加法 三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和(或和向量),记作a +b ,即a +b =AB →+BC →=AC →.上述求两个向量和的作图法则,叫做向量加法的三角形法则. 对于零向量与任一向量a 的和有a +0=0+a =a .平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以OA ,OB 为邻边作平行四边形,则以O 为起点的对角线上的向量OC →=a +b ,这个法则叫做两个向量加法的平行四边形法则.向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ).例2.(1)如图,已知向量a 、b ,求作向量a +b .解析:在平面内任取一点O (如下图),作OA →=a ,OB →=b ,以OA 、OB 为邻边做①OACB ,连接OC ,则OC →=OA →+OB →=a +b .2(2)如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________. 解析: (1)AC → (2)AO → (3)AD →(4)0(1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解析:(1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0. 【变式训练1】.(1)如图①所示,求作向量和a +b .(2)如图①所示,求作向量和a +b +c .解析:(1)首先作向量OA →=a ,然后作向量AB →=b ,则向量OB →=a +b .如图①所示.(2)方法一(三角形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →=(a +b )+c =a +b +c 即为所求.方法二(平行四边形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,OB →=b ,OC →=c ,以OA ,OB 为邻边作▭OADB ,连接OD ,则OD →=OA →+OB →=a +b ,再以OD ,OC 为邻边作①ODEC ,连接OE ,则OE →=OD →+OC →=a +b +c 即为所求.【变式训练2】.(1)化简:①BC →+AB →;①AB →+DF →+CD →+BC →+F A →.(2)如图,已知O 为正六边形ABCDEF 的中心,求下列向量: ①OA →+OE →; ①AO →+AB →; ①AE →+AB →.解析:根据加法的交换律使各向量首尾相接,再运用向量的结合律,调整向量顺序相加.(1)①BC →+AB →=AB →+BC →=AC →;①AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AF →+F A →=0.(2)①由题图知,OAFE 为平行四边形,①OA →+OE →=OF →; ①由题图知,OABC 为平行四边形,①AO →+AB →=AC →; ①由题图知,AEDB 为平行四边形,①AE →+AB →=AD →.【变式训练3】.化简:(1)AB →+CD →+BC →. (2)(MA →+BN →)+(AC →+CB →). (3)AB →+(BD →+CA →)+DC →. 解析:(1)AB →+CD →+BC →=AB →+BC →+CD →=AD →.(2)(MA →+BN →)+(AC →+CB →)=(MA →+AC →)+(CB →+BN →)=MC →+CN →=MN →.(3)AB →+(BD →+CA →)+DC →=AB →+BD →+DC →+CA →=0.考点3 向量的减法 相反向量(1)我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a . (2)-(-a )=a ,a +(-a )=(-a )+a =0. (3)零向量的相反向量仍是零向量,即0=-0. 向量减法的定义求两个向量差的运算叫做向量的减法.我们定义,a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.向量减法的几何意义 (1)三角形法则如图,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.(2)平行四边形法则如图①,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义, 知AE →=a +(-b )=a -b .又b +BC →=a ,所以BC →=a -b .如图①,理解向量加、减法的平行四边形法则:在①ABCD 中,AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b .例3.(1)在①ABC 中,D ,E ,F 分别为AB ,BC ,CA 的中点,则AF →-DB →等于( )A .FD →B .FC → C .FE →D .BE →解析:由题意可知AF →-DB →=DE →-DB →=BE →.答案:D(2)化简AC →-BD →+CD →-AB →得( )A .AB →B .AD →C .BC →D .0解析:答案:D解法一:AC →-BD →+CD →-AB →=AC →-BD →+CD →+BA →=(AC →+CD →)+(BA →-BD →)=AD →+DA →=0. 解法二:AC →-BD →+CD →-AB →=AC →+DB →+CD →+BA →=(AC →+CD →)+(DB →+BA →)=AD →+DA →=0.【变式训练1】.如图,设O 为四边形ABCD 的对角线AC 与BD 的交点,若AB →=a ,AD →=b ,OD →=c ,则OB →=解析:由于OB =DB -DO →,而DB →=AB →-AD →=a -b ,DO →=-OD →=-c , 所以OB →=a -b +c .【变式训练2】.化简:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →. 解析:解答本题可先去括号,再利用相反向量及加法交换律、结合律化简.(1)解法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.解法二:原式=AB →+MB →-OB →-MO →=AB →+(MB →-MO →)-OB →=AB →+(OB →-OB →)=AB →+0=AB →. (2)解法一:原式=DB →-DC →=CB →.解法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.二、课堂检测1.下列物理量:①质量;①速度;①位移;①力;①加速度;①路程.其中是向量的有( ) A .2个 B .3个 C .4个 D .5个 答案 C 解析 ①①①①是向量. 2.下列说法中正确的个数是( )①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等. A .0 B .1 C .2 D .3 答案 D3. 下列说法正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小答案 D 解析 A 中不管向量的方向如何,它们都不能比较大小,所以A 不正确;由A 的过程分析可知方向相同的向量也不能比较大小,所以B 不正确;C 中向量的大小即向量的模,指的是有向线段的长度,与方向无关,所以C 不正确;D 中向量的模是一个数量,可以比较大小,所以D 正确. 4. 设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量 B .平行的向量 C .有相同起点的向量 D .模相等的向量 5. 下列等式不成立的是( )A .0+a =aB .a +b =b +a C.AB →+BA →=2BA → D.AB →+BC →=AC →答案C 解析:对于C ,①AB →与BA →方向相反,①AB →+BA →=0.6. 如图,在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → 答案 C7. a ,b 为非零向量,且|a +b |=|a |+|b |,则( )A .a∥b ,且a 与b 方向相同B .a ,b 是共线向量且方向相反C .a =bD .a ,b 无论什么关系均可 答案 A8.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( ) A.BD → B.DB → C.BC → D.CB → 答案 C 解析 BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →. 9. 在①ABC 中,BC →=a ,CA →=b ,则AB →等于( )A .a +bB .-a +(-b )C .a -bD .b -a 答案B ①BA →=BC →+CA →=a +b ,①AB →=-BA →=-a -b . 10. (多选)若a ,b 为非零向量,则下列命题正确的是( )A .若|a |+|b |=|a +b |,则a 与b 方向相同B .若|a |+|b |=|a -b |,则a 与b 方向相反C .若|a |+|b |=|a -b |,则|a |=|b |D .若||a |-|b ||=|a -b |,则a 与b 方向相同答案ABD 当a ,b 方向相同时,有|a |+|b |=|a +b |,||a |-|b ||=|a -b |;当a ,b 方向相反时,有|a |+|b |=|a -b |,||a |-|b ||=|a +b |,故A ,B ,D 均正确.10. 在平行四边形ABCD 中,BC →+DC →+BA →+DA →=________. 答案 0解析 注意DC →+BA →=0,BC →+DA →=0.12. 如图,在①ABC 中,若D 是边BC 的中点,E 是边AB 上一点,则BE →-DC →+ED →=________.11 答案0 因为D 是边BC 的中点,所以BE →-DC →+ED →=BE →+ED →-DC →=BD →-DC →=0.13. 设|a |=8,|b |=12,则|a +b |的最大值与最小值分别为________.答案 20,4 解析 当a 与b 共线同向时,|a +b |max =20;当a 与b 共线反向时,|a +b |min =4. 14. 已知向量|a |=2,|b |=4,且a ,b 不是方向相反的向量,则|a -b |的取值范围是________. 答案 [2,6) 根据题意得||a |-|b ||≤|a -b |<|a |+|b |,即2≤|a -b |<6.15. 如图所示,P ,Q 是①ABC 的边BC 上两点,且BP =QC . 求证:AB →+AC →=AP →+AQ →.证明 ①AP →=AB →+BP →,AQ →=AC →+CQ →,①AP →+AQ →=AB →+AC →+BP →+CQ →.又①BP =QC 且BP →与CQ →方向相反,①BP →+CQ →=0,①AP →+AQ →=AB →+AC →,即AB →+AC →=AP →+AQ →.。