运筹学第六章 图与网络模型 第6节 最大基数匹配问题

合集下载

最大基数匹配

最大基数匹配

• 最大基数匹配问题是多项式时间可解的,这里仅讨论二 分图的最大基数匹配问题.
• 对于图G的任意一个顶点的子集X,定义X的邻域N(X)为
与X中的点相邻接的所有点的全体. • 定理2:设G为二分图,顶点集分划为S,T,则G有饱和S 的每个顶点的匹配当且仅当对一切
X S ,有 | N ( X ) || X | .
最大基数匹配
• 给定一个图G=(V,E),设M是E的一个子集,
如果M不含环且其中任意两边均不是邻接的,
则称M是G的一个匹配.
• 如果某顶点和M的一条边关联,则称其为M饱和点,否则称为M-非饱和点. 如果G的每
一点都是M-饱和点,则称M是G的完美匹配.
• 若M是G的边数最多的匹配,则称M是G的最 大基数匹配. 完美匹配是最大基数匹配.
其中某个 y j 是M-非饱和点,转3;否则对所有 y j ,把与 y j 在M中配
对的顶点 xi 给予标号“j”和未检查,并把.从得到标号T中的M-非饱和点 y j 开始反向 搜索,一直找到S中标号为“0”的M-非饱 和点 xi 为止,得到G中M-增广路P, 置M
( 0,0) (0,1)
2
1
v2 v1
v2 v1
(0,1) ( 0,0)
(10,1)(10 ,0)
5 5
(8,1) (8,0) (7,1) ( 7,0)
5
M P ( M P) \ ( M P)
,去掉M中所有
顶点标号,转2.
• 4.M是G的最大基数匹配,结束.
• 求下图所示二分图的最大基数匹配.
v5
v4
v10 v9 v8 v7 v6
v5
v4
v10 v9 v8 v7 v6

运筹学(第6章 图与网络分析)

运筹学(第6章 图与网络分析)
a1 (v1) 赵
(v2)钱
a2 a3 a4 a14 a15
a8 a9
a7 (v4) 李
(v3)孙
a5 (v5) 周 a6 a10 (v6)吴
图6-3
a12 a11 a13
(v7)陈

定义: 图中的点用v表示,边用e表示。对每条边可用它
所连接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
树是图论中结构最简单但又十分重要的图。在自然和社会领 域应用极为广泛。 例6.2 乒乓求单打比赛抽签后,可用图来表示相遇情况,如 下图所示。
运动员 A
B C
D
E
F G
H

例6.3 某企业的组织机构图也可用树图表示。
厂长
人事科
财务科
总工 程师
生产副 厂长
经营副 厂长
开发科
技术科
生产科
设备科
供应科
动力科
e2
(v1) 赵
e1
e3
e4 孙(v3) 李(v4)
周(v5)
图6-2
e5 吴(v6) 陈(v7)
(v2)钱
如果我们把上面例子中的“相互认识”关系改为“认识” 的关系,那么只用两点之间的联线就很难刻画他们之间的关 系了,这是我们引入一个带箭头的联线,称为弧。图6-3就是 一个反映这七人“认识”关系的图。相互认识用两条反向的 弧表示。
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和
e2 v2 e6 e1 e4 v1 e3 v3 e8
vj是边e的端点,反之称边e为点vi
或vj的关联边。若点vi、vj与同一条 边关联,称点vi和vj相邻;若边ei和
e5
e7

运筹学:第6章 图与网络分析

运筹学:第6章  图与网络分析
给图中的点和边赋以具体的含义和权值,我们称 这样的图为网络图(赋权图)
2021/4/18
6
图中的点用 v 表示,边用 e 表示,对每条边可用
它所联结的点表示,如图,则有:
e1 = [v1 , v1], e2 = [v1 , v2]或e2= [v2 , v1]
2021/4/18
7
用点和点之间的线所构成的图,反映实际生产和 生活中的某些特定对象之间的特定关系。
第一种解法:
1. 在点集中任选一点,不妨取 S,令 V={S} 2. 找到和 S 相邻的边中,权值最小的 [S , A] 。
2021/4/18
22
3.V={S , A} 4. 重复第2,3步,找到下一个点。
2021/4/18
23
第二种做法求解过程:
2021/4/18
24
破圈法求解步骤:
1. 从图 N 中任取一回路,去掉这个回路中边 权最大的边,得到原图的一个子图 N1。
Dijkstra 算法假设:
1.设 dij 表示图中两相邻点 i 与 j 的距离,若 i 与 j 不相邻,令 dij =∞,显然 dii =0。 2. 设 Lsi 表示从 s 点到 i 点的最短距离。
2021/4/18
31
求从起始点 s 到终止点 t 的最短路径。 Dijkstra 算法步骤:
1.对起始点 s ,因 Lss =0 ,将 0 标注在 s 旁的小 方框内,表示 s 点已标号;
终点重合的链称为圈,起点和终点重合的路称为回
路,若在一个图中,每一对顶点之间至少存在一条
链,称这样的图为连通图,否则称该图为不连通的。
2021/4/18
12
2021/4/18

运筹学 第6章 图论与网络分析

运筹学 第6章 图论与网络分析

(4) 重复第3步,一直到t点得到标号为止。 例3 求从v1到v7的最短路
v2
5 2 7 6
v5
3 1 2 6
v1
2 7
v4
v7
解:
5
v3
v2
0 2 7 7
4
v6
v5
6 1 2 6 3
(1)
v1
2
v4
v7
v3
4
v6
(2)
L1 p min d12 , d13 min 5, 2 2 L13
• 若两个点之间的边多于一条,称为具有多重边;
• 对无环、无多重边的图称为简单图。 次、奇点、偶点、孤立点、悬挂点 • 与某一个点vi 相关联的边的数目称为次(也称度),记d(vi);

次为奇数的点称为奇点;次为偶数的点称为偶点;
次为0的点称为孤立点;次为1的点称为悬挂点。
多重边 v1 e'13 v3 e13
( vi , v j )
3-1 迪杰斯特拉(Dijkstra)算法 算法的思想:如果P是从vs到vt的最短路,vi是P上的一个 点,那么,从vs沿P到vi的路是从vs到vi的最短路。 设dij为图中两相邻点i与j的距离,若不相邻,dij=0;Lsi为点 s到i的最短距离, 求s点到t点最短距离。 算法的步骤:
v4
v7
v3
2
4
v6 6
(5) L1 p min L12 d 25 , L12 d 24 , L13 d 34 , L16 d 64 , L16 d 65 , L16 d 67 min 5 7, 5 2, 2 7, 6 2,6 1,6 6 7 L14 L15

网络优化图及网络(运筹学)

网络优化图及网络(运筹学)
27
(2,1) (0,S)
28
(2,1) (0,S)
(3,3)
29
(0,S) (3,3)
(2,1) (5,2)
30
(0,S)
(2,1) (5,2)
(3,3) (7,5)
31
(0,S)
(2,1) (5,2)
(3,3)
(7,5)
(8,4)
32
用WinQSB求解 把节点数和节点之间边的长度输入,节 点间没有边则不输入任何值 注意:无向图中i-j的边与j-i的边的长度相 同
C1 根
C2
C3
C4

6
例5(石油流向管网示意图,P131)
此为一个有向图
v2
24
v5
20 8
11 10
v1
15
10
v4 8
v7
20
v3
6
v6
7
1 图的基本概念
无向图:G={V,E} V v1,v2,...,vp E e1,e2,...,eq
顶点或节点:v 边:e=eij=[vi,vj] =[vj,vi] 链:连接两个顶点的一个序列;例1中{a,b,c},{a,b,e,d}等 圈:两个端点重合的链,例1中{a,b,c,a},{a,b,d,a}等
v5
38
(16, v1)
v2
22
41
16 16
30
30
(0,S) v1
59
41(22, v1) v3
23
(30, v1) v4 23 17
v6
18 v5 (41, v1) 39
(16, v1) v2
16 16
30
v1
59

运筹学第六章图与网络分析

运筹学第六章图与网络分析

S
2
4
7
2 A
0 5
S
5 45 B
98
14
5
13
D
T
C
E
4
4
4
7
最短路线:S AB E D T
最短距离:Lmin=13
2.求任意两点间最短距离的矩阵算法
⑴ 构造任意两点间直接到达的最短距离矩阵D(0)= dij(0)
S A B D(0)= C D E T
SABCDET 0 25 4 2 02 7 5 20 1 5 3 4 1 0 4 75 0 15 3 41 0 7 5 7 0
e1 v1
e5
v0 e2
e3
v2
e4
e6 e7
v3
v4
(4)简单图:无环、无多重边的图称为简单图。
(5)链:点和边的交替序列,其中点可重复,但边不能 重复。
(6)路:点和边的交替序列,但点和边均不能重复。
(7)圈:始点和终点重合的链。
(8)回路:始点和终点重合的路。
(9)连通图:若一个图中,任意两点之间至少存在一条 链,称这样的图为连通图。 (10)子图,部分图:设图G1={V1,E1}, G2={V2,E2}, 如果有V1V2,E1E2,则称G1是G2的一个子图;若 V1=V2,E1E2,则称G1是G2的一个部分图。 (11)次:某点的关联边的个数称为该点的次,以d(vi)表示。
步骤:
1. 两两连接所有的奇点,使之均成为偶点;
2. 检查重复走的路线长度,是否不超过其所在 回路总长的一半,若超过,则调整连线,改 走另一半。
v1
4
v4
4
1
4
v2
v5
5

运筹学第6章 图与网络

运筹学第6章 图与网络

也就是说| V1 |必为偶数。
定理6.2有学者也称作定理6.1的推论。根据定理6.2,握手定理也可以 表述为,在任何集体聚会中,握过奇次手的人数一定是偶数个。
12 该课件的所有权属于熊义杰
另外,现实中不存在面数为奇数且每个面的边数也是奇数的多面 体,如表面为正三角形的多面体有4个面,表面为正五边形的多面体有 12个面等等,也可以用这一定理予以证明。因为在任意的一个多面体 中, 当且仅当两个面有公共边时,相应的两顶点间才会有一条边,即 任意多面体中的一个边总关联着两个面。所以,以多面体的面数为顶
v j V2
(m为G中的边数)
因式中 2m 是偶数, d (v j ) 是偶数,所以 d (vi ) 也必为偶数
v j V2
vi V1
( 两个同奇同偶数的和差必为偶数 ), 同时,由于 d (vi ) 中的每个加数 d (vi )
均为奇数,因而 d (vi ) 为偶数就表明, d (vi ) 必然是偶数个加数的和 ,
图论、算法图论、极值图论、网络图论、代数图论、随机图论、 模糊图论、超图论等等。由于现代科技尤其是大型计算机的迅 猛发展,使图论的用武之地大大拓展,无论是数学、物理、化 学、天文、地理、生物等基础科学,还是信息、交通、战争、 经济乃至社会科学的众多问题.都可以应用图论方法子以解决。
1976年,世界上发生了不少大事,其中一件是美国数学家 Appel和Haken在Koch的协作之下,用计算机证明了图论难题— —四色猜想(4CC):任何地图,用四种颜色,可以把每国领土染 上一种颜色,并使相邻国家异色。4CC的提法和内容十分简朴, 以至于可以随便向一个人(哪怕他目不识丁)在几分钟之内讲清 楚。1852年英国的一个大学生格思里(Guthrie)向他的老师德·摩 根(De Morgan)请教这个问题,德·摩根是当时十分有名的数学家, 他不能判断这个猜想是否成立,于是这个问题很快有数学界流 传开来。1879年伦敦数学会会员Kemple声称,证明了4CC成立, 且发表了论文。10年后,Heawood指出了Kemple的证明中

运筹学课件 第六章图与网络分析

运筹学课件 第六章图与网络分析

v 若 eij i , v j ,称 vi , v j 是边 eij 的端 点,反之,称边 eij 为点 v i 或 v j 的关联边。 若点 vi , v j 与同一条边关联,称点 vi v j 相邻; 若边 和 具有公共的端点,称 ei ei ej 和 相邻
e3 e13 v1, v3 v3 , v1 e31
2013-12-3
18

图中有些点和边的交替顺序 0 , e1 , v1 ,...,ek , vk v ,若其中各边 e1 , e2 ,...,ek 互不相同,且对 任意 vt 1 和 vt (2 t k ) 均相邻,称为 链。 上图中 1 v5 , e8 , v3, e3, v1, e2 , v2 , e4 , v3, e7 , v4
27

因要使上述村镇全部通上电,村镇之间必 须连通,又图中必不存在圈,否则从图中去掉一 条边图仍连通,就一定不是最短路线,故架设长 度最短的路线就是从上图中寻找一棵最小树。

2013-12-3
28

用避圈法时,先从图中任选一点 S , 令 S V ,其余点 V , V 与 V 间的最 短边为( S , A) ,将该边加粗,标志它是最小 树内的边。再令 V A V ,V V A 重复上述步骤,一直到所有点连通为止。过程 如下:

如果用点表示研究的对象,用边表示这些 对象之间的联系,则图G可以定义为点与边的集 合,记作 G , E V
V v1 , v2 ,...,vn
E e1 , e2 ,..,em
式V是点的集合,E是边的集合。
2013-12-3 13

注意,上面定义的图G区别于几何学中的图。 几何学中,图中点的位置、线的长度和斜率等都 十分重要,而这里只关心图中有多少个点以及哪 些点之间有线相连。 如果给图中的点和边以具体的含义和权数 (如距离、费用、容量等)。把这样的图称为网 络图,记作N。 图和网络分析的方法已广泛应用于物理、化 学、控制论、信息论、计算机科学和经济管理等 各领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档