材料科技与工程专业英语部分复习资料

合集下载

材料科学与工程专业英语06-unit08

材料科学与工程专业英语06-unit08

翻译: 包埋过程 包埋过程是在较低温度下(约750℃)进行 的. 相关的组分被装进装有混合粉末(一种活性 涂层材料, 含有铝, 催化剂(氯或者氟化物), 和 热压载, 如氧化铝)的箱子里. 高温下气态的氯 化铝或氟化铝可以从超耐热合金内部转移到表 面. 反应过程结束之后, 即得到所谓的“绿色 涂料”, 但这种涂料因其非常薄而且易碎, 所以 不可以直接使用. “绿色涂料”经过随后的扩 散热处理(在1080温度℃热处理几个小时) 后导致其内部发生进一步的扩散,最终形成理 想的涂层。
Discussion


What are superalloys ? For examples. Where have superalloys been used ? Give some applications. Discuss the future of superalloys .
练习题2. Translate the following into Chinese






The historical development in superalloy processing have brought about considerable increases in superalloy operating temperatures. 随着高温合金加工技术的发展使得高温合金的操 作温度获得了相当的提升。 Single-crystal superalloys ( SC superalloys ) are formed as a single crystal using a modified version of the directional solidification technique, so there are no grain boundaries in the material. 单晶高温合金(SC高温合金)是利用改进后的 定向凝固技术合成的单晶,因此材料中不存在晶 界。 源自

材料科学与工程基础知识点(打印版)英汉双语版

材料科学与工程基础知识点(打印版)英汉双语版

Fundamentals of Materials Science and Engineering材料科学与工程基础知识点复习第一章绪论一、学习目的:材料科学家或工程技术人员经常遇到的问题是设计问题,而设计问题主要涉及机械、民用、化学和电。

而这些领域都要涉及到选择材料问题。

如何选择材料是非常重要的,选材包含两方面一个是满足性能要求,另一方面是成本低,即所谓“合理选材”。

材料的性能与其成分和内部的组织结构密切相关,材料的组织结构与加工过程有关。

本课程的目的就在于掌握加工过程和材料的组织结构以及性能之间的关系。

为今后进行材料设计和合理选材打下理论基础。

二、本章主要内容1、简介材料的发展史2、材料科学与工程的含义和内容3、材料的分类4、先进材料5、现代材料的需求三、重要术语和概念metal: 金属ceramic: 陶瓷polymer: 聚合物Composites: 复合材料Semiconductors: 半导体Biomaterials: 生物材料Processing: 加工过程Structure: 组织结构Properties: 性质Performance: 使用性能Mechanical properties: 力学性能Electrical properties: 电性能Thermal behavior: 热性能Magnetic properties: 磁性能Optical properties: 光性能Deteriorative characteristics: 老化特性第二章原子结构与化学键一、学习目的我们在自然界中观察到各种现象,归根结底是物质的不同表现形式,也就是说物质构成了世界。

自然界中所有物体均由化学元素及其化合物所组成,同样,各种固体材料也都是由一种或多种元素的原子结合而成的。

学习物质的原子结构和化学键合,是认识和研究各类材料在结构与性能方面所表现出来的个性和共性的基础,也是正确认识和理解材料的性能的重要依据。

材料科学与工程专业英语

材料科学与工程专业英语

adhesive[胶]allotropic[同素异形的amorphous[无定形的,非晶的anion[负离子]apuy[适当地]austenite[奥氏体]bainte「贝氏体binary isomorphous system[二元匀晶系统]Burgers vector[柏氏矢量]cadmium[镉]canon[正离子]carbide[碳化物Cast Iron[铸铁cementite[渗碳体]ceramic[陶瓷]chloride[氯chromium[铬]composite materials[复合材料cordinate system[坐标系统covalent bond[共价键crystal structure[晶体结构]crystallinity[结晶度ddiy[塑性deteriorative[劣化]dislocation[位错]edge dislocation[刃形位错]equilibrium[平衡]eutectic[共晶的eutectoid[共析的ferrite[铁素体fractional[分数的,部分的,相对的gain[晶粒grain boundary[晶界hase[相hexagonal dose-packed[密排六方的hexagonal[六方的]hypereutectoid[过共析hypoeutectoid[亚共析ion[硅Ionic Dond[离子键]isotherm[等温线lamellae[薄片]lattice[空间点阵,晶格]lever law[杠杆定律liquidus line[液相线martensite[马氏体]martensitic transformation[马氏体相变metallic bond[金属键]microstucture[显微组织monoclinic[单斜的nickel[镍nitride[氮化物]non-crystalline[非晶的]orthorhombic[正交的]parentheses[括孤]pearlite[珠光体periodic table[元素周期表phase diagram[相图]」phase transformation[相交]」point defect[点缺陷]polarize[极化polyethylene[聚乙烯polymerization[聚合]prism[棱镜]proeutectoid[先共析体provoke[诱发]reciprocal[倒数recrystallization[再结晶rhombohedral[菱方的screw dislocation[螺形位错]skew[歪斜]smal-(or low)angle grain boundary[小角度晶界sodium[钠solar cell [太阳能电池]solid solution strengthening[固溶强化solidus line[固相线solute[溶质solvus line[溶解度曲线spiral[螺旋形的]stifness[刚度]strucure[组织]synthesis[合成tetragonal[四方的tetrahedron[四面体thermoplastics[热塑性塑料]thermosets[热固性塑料tie linc[连接线]tilt boundary[倾侧晶界]translucent[半透明的]triclinic[三斜的troley[石油twin boundary[李晶界unit cell[晶胞vacancy[空位valence electron[价电子]Van de Waals bond[范德华键①材料科学是研究材料的加工、组织、性能和功能之间关系的科学。

材料科学与工程专业英语第三版-翻译以及答案.doc

材料科学与工程专业英语第三版-翻译以及答案.doc

材料科学与工程专业英语第三版-翻译以及答案UNIT 1一、材料根深蒂固于我们生活的程度可能远远的超过了我们的想象,交通、装修、制衣、通信、娱乐(recreation)和食品生产,事实上(virtually),我们生活中的方方面面或多或少受到了材料的影响。

历史上,社会的发展和进步和生产材料的能力以及操纵材料来实现他们的需求密切(intimately)相关,事实上,早期的文明就是通过材料发展的能力来命名的(石器时代、青铜时代、铁器时代)。

二、早期的人类仅仅使用(access)了非常有限数量的材料,比如自然的石头、木头、粘土(clay)、兽皮等等。

随着时间的发展,通过使用技术来生产获得的材料比自然的材料具有更加优秀的性能。

这些性材料包括了陶瓷(pottery)以及各种各样的金属,而且他们还发现通过添加其他物质和改变加热温度可以改变材料的性能。

此时,材料的应用(utilization)完全就是一个选择的过程,也就是说,在一系列有限的材料中,根据材料的优点来选择最合适的材料,直到最近的时间内,科学家才理解了材料的基本结构以及它们的性能的关系。

在过去的100年间对这些知识的获得,使对材料性质的研究变得非常时髦起来。

因此,为了满足我们现代而且复杂的社会,成千上万具有不同性质的材料被研发出来,包括了金属、塑料、玻璃和纤维。

三、由于很多新的技术的发展,使我们获得了合适的材料并且使得我们的存在变得更为舒适。

对一种材料性质的理解的进步往往是技术的发展的先兆,例如:如果没有合适并且没有不昂贵的钢材,或者没有其他可以替代(substitute)的东西,汽车就不可能被生产,在现代、复杂的(sophisticated)电子设备依赖于半导体(semiconducting)材料四、有时,将材料科学与工程划分为材料科学和材料工程这两个副学科(subdiscipline)是非常有用的,严格的来说,材料科学是研究材料的性能以及结构的关系,与此相反,材料工程则是基于材料结构和性能的关系,来设计和生产具有预定性能的材料,基于预期的性能。

材料专业英语必背词汇汇总

材料专业英语必背词汇汇总

材料专业英语必背词汇汇总Chapter 1Materials science and engineering is a field that deals with the study of ___ or structure。

Some of the common categories of materials include metallic。

nonmetallic。

composite。

and ___.___ are those that are made up of ___ or more elements。

and they can have different ___.___ materials include ceramics。

glass。

___ structure。

Glass。

on the other hand。

is a ___ are made up of long chains of molecules and can be either ___.Composite materials are made up of two or ___ is an example of a composite material that is made up of glass fibers embedded in a polymer matrix。

This material has high ___.___。

Silicon is an example of a ___ used in the n of microcircuitry.In materials science and engineering。

___ of the design process。

The properties of ___ materials。

such as their ductility。

conductivity。

___.Chapter 7In this chapter。

最新材料科学与工程基础知识点(打印版)英汉双语版

最新材料科学与工程基础知识点(打印版)英汉双语版

最新材料科学与⼯程基础知识点(打印版)英汉双语版Fundamentals of Materials Science and Engineering材料科学与⼯程基础知识点复习第⼀章绪论⼀、学习⽬的:材料科学家或⼯程技术⼈员经常遇到的问题是设计问题,⽽设计问题主要涉及机械、民⽤、化学和电。

⽽这些领域都要涉及到选择材料问题。

如何选择材料是⾮常重要的,选材包含两⽅⾯⼀个是满⾜性能要求,另⼀⽅⾯是成本低,即所谓“合理选材”。

材料的性能与其成分和内部的组织结构密切相关,材料的组织结构与加⼯过程有关。

本课程的⽬的就在于掌握加⼯过程和材料的组织结构以及性能之间的关系。

为今后进⾏材料设计和合理选材打下理论基础。

⼆、本章主要内容1、简介材料的发展史2、材料科学与⼯程的含义和内容3、材料的分类4、先进材料5、现代材料的需求三、重要术语和概念metal: ⾦属ceramic: 陶瓷polymer: 聚合物Composites: 复合材料Semiconductors: 半导体Biomaterials: ⽣物材料Processing: 加⼯过程Structure: 组织结构Properties: 性质Performance: 使⽤性能Mechanical properties: ⼒学性能Electrical properties: 电性能Thermal behavior: 热性能Magnetic properties: 磁性能Optical properties: 光性能Deteriorative characteristics: ⽼化特性第⼆章原⼦结构与化学键⼀、学习⽬的我们在⾃然界中观察到各种现象,归根结底是物质的不同表现形式,也就是说物质构成了世界。

⾃然界中所有物体均由化学元素及其化合物所组成,同样,各种固体材料也都是由⼀种或多种元素的原⼦结合⽽成的。

学习物质的原⼦结构和化学键合,是认识和研究各类材料在结构与性能⽅⾯所表现出来的个性和共性的基础,也是正确认识和理解材料的性能的重要依据。

英语学习-《材料科学跟工程专业英语》(DOC 38页)

英语学习-《材料科学跟工程专业英语》(DOC 38页)

《材料科学与工程专业英语》Unit1 Materials Science and Metallurgical EngineeringMaterials are properly more deep-seated in our culture than most of us realize. Trans -portation, housing, clothing, communication, recreation and food production--virtually every segment of our everyday lives is influenced to one degree or another by materials. Historically, the development and advancement of societies have been intimately tied to the members' abilities to produce and manipulate materials to fill their needs. In fact, early civilizations have been designated by the level of their materials development (i.e.Stone Age, Bronze Age).The earliest humans has access to only a very limited number of materials, those that occur naturally stone, wood, clay, skins, and so on. With time they discovered techniques for producing materials that had properties superior to those of the natural ones: these new materials included pottery and various metals. Furthermore, it was discovered that the properties of a material could be altered by heat treatments and by the addition of other substances. At this point, materials utilization was totally a selection process, that is, deciding from a given, rather limited set of materials the one that was best suited for an application by virtue of its characteristic. It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties. This knowledge, acquired in the past 60 years or so, has empowered them to fashion, to a large degree, the characteristics of materials. Thus, tens of thousands of different materials have evolved with rather specialized characteristics that meet the needs of our modern and complex society.The development of many technologies that make our existence so comfortable has been intimately associated with the accessibility of suitable materials. Advancement in the under--standing of a material type is often the forerunner to the stepwise progression of a technology. For example, automobiles would not have been possible without the availability of inexpensive steel of some other comparable substitutes. In our contemporary era, sophisticated electronic devices rely on components that are made from what are called semiconducting materials.Materials Science EngineeringMaterials science is an interdisciplinary study that combines chemistry, physics, metallurgy, engineering and very recently life sciences. One aspect of materials science involves studying and designing materials to make them useful and reliable in the service of humankind. It strives for basic understanding of how structures and processes on the atomic scale result in the properties and functions familiar at the engineering level. Materials scientists are interested in physical and chemical phenomena acting across large magnitudes of space and time scales. In this regard it differs from physics of chemistry where the emphasis is more on explaining the properties of pure substances. In materials science there is also an emphasis on developing and using knowledge to understand how the properties of materials can be controllably designed by varying the compositions, structures, and the way in which the bulk and surfaces phase materials are processed.In contrast, materials engineering is, on the basis of those structure properties correlations, designing or engineering the structure of a material to produce a predetermined set of properties. In other words, materials engineering mainly deals with the use of materials in design and how materials are manufactured."Structure" is a nebulous term that deserves some explanation. In brief, the structure of a material usually relates to the arrangement of its internal components. Subatomic structure involves electrons within the individual atoms and interactions with their nuclei. On an atomic level, structure encompasses the organization of atoms or molecules relative to one another. The next large structural realm, which contains large groups of atoms that are normally agglomerated together, is termed "microscopic" meaning that which is subject to direct observation using some type of microscope. Finally, structural elements that may be viewed with the naked eye are termed "macroscopic".The notion of "property" deserves elaboration. While in service use, all materials are exposed to external stimuli that evoke some type of response. For example, a specimen subject to forces will experience deformation; or a polished metal surface will reflect light. Property is a material trait in terms of the kind and magnitude of response to a specific imposed stimulus. Generally, definitions of properties are made independent of material shape and size.Virtually all important properties of solid materials may be grouped into six different categories; mechanical, electrical, thermal, magnetic, optical, and deteriorative. For each there is s characteristic type of stimulus capable of provoking different responses. Mechanical properties relate deformation to an applied load or force: examples include elastic modulus and strength. For electrical properties, such as electrical conductivity and dielectric constant, the stimulus is an electric filed. The thermal behavior of solids can be represented in terms of heat capacity and thermal conductivity. Magnetic properties demonstrate the response of a material to the application of a magnetic field. For optical properties, the stimulus is electromagnetic or light radiation: index of refraction and reflectivity are representative optical properties. Finally, deteriorative characteristics indicate the chemical reactivity of materials.In addition to structure and properties, two other important components are involved in the science and engineering of materials, namely "processing" and "performance". With regard to the relationships of these four components, the structure of a material will depend on how it is processed. Furthermore, a material's performance will be a function of its properties. Thus, the interrelationship between processing, structure, properties, and performance is linear as follows:Processing→Structure→Properties→PerformanceWhy Study Materials Science and Engineering?Why do we study materials? Many an applied scientists or engineers, whether mechanical, civil, chemical, or electrical, will be exposed to a design problem involving materials at one time or another. Examples might include a transmission gear, the superstructure for a building, an oil refinery component, or an integrated circuit chip. Of course, materials scientists and engineers are specialists who are totally involved in the investigation and design of materials.Many times, a materials problem is to select the right material from many thousands available ones. There are several criteria on which the final decision is normally based. First of all, the in-service conditions must be characterized. On only rare occasion does a material possess the maximum or ideal combination of properties. Thus, it may be necessary to trade off one characteristic for another. The classic example involves strength and ductility; normally, a material having a high strength will have only a limited ductility. In such cases a reasonable compromise between two or more properties may be necessary.A second selection consideration is any deterioration of material properties that may occur during service operation. For example, significant reductions in mechanical strengthmay result from exposure to elevated temperatures or corrosive environments.Finally, probably the overriding consideration is economics. What will the finished product cost? A material may be found that has the ideal set of properties, but is prohibitively expensive. Here again, some compromise is inevitable. The cost of a finished piece also includes any expense incurred during fabrication.The more familiar an engineer or scientist is with the various characteristics and structure-property relationships, as well as processing techniques of materials, the more proficient and confident he or she will be to make judicious materials choices based on these criteria.(Selected from Materials Science and Engineering: AnIntroduction, by William D Callister,2002)New Words and Expressionspottery n. 陶瓷by virtue of 依靠(……力量),凭借,由于,因为empower vt.授权,准许,使能够empower sb.to do sth. 授权某人做某事forerunner n. 先驱(者),传令官,预兆stepwise a. 逐步地,分阶段地interdisciplinary a. 交叉学科的metallurgy n. 冶金学nebulous a. 星云的,云雾状的,模糊的,朦胧的agglomerate n. 大团,大块;a.成块的,凝聚的elaboration n. 详尽的细节,解释,阐述electrical conductivity 电导性,电导率dielectric constant 介电常数thermal conductivity 热导性,热导率heat capacity 热容refraction n. 衍射reflectivity n. 反射ductility n. 延展性corrosive a. 腐蚀的,蚀坏的,腐蚀性的;n. 腐蚀物,腐蚀剂overriding a. 最重要的;高于一切的prohibitive a. 禁止的,抵制的judicious a. 明智的criterion n. 标准,准则,尺度Notes1. It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties.这是一个强调句,强调时间。

材料科学与工程_专业英语_Uni...

材料科学与工程_专业英语_Uni...

材料科学与工程_专业英语_Uni...Unit 3 Structure-Property Relationships of MaterialsToday’s materials can be classified as metals and alloys, as polymers or plastics, as ceramics, or as composites; composites, most of which are man-made, actually are combinations of different materials.译文:当今的材料可以分为金属和合金,聚合物或者塑料,陶瓷或复合材料;复合材料,它们大多数是人造的,实际上是不同材料组合而成。

A pplica tion of these m ateria ls de pe nd on their pr ope rties; theref ore, w e ne ed to know w hat pr operties are re quired by the a pplica tion and to be a ble to re late those s pecifica tion to the m aterial.译文:这些材料的应用取决于它们的性质;因此,根据应用的场合,我们需要知道什么样的性质是必需的,我们需要能够把这些详细说明同材料联系起来。

For exam ple, a la dder m ust w ithsta nd a des ign loa d, the w eight of a pe rs on us ing the la dde r. H ow ever, the m ateria l property that ca n be m easured is s tre ngth, w hich is af f ecte d by the loa d a nd desig n dim ension. S tre ngth values m us t theref ore be applie d to dete rm ine d the la dde r dim ensions to e ns ure saf e us e. Therefore, in ge ne ral, the s truc tures of m etallic m aterials have ef fects on the ir prope rties.译文:比如,一个梯子必须能经受住设计的载荷,也就是使用这个梯子的人的重量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五选一:1.“ Materials science ” involves investigating the relationships that exist between the structures and properties of materials. In contrast, “Materials engineering ”is, on the basis of these structure-property correlations ,designing or engineering the structure of a material to produce a predetermined set of properties.材料科学涉及材料到研究材料的结构和性质的关系。

相反,材料工程是根据材料的结构和性质的关系来设计或操纵材料的结构以求制造出一系列可预定的性质。

2. Virtually all important properties of solid materials may be grouped into six different categories: mechanical, electrical, thermal, magnetic ,optical, and deteriorative.实际上,所有固体材料的重要性质可以概括分为六类:机械、电学、热学、磁学、光学和腐蚀性。

3.In addition to structure and properties, two other important components are involved in the science and engineering of materials ,namely ” processing ”and” performance”.除结构与特征外,材料科学与工程还包括另外两项重要的研究内容,即(材料的)加工与性能。

4.The more familiar an engineer or scientist is with the various characteristics and structure-property relationships ,as well as processing techniques of materials, the more proficient and confident he or she will be to make judicious materials choices based on these criteria.工程师与科学家越熟悉材料的各种性质、结构、功能之间的关系以及材料的加工技术,根据以上的几个原则,他或她对材料的明智选择将越来越熟练和精确。

5.On only rare occasion does a material possess the maximum or ideal combination of properties. Thus ,it may be necessary to trade off one characteristic for another.只有在少数情况下材料才具有最优或理想的综合性质,因此,有必要对材料的性质进行平衡。

四选一:1.直到最近,科学家才终于了解材料的结构要素与其特性之间的关系。

It was not until relatively recent times that scientists came to understand the relationship between the structural elements of materials and their properties .2.材料工程学主要解决材料的制造问题和材料的应用问题。

Material engineering mainly to solve the problem and create material application.3.材料的加工过程不但决定了材料的结构,同时决定了材料的特征和性能。

Materials processing process is not only to de structure and decided that the material characteristic and performance.4.材料的力学性能与其所受外力或负荷而导致的形变有关。

Material mechanical properties with the extemal force or in de deformation of the load.四选一:1.金属元素有许多有利电子,金属材料的许多性质可直接归功于这些电子。

Metallic materials have large numbers of nonlocalized electrons,many properties of metals are directly attributable to these electrons.2.许多聚合物材料是有机化合物,并具有大的分子结构。

Many of polymers are organic compounds,and they have very large molecular structures.3.半导体材料的典型特征介于导体材料(如金属、金属合金)与绝缘体(陶瓷材料和聚合体材料)之间。

Semiconductors have electrical properties that are intermediate between the electrical conductors ( viz. metals and metal alloys ) and insulators ( viz. ceramics and polymers ).4.生物材料不能产生毒性,并且不许与人体组织互相兼容。

Biomaterials must not produce toxic substances and must be compatible with body tissues.四选一:1.An object will float in water if its density is less than the density of water and sink if itsdensity is greater that that of water. Similarly , an object with specific gravity less than one will float and those with a specific gravity greater than one will sink. 一个物体的密度比水小时,它会浮在水上,比水大时,它会下沉。

类似的,当一个物体的比重小于一,它就会上浮,比重大于一,它就会下沉。

2.Materials that cause the lines of flux to move farther apart , resulting in a decrease inmagnetic flux density compared with a vacuum , are called diamagnetic . Materials that concentrate magnetic flux by a factor of more than one but less than or equal to ten are called paramagnetic ; materials that concentrate the flux by a factor of more than ten are called ferromagnetic 反磁性体是一类会引起磁力线疏离导致磁通量比真空低的材料。

顺磁性体是会引起磁力线密度成倍增加,倍率系数大于1,小于等于10的材料。

铁磁性体是磁力线密度增加倍率超过10的材料。

.3.Certain ferromagnetic materials , especially powdered or laminated iron , steel , or nickelalloys , have μr that can range up to about 10000000. Diamagnetic materials have μr less than one , but no known substance has relative permeability much less than one.一些铁磁性材料,尤其是粉末状或层压状的铁、不锈钢或镍基合金的相对磁导率μr可达1000000,。

反磁性材料的相对磁导率μr小于1.已知材料中尚未发现相对磁导率比1小很多的。

4.When a paramagnetic or ferromagnetic core is inserted into a coil , the inductance ismultiplied by μr compared with the inductance of the same coil with an air core.当先圈内插入一个顺磁性体或铁磁性体芯,其电感是空气芯的相同线圈电感的μr倍。

四选一:1.化学性质是用来描述一种物质是怎样变成另外一种完全不同的物质的性质。

Physicalproperties are those that can be observed without changing the identity of the substance. 2.相变是一种物理性质,并且物质存在四种相:固相、液相、气相和等离子体。

Phase is a physicalproperty of matter and matter can exist in four phases : solid , liquid , gas and plasma .3.当温度低于熔点时,聚合物的晶体结构破坏,但其分子任然连接在分子链上,从而形成一种柔软和柔顺性材料。

Instead , at some temperature below the melting point , they start to lose their crystalline structure but the molecules remain linked in chains , which results in a soft and pliable material.4.在工程应用中,渗透率通常用相对值而不是绝对值表示。

相关文档
最新文档