昆明市中考数学考试(含答案)

合集下载

2024年云南省中考数学参考试卷+答案解析

2024年云南省中考数学参考试卷+答案解析

2024年云南省中考数学参考试卷一、选择题:本题共15小题,每小题2分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零下记作,则零上可记作()A. B. C. D.2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展用科学记数法可以表示为()A. B. C. D.3.如图,直线c与直线a,b都相交.若,,则()A. B. C. D.4.反比例函数的图象位于()A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限5.下列计算正确的是()A. B. C. D.6.如图,在中,D,E分别为AB,AC上的点.若,,则()A.B.C.D.7.下列图形是某几何体的三视图其中主视图也称正视图,左视图也称侧视图,则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥8.以下是一组按规律排列的多项式:,,,,,…,其中第n个多项式是()A. B. C. D.9.某中学为丰富学生的校园体育锻炼,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.因此学校数学兴趣小组随机抽取了该校100名同学就体育兴趣爱好情况进行调查,将收集的数据整理并绘制成下列统计图:若该校共有学生1200人,则该校喜欢跳绳的学生大约有()A.280人B.240人C.170人D.120人10.如图,BC是的直径,A是上的点.若,则()A.B.C.D.11.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则下面所列方程正确的是()A. B. C. D.12.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. B. C. D.13.如图,计划在一块等边三角形的空地上种植花卉,以美化环境.若米,则这个等边三角形的面积为()A.平方米B.平方米C.平方米D.平方米14.函数中,自变量x的取值范围是()A. B. C. D.15.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间二、填空题:本题共4小题,每小题2分,共8分。

昆明中考数学试题及答案

昆明中考数学试题及答案

昆明中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于4B. 3的平方等于9C. 4的平方等于16D. 5的平方等于25答案:D2. 如果一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C3. 一个等腰三角形的两个底角相等,那么这个三角形的内角和是多少度?A. 180度B. 360度C. 540度D. 720度答案:A4. 以下哪个选项是二次方程x^2 - 5x + 6 = 0的一个解?A. x = 2B. x = 3C. x = 1D. x = 6答案:B5. 圆的周长公式是:A. C = πdB. C = 2πrC. C = 2dD. C = πr答案:B6. 一个数乘以0的结果是什么?A. 0B. 1C. 该数本身D. 无法确定答案:A7. 下列哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x = 4D. x = 2答案:A8. 一个长方体的长、宽、高分别为2cm、3cm和4cm,那么它的体积是多少立方厘米?A. 24B. 12C. 6D. 8答案:B9. 一个正数的平方根是它本身的数是:A. 0B. 1C. -1D. 无法确定答案:B10. 一个数的立方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D二、填空题(每题4分,共20分)1. 一个数的平方等于9,这个数是______。

答案:±32. 一个数的倒数是它本身,这个数是______。

答案:1或-13. 一个数的绝对值是它本身,这个数是非负数,即______。

答案:非负数4. 一个三角形的内角和是______。

答案:180度5. 一个圆的半径是5cm,那么它的直径是______。

答案:10cm三、解答题(每题10分,共50分)1. 计算:(3x - 2)(x + 1)。

2023年云南昆明中考数学试题及答案

2023年云南昆明中考数学试题及答案

2023年云南昆明中考数学试题及答案(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1.中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作()A.80-米B.0米C.80米D.140米【答案】A【解析】【分析】此题主要用正负数来表示具有意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可.【详解】解∶∵向东走60米记作60+米,∴向西走80米可记作80-米,故选A.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负是解题的关键.2.云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为()A.434010⨯ B.53410⨯ C.53.410⨯ D.60.3410⨯【答案】C【解析】【分析】根据科学记数法的记数方法,340000写成10n a ⨯的形式,其中01a <≤,据此可得到答案.【详解】解:533.04040001=⨯.故选C.【点睛】本题考查了科学记数法的定义,准确确定a 和n 的值是本题的解题关键.3.如图,直线c 与直线a b 、都相交.若,135a b ∠=︒∥,则2∠=()A.145︒B.65︒C.55︒D.35︒【答案】D【解析】【分析】根据平行线的性质,对顶角相等,即可求解.【详解】解:如图所示,∵a b ∥,1335==︒∠∠∴2335∠=∠=︒,故选:D.【点睛】本题考查了对顶角相等,平行线的性质,熟练掌握平行线的性质是解题的关键.4.某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A.球B.圆柱C.长方体D.圆锥【答案】A【解析】【分析】根据球体三视图的特点确定结果.【详解】解:根据球体三视图的特点:球体的三视图都是大小相等的圆,确定该几何体为球.故选:A.【点睛】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.5.下列计算正确的是()A.236a a a ⋅= B.22(3)6a a = C.632a a a ÷= D.22232a a a -=【答案】D【解析】【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误;2222(3)39a a a ==,故B 错误;63633a a a a -÷==,故C 错误;()22223312a a a a -=-=,故D 正确.故本题选:D.【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.6.为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65B.60C.75D.80【答案】B【解析】【分析】根据众数的定义求解即可.【详解】解:在65,60,75,60,80中,出现次数最多的是60,∴这组数据的众数是60,故选;B【点睛】本题考查了众数,众数是指一组数据中出现次数最多的数据,掌握众数的定义是解题的关键.7.中华文明,源远流长:中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可求解问题.【详解】解:由题意得:A、B、D 选项都不是轴对称图形,符合轴对称图形的只有C 选项;故选C.【点睛】本题主要考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.8.若点()1,3A 是反比例函数(0)k y k x =≠图象上一点,则常数k 的值为()A.3B.3-C.32D.32-【答案】A【解析】【分析】将点()1,3A 代入反比例函数(0)k y k x =≠,即可求解.【详解】解:∵点()1,3A 是反比例函数(0)k y k x =≠图象上一点,∴133k =⨯=,故选:A.【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.9.按一定规律排列的单项式:2345,a ,第n 个单项式是()A. B.1n - C.n D.1n-【答案】C【解析】【分析】根据单项式的规律可得,系数为,字母为a ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第n 个单项式是n,故选:C.【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.10.如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =()A.4米B.6米C.8米D.10米【答案】B【解析】【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米),故选∶B.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是()A. 1.24800400x x -= B.1.24800400x x -= C.40080041.2x x -= D.80040041.2x x -=【答案】D【解析】【分析】设乙同学的速度是x 米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解∶设乙同学的速度是x 米/分,可得:80040041.2x x-=故选∶D.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.12.如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B【解析】【分析】根据圆周角定理即可求解.【详解】解:∵ BCBC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题(本大题共4小题,每小题2分,共8分)13.函数110y x =-的自变量x 的取值范围是________.【答案】10x ≠【解析】【分析】要使110-x 有意义,则分母不为0,得出结果.【详解】解:要使110-x 有意义得到100x -≠,得10x ≠.故答案为:10x ≠.【点睛】本题考查了函数自变量取值范围,分式有意义的条件,理解分母不为零是解决问题的关键.14.五边形的内角和是________度.【答案】540【解析】【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.15.分解因式:24m -=_____.【答案】(2)(2)m m +-【解析】【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.16.数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为________分米.【答案】【解析】【分析】根据勾股定理得,圆锥的高2=母线长2-底面圆的半径2得到结果.【详解】解:由圆锥的轴截面可知:圆锥的高2=母线长2-底面圆的半径2圆锥的高==故答案为【点睛】本题考查了圆锥,勾股定理,其中对圆锥的高,母线长,底面圆的半径之间的关系的理解是解决本题的关键.三、解答题(本大题共8小题,共56分)17.计算:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒.【答案】6【解析】【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒14131=+-+-6=.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.18.如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【解析】【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.19.调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游,这5个示范区为:A.保山市腾冲市;B.昆明市石林彝族自治县;C.红河哈尼族彝族自治州弥物市;D.大理白族自治州大理市;E.丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【答案】(1)100人(2)270人【解析】【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.【小问1详解】÷(人),本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;【小问2详解】⨯(人),90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.20.甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A ,种植茄子为B ,种植西红柿为C ,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x ,乙同学的选择为y .(1)请用列表法或画树状图法中的一种方法,求(),x y 所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P .【答案】(1)9(2)13【解析】【分析】(1)根据题意列出树状图,即可得到答案;(2)根据(1)列出的情况,找到甲、乙两名同学选择种植同一种蔬菜的情况,得出概率.【小问1详解】解:由题意得:共有9种情况,分别是:()()()()()()()()(),,,,,,,,,A A A B A C B A B B B C C A C B C C 、、、、、、、、.【小问2详解】解:由(1)得其中甲、乙两名同学选择种植同一种蔬菜的情况有()()(),,,A A B B C C 、、,共3种,31==93P ,∴甲、乙两名同学选择种植同一种蔬菜的概率为13【点睛】本题考查了树状图法求概率的问题,解题的关键是画出树状图.21.蓝天白云下,青山绿水间,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A B 、两种型号的帐篷.若购买A 种型号帐篷2顶和B 种型号帐篷4顶,则需5200元;若购买A 种型号帐篷3顶和B 种型号帐篷1顶,则需2800元.(1)求每顶A 种型号帐篷和每顶B 种型号帐篷的价格;(2)若该景区需要购买A B 、两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,为使购买帐篷的总费用最低,应购买A 种型号帐篷和B 种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元(2)当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【解析】【分析】(1)根据题意中的等量关系列出二元一次方程组,解出方程组后得到答案;(2)根据购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,列出一元一次不等式,得出A 种型号帐篷数量范围,再根据一次函数的性质,取A 种型号帐篷数量的最大值时总费用最少,从而得出答案.【小问1详解】解:设每顶A 种型号帐篷的价格为x 元,每顶B 种型号帐篷的价格为y 元.根据题意列方程组为:24520032800x y x y +=⎧⎨+=⎩,解得6001000x y =⎧⎨=⎩,答:每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元.【小问2详解】解:设A 种型号帐篷购买m 顶,总费用为w 元,则B 种型号帐篷为(20)m -顶,由题意得6001000(20)40020000w m m m =+-=-+,其中()1203m m ≤-,得5m ≤,故当A 种型号帐篷为5顶时,总费用最低,总费用为()6005100020518000w =⨯+⨯-=,答:当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用及一次函数的应用,找出准确的等量关系及不等关系是解题的关键.22.如图,平行四边形ABCD 中,AE CF 、分别是BAD BCD ∠∠、的平分线,且E F 、分别在边BC AD 、上,AE AF =.(1)求证:四边形AECF 是菱形;(2)若60ABC ∠=︒,ABE 的面积等于AB 与DC 间的距离.【答案】(1)证明见解析(2)【解析】【分析】(1)先证AD BC ∥,再证AE FC ,从而四边形AECF 是平行四边形,又AE AF =,于是四边形AECF 是菱形;(2)连接AC ,先求得60BAE DAE ABC ∠∠∠===︒,再证AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,于是有33AB AC =,得33AB AC =,再证AE BE CE ==,从而根据面积公式即可求得AC =【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,BAD BCD ∠∠=,∴BEA DAE ∠∠=,∵AE CF 、分别是BAD BCD ∠∠、的平分线,∴BAE DAE ∠∠==12BAD ∠,BCF ∠=12BCD ∠,∴DAE BCF BEA ∠∠∠==,∴AE FC ,∴四边形AECF 是平行四边形,∵AE AF =,∴四边形AECF 是菱形;【小问2详解】解:连接AC ,∵AD BC ∥,60ABC ∠=︒,∴180120BAD ABC ∠∠=︒-=︒,∴60BAE DAE ABC ∠∠∠===︒,∵四边形AECF 是菱形,∴EAC ∠=1230DAE ∠=︒,∴90BAC BAE EAC ∠∠∠=+=︒,∴AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,∴AE CE =,tan 30tan AB ACB AC ︒=∠=即33AB AC=,∴3AB AC =,∵BAE ABC ∠∠=,∴AE BE CE ==,∵ABE 的面积等于,∴211332236ABC S AC AB AC AC AC =⋅=⋅==∴平行线AB 与DC 间的距离AC =【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.23.如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S.(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 的值.【答案】(1)EA 与O 相切,理由见解析(2)23【解析】【分析】(1)EA 与O 相切,理由如下:连接OA ,先证BAC ADC ∽得ABO DAC ∠∠=,又证ABO BAO DAC ∠∠∠==,进而有90OAD OAC DAC ∠∠∠=+=︒,于是即可得EA 与O 相切;(2)先求得2EAC ABE S S = ,再证EAB ECA ∽,得222EAC ABE S AC S AB == ,从而有2232BC AC =,又BAC ADC ∽,即可得解.【小问1详解】解:EA 与O 相切,理由如下:连接OA,∵BC 是O 的直径,直线EA 与CD 垂直,∴90BAC ADC ∠∠==︒,∵DA AC DC AB ⋅=⋅,∴DA DC AB AC=,∴BAC ADC∽∴ABO DAC ∠∠=,∵OA OB =,∴ABO BAO DAC ∠∠∠==,∵90BAC BAO OAC ∠∠∠=+=︒,∴90OAD OAC DAC ∠∠∠=+=︒,∴OA DE ⊥,∴EA 与O 相切;【小问2详解】解:∵BC BE =,∴122EAC ABE S S S == ,1ABC EAB S S S == ,∴2EAC ABES S = ,∵OA DE ⊥,∴90OAB BAE OAE ∠∠∠+==︒,∵90BAC ∠=︒,OBA OBA ∠∠=,∴90OBA ECA ∠∠+=︒,∴EAB ECA ∠∠=,∵E E ∠∠=,∴EAB ECA ∽,∴222EAC ABE S AC S AB== ,∴2212AB AC =又∵90BAC ∠=︒,∴2222221322BC AC AB AC AC ++===,∴2223AC BC =∵BAC ADC ∽,∴222123ADC BAC S S AC m S S BC ==== .【点睛】本题考查了直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定,勾股定理,熟练掌握直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定以及勾股定理等知识是解题的关键.24.数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++--+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.【答案】(1)见解析(2)0a =或1a =-或1a =或2a =-【解析】【分析】(1)分12a =-与12a ≠-两种情况讨论论证即可;(2)当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,得2(42)(96)440a x a x a ++--+=,从而有4421a x a -=+或12x =-,根据整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,从而有211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解之即可.【小问1详解】解:当12a =-时,420a +=,函数2(42)(96)44y a x a x a =++--+为一次函数126y x =+,此时,令0y =,则1260x +=,解得12x =-,∴一次函数126y x =+与x 轴的交点为102⎛⎫- ⎪⎝⎭,;当12a ≠-时,420a +≠,函数2(42)(96)44y a x a x a =++--+为二次函数,∵2(42)(96)44y a x a x a =++--+,∴()2(96)(42)444a a a ∆=+---+228110836643232a a a a =-++--214049100a a -+=()20107a =≥-,∴当12a ≠-时,2(42)(96)44y a x a x a =++--+与x 轴总有交点,∴无论a 取什么实数,图象T 与x 轴总有公共点;【小问2详解】解:当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,则2(42)(96)440a x a x a ++--+=,∴()()()2144210a x a x +--+=⎡⎤⎣⎦,∴()()21440a x a +--=或210x +=∴4421a x a -=+或12x =-,∵6221x a =-+,整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,∴211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解得0a =或1a =-或12a =(舍去)或32a =-(舍去)或1a =或2a =-或52a =(舍去)或72a =-(舍去),∴0a =或1a =-或1a =或2a =-.【点睛】本题主要考查了一次函数的性质,二次函数与一元二次方程之间的关系以及二次函数的性质,熟练掌握一次函数的性质,二次函数与一元二次方程之间的关系,二次函数的性质以及数形相结合的思想是解题的关键.。

2020年云南省昆明市中考数学试卷含答案解析

2020年云南省昆明市中考数学试卷含答案解析

2020年云南省昆明市中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.|﹣10|=.2.分解因式:m2n﹣4n=.3.如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为°.4.要使有意义,则x的取值范围是.5.如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为cm.6.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.由5个完全相同的正方体组成的几何体的主视图是()A.B.C.D.8.下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.命题“既是矩形又是菱形的四边形是正方形”是真命题9.某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A.2~3B.3~4C.4~5D.5~610.下列运算中,正确的是()A.﹣2=﹣2B.6a4b÷2a3b=3abC.(﹣2a2b)3=﹣8a6b3D.•=a11.不等式组,的解集在以下数轴表示中正确的是()A.B.C.D.12.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元13.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2 14.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(5分)计算:12021﹣+(π﹣3.14)0﹣(﹣)﹣1.16.(6分)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.17.(7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.525 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?18.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?19.(8分)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.20.(8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=l,求PC的长.21.(9分)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(8分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.23.(12分)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.2020年云南省昆明市中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.|﹣10|=10.解:根据负数的绝对值等于它的相反数,得|﹣10|=10.故答案为:10.2.分解因式:m2n﹣4n=n(m+2)(m﹣2).解:原式=n(m2﹣4)=n(m+2)(m﹣2),故答案为:n(m+2)(m﹣2)3.如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为95°.解:如图所示:由题意可得,∠1=∠A=50°,则∠ABC=180°﹣35°﹣50°=95°.故答案为:95.4.要使有意义,则x的取值范围是x≠﹣1.解:要使分式有意义,需满足x+1≠0.即x≠﹣1.故答案为:x≠﹣1.5.如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为10πcm.解:连接OD,OC.∵∠DOC=60°,OD=OC,∴△ODC是等边三角形,∴OD=OC=DC=2(cm),∵OB⊥CD,∴BC=BD=(cm),∴OB=BC=3(cm),∵AB=17cm,∴OA=OB+AB=20(cm),∴点A在该过程中所经过的路径长==10π(cm),故答案为10π.6.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是(﹣1)n..解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.由5个完全相同的正方体组成的几何体的主视图是()A.B.C.D.解:由5个完全相同的正方体组成的几何体的主视图是.故选:A.8.下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.命题“既是矩形又是菱形的四边形是正方形”是真命题解:A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A选项错误;B.一组数据6,5,8,7,9的中位数是7,所以B选项错误;C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则乙组学生的身高较整齐,所以C选项错误;D.命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D选项正确.故选:D.9.某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A.2~3B.3~4C.4~5D.5~6解:使用计算器计算得,4sin60°≈3.464101615,故选:B.10.下列运算中,正确的是()A.﹣2=﹣2B.6a4b÷2a3b=3abC.(﹣2a2b)3=﹣8a6b3D.•=a解:A、﹣2=﹣,此选项错误,不合题意;B、6a4b÷2a3b=3a,此选项错误,不合题意;C、(﹣2a2b)3=﹣8a6b3,正确;D、•=•=﹣a,故此选项错误,不合题意;故选:C.11.不等式组,的解集在以下数轴表示中正确的是()A.B.C.D.解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集是﹣1<x≤3,在数轴上表示为:,故选:B.12.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据题意得:,解得:x=2000,经检验:x=2000是原方程的解,答:每间直播教室的建设费用是2000元,故选:C.13.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以A选项的结论正确;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;把B(0,﹣2),A(﹣1,m)代入抛物线得c=﹣2,a﹣b+c=m,而b=﹣2a,∴a+2a﹣2=m,∴a=,所以C选项的结论正确;∵点P1(t,y1),P2(t+1,y2)在抛物线上,∴当点P1、P2都在直线x=1的右侧时,y1<y2,此时t≥1;当点P1在直线x=1的左侧,点P2在直线x=1的右侧时,y1<y2,此时0<t<1且t+1﹣1>1﹣t,即<t<1,∴当<t<1或t≥1时,y1<y2,所以D选项的结论错误.故选:D.14.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE (不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个解:如图,所以使得△ADE∽△ABC的格点三角形一共有6个.故选:C.三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(5分)计算:12021﹣+(π﹣3.14)0﹣(﹣)﹣1.解:原式=1﹣2+1+5=5.16.(6分)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.17.(7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.525 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5绘制如图不完整的频数分布表及频数分布直方图:尺码/cm划记频数21.5≤x<22.5322.5≤x<23.51223.5≤x<24.51324.5≤x<25.52(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为23.5;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?解:(1)表中答案为:12补全频数分布表如上表所示:补全的频数分布直方图如图所示:(2)样本中,尺码为23.5cm的出现次数最多,共出现9次,因此众数是23.5,故答案为:23.5;(3)120×=60(双)答:该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约60双.18.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?解:(1)用列表法表示所有可能出现的结果情况如下:(2)由(1)的表格可知,共有9种可能出现的结果,其中“和为3的倍数”的有3种,“和为7的倍数”的有3种,∴P(小杰胜)==,P(小玉胜)==,因此游戏是公平的.19.(8分)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.解:(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,解得,故校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一间教室的药物喷洒时间为5min,则11个房间需要55min,当x=5时,y=2x=10,故点A(5,10),设反比例函数表达式为:y=,将点A的坐标代入上式并解得:k=50,故反比例函数表达式为y=,当x=55时,y=<1,故一班学生能安全进入教室.20.(8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=l,求PC的长.解:(1)如图,点C即为所求;证明:∵点E是线段OP的中点,∴OE=EP,∵EC=EP,∴OE=EC=EP,∴∠COE=∠ECO,∠ECP=∠P,∵∠COE+∠ECO+∠ECP+∠P=180°,∴∠ECO+∠ECP=90°,∴OC⊥PC,且OC是⊙O的半径,∴PC是⊙O的切线;(2)∵BP=4,EB=l,∴OE=EP=BP+EB=5,∴OP=2OE=10,∴OC=OB=OE+EB=6,在Rt△OCP中,根据勾股定理,得PC==8.则PC的长为8.21.(9分)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为 6.4×106;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:(1)6400000=6.4×106,故答案为6.4×106.(2)如图,过点C作CH⊥BE于H.由题意AB=CH=800m,AC=BH=1.5m,在Rt△ECH中,EH=CH•tan37°≈600(m),∴DB=600﹣DE+BH=599.5(m),由题意f=≈0.043(m),∴山的海拔高度=599.5+0.043+1800≈2399.54(m).22.(8分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.解:(1)当y1=0时,即﹣x2+4=0,解得x=2或x=﹣2,又点A在x轴的负半轴,∴点A(﹣2,0),∵点A(﹣2,0),是抛物线y2的最高点.∴﹣=﹣2,即b=﹣,把A(﹣2,0)代入y2=﹣x2﹣x+c得,c=﹣,∴抛物线y2的解析式为:y2=﹣x2﹣x﹣;由得,,,∵A(﹣2,0),∴点B(3,﹣5),答:抛物线y2的解析式为:y2=﹣x2﹣x﹣,点B(3,﹣5);(2)由题意得,CD=y1﹣y2=﹣x2+4﹣(﹣x2﹣x﹣),即:CD=﹣x2+x+,当x=﹣=时,CD最大=﹣×+×+=5,∴S△BCD=×5×(3﹣)=.23.(12分)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠A=90°,∵AE=EB,DF=FC,∴AE=DF,AE∥DF,∴四边形AEFD是平行四边形,∵∠A=90°,∴四边形AEFD是矩形.(2)证明:如图2中,连接PM.BM.∵四边形AEFD是矩形,∴EF∥AD,∵BE=AE,∴BO=OP,由翻折可知,∠PMB=∠A=90°,∴OM=OB=OP.(3)解:如图3﹣1中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵MA=MD,MH⊥AD,∴AH=HD=4,∵∠BAH=∠ABF=∠AHF=90°,∴四边形ABFH是矩形,∴BF=AH=4,AB=FH=5,∴∠BFM=90°,∵BM=BA=5,∴FM===3,∴HM=HF=FM=5﹣3=2,∵∠ABP+∠APB=90°,∠MAH+∠APB=90°,∴∠ABP=∠MAH,∵∠BAP=∠AHM=90°,∴△ABP∽△HAM,∴=,∴=,∴AP=.如图3﹣2中,当AM=AD时,连接BM,设BP交AM于F.∵AD=AM=8,BA=BM=5,BF⊥AM,∴AF=FM=4,∴BF===3,∵tan∠ABF==,∴=,∴AP=,如图3﹣3中,当DA=DM时,此时点P与D重合,AP=8.如图3﹣4中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵BM=5,BF=4,∴FM=3,MH=3+5=8,由△ABP∽△HAM,可得=,∴=,∴AP=10,综上所述,满足条件的P A的值为或或8或10.。

2020年云南省昆明市中考数学试题(解析版)

2020年云南省昆明市中考数学试题(解析版)

2020年云南省昆明市中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)|﹣10|=.2.(3分)分解因式:m2n﹣4n=.3.(3分)如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B 北偏西35°方向,则∠ABC的度数为°.4.(3分)要使有意义,则x的取值范围是.5.(3分)如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为cm.6.(3分)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)由5个完全相同的正方体组成的几何体的主视图是()A.B.C.D.8.(4分)下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.命题“既是矩形又是菱形的四边形是正方形”是真命题9.(4分)某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A.2~3B.3~4C.4~5D.5~610.(4分)下列运算中,正确的是()A.﹣2=﹣2B.6a4b÷2a3b=3abC.(﹣2a2b)3=﹣8a6b3D.•=a11.(4分)不等式组,的解集在以下数轴表示中正确的是()A.B.C.D.12.(4分)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元13.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y214.(4分)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(5分)计算:12021﹣+(π﹣3.14)0﹣(﹣)﹣1.16.(6分)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.17.(7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:2423.521.523.524.5232223.523.52322.523.523.522.524 2422.525232323.52322.52323.523.523242222.5绘制如图不完整的频数分布表及频数分布直方图:尺码/cm划记频数21.5≤x<22.5322.5≤x<23.523.5≤x<24.51324.5≤x<25.52(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?18.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?19.(8分)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.20.(8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=1,求PC的长.21.(9分)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(8分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x 轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.23.(12分)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.2020年云南省昆明市中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)|﹣10|=10.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值等于它的相反数,得|﹣10|=10.故答案为:10.2.(3分)分解因式:m2n﹣4n=n(m+2)(m﹣2).【分析】原式提取n,再利用平方差公式分解即可.【解答】解:原式=n(m2﹣4)=n(m+2)(m﹣2),故答案为:n(m+2)(m﹣2)3.(3分)如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B 北偏西35°方向,则∠ABC的度数为95°.【分析】根据题意得出∠1的度数,根据平角的定义即可得出∠ABC的度数.【解答】解:如图所示:由题意可得,∠1=∠A=50°,则∠ABC=180°﹣35°﹣50°=95°.故答案为:95.4.(3分)要使有意义,则x的取值范围是x≠﹣1.【分析】根据分式有意义的条件,求解即可.【解答】解:要使分式有意义,需满足x+1≠0.即x≠﹣1.故答案为:x≠﹣1.5.(3分)如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为10πcm.【分析】求出OA的长,利用弧长公式计算即可.【解答】解:连接OD,OC.∵∠DOC=60°,OD=OC,∴△ODC是等边三角形,∴OD=OC=DC=2(cm),∵OB⊥CD,∴BC=BD=(cm),∴OB=BC=3(cm),∵AB=17cm,∴OA=OB+AB=20(cm),∴点A在该过程中所经过的路径长==10π(cm),故答案为10π.6.(3分)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是(﹣1)n..【分析】观察已知一组数,发现规律进而可得这一组数的第n个数.【解答】解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)由5个完全相同的正方体组成的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:由5个完全相同的正方体组成的几何体的主视图是.故选:A.8.(4分)下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.命题“既是矩形又是菱形的四边形是正方形”是真命题【分析】根据调查方式、中位数、方差、正方形的判定等知识进行命题的判断即可.【解答】解:A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A选项错误;B.一组数据6,5,8,7,9的中位数是7,所以B选项错误;C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则乙组学生的身高较整齐,所以C选项错误;D.命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D选项正确.故选:D.9.(4分)某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A.2~3B.3~4C.4~5D.5~6【分析】用计算器计算得3.464101615……得出答案.【解答】解:使用计算器计算得,4sin60°≈3.464101615,故选:B.10.(4分)下列运算中,正确的是()A.﹣2=﹣2B.6a4b÷2a3b=3abC.(﹣2a2b)3=﹣8a6b3D.•=a【分析】直接利用二次根式的加减运算法则和整式的除法运算法则、分式的乘法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、﹣2=﹣,此选项错误,不合题意;B、6a4b÷2a3b=3a,此选项错误,不合题意;C、(﹣2a2b)3=﹣8a6b3,正确;D、•=•=﹣a,故此选项错误,不合题意;故选:C.11.(4分)不等式组,的解集在以下数轴表示中正确的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集是﹣1<x≤3,在数轴上表示为:,故选:B.12.(4分)某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元【分析】设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x元,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.【解答】解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x元,根据题意得:,解得:x=2000,经检验:x=2000是原方程的解,答:每间直播教室的建设费用是2000元,故选:C.13.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2【分析】由抛物线开口方向得到a>0,利用抛物线的对称轴方程得到b=﹣2a<0,则可对A选项进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,则根据抛物线与x轴的交点问题可对B选项进行判断;把B(0,﹣2),A(﹣1,m)和b=﹣2a代入抛物解析式可对C选项进行判断;利用二次函数的增减性对D进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以A选项的结论正确;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;把B(0,﹣2),A(﹣1,m)代入抛物线得c=﹣2,a﹣b+c=m,而b=﹣2a,∴a+2a﹣2=m,∴a=,所以C选项的结论正确;∵点P1(t,y1),P2(t+1,y2)在抛物线上,∴当点P1、P2都在直线x=1的右侧时,y1<y2,此时t≥1;当点P1在直线x=1的左侧,点P2在直线x=1的右侧时,y1<y2,此时0<t<1且t+1﹣1>1﹣t,即<t<1,∴当<t<1或t≥1时,y1<y2,所以D选项的结论错误.故选:D.14.(4分)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个【分析】根据网格画出使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个)的格点三角形即可.【解答】解:如图,所以使得△ADE∽△ABC的格点三角形一共有6个.故选:C.三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(5分)计算:12021﹣+(π﹣3.14)0﹣(﹣)﹣1.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、立方根的性质分别化简得出答案.【解答】解:原式=1﹣2+1+5=5.16.(6分)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.【分析】根据全等三角形的判定:AAS证明△BAC≌△DAE,即可得BC=DE.【解答】证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.17.(7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:2423.521.523.524.5232223.523.52322.523.523.522.524 2422.525232323.52322.52323.523.523242222.5绘制如图不完整的频数分布表及频数分布直方图:尺码/cm划记频数21.5≤x<22.531222.5≤x<23.523.5≤x <24.51324.5≤x<25.52(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为23.5;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?【分析】(1)根据各组频数之和为30,求出22.5~23.5的频数,进而补全频数分布表、频数分布直方图;(2)根据众数的意义,找出出现次数最多的数据即可;(3)样本估计总体,样本中,尺码在23.5≤x<25.5范围的鞋占调查总数的,因此估计120双的是尺码在23.5≤x<25.5范围的鞋的双数.【解答】解:(1)表中答案为:,12,补全的频数分布直方图如图所示:(2)样本中,尺码为23.5cm的出现次数最多,共出现9次,因此众数是23.5,故答案为:23.5;(3)120×=60(双)答:该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约60双.18.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?【分析】(1)利用列表法表示所有可能出现的结果情况,(2)根据(1)的表格,得出“和为3的倍数”“和为7的倍数”的概率即可.【解答】解:(1)用列表法表示所有可能出现的结果情况如下:(2)由(1)的表格可知,共有9种可能出现的结果,其中“和为3的倍数”的有3种,“和为7的倍数”的有3种,∴P(小杰胜)==,P(小玉胜)==,因此游戏是公平的.19.(8分)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.【分析】(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,即可求解;(2)点A(5,10),则反比例函数表达式为y=,当x=55时,y=<1,即可求解.【解答】解:(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,解得,故校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一间教室的药物喷洒时间为5min,则11个房间需要55min,当x=5时,y=2x=10,故点A(5,10),设反比例函数表达式为:y=,将点A的坐标代入上式并解得:k=50,故反比例函数表达式为y=,当x=50时,y==1,故一班学生能安全进入教室.20.(8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=1,求PC的长.【分析】(1)利用尺规作图:以点E为圆心,EP长为半径画弧,在直径AB上方的圆上交一点C,再根据已知条件可得OE=EC=EP,根据三角形内角和可得∠ECO+∠ECP=90°,进而证明PC是⊙O的切线;(2)在(1)的条件下,根据BP=4,EB=1,可得EP的长,进而可得半径,再根据勾股定理即可求PC的长.【解答】解:(1)如图,点C即为所求;证明:∵点E是线段OP的中点,∴OE=EP,∵EC=EP,∴OE=EC=EP,∴∠COE=∠ECO,∠ECP=∠P,∵∠COE+∠ECO+∠ECP+∠P=180°,∴∠ECO+∠ECP=90°,∴OC⊥PC,且OC是⊙O的半径,∴PC是⊙O的切线;(2)∵BP=4,EB=1,∴OE=EP=BP+EB=5,∴OP=2OE=10,∴OC=OB=OE+EB=6,在Rt△OCP中,根据勾股定理,得PC==8.则PC的长为8.21.(9分)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为 6.4×106;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.(2)如图,过点C作CH⊥BE于H.解直角三角形求出DB,加上海拔高度,加上球气差即可.【解答】解:(1)6400000=6.4×106,故答案为6.4×106.(2)如图,过点C作CH⊥BE于H.由题意AB=CH=800m,AC=BH=1.5m,在Rt△ECH中,EH=CH•tan37°≈600(m),∴DB=600﹣DE+BH=599.5(m),由题意f=≈0.043(m),∴山的海拔高度=599.5+0.043+1800≈2399.54(m).22.(8分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x 轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.【分析】(1)由抛物线y1=﹣x2+4,可求出与x轴的交点A的坐标,再根据点A是抛物线y2=﹣x2+bx+c的最高点,可求出b、c的值,从而确定函数关系式;两个函数的关系式组成方程组求出交点坐标即可;(2)由CD=y1﹣y2得到一个二次函数的关系式,再利用函数的最值,求出相应的x的值,及CD的最大值,进而计算出三角形的面积.【解答】解:(1)当y1=0时,即﹣x2+4=0,解得x=2或x=﹣2,又点A在x轴的负半轴,∴点A(﹣2,0),∵点A(﹣2,0),是抛物线y2的最高点.∴﹣=﹣2,即b=﹣,把A(﹣2,0)代入y2=﹣x2﹣x+c得,c=﹣,∴抛物线y2的解析式为:y2=﹣x2﹣x﹣;由得,,,∵A(﹣2,0),∴点B(3,﹣5),答:抛物线y2的解析式为:y2=﹣x2﹣x﹣,点B(3,﹣5);(2)由题意得,CD=y1﹣y2=﹣x2+4﹣(﹣x2﹣x﹣),即:CD=﹣x2+x+,当x=﹣=时,CD最大=﹣×+×+=5,∴S△BCD=×5×(3﹣)=.23.(12分)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.【分析】(1)根据有一个角是直角的平行四边形是矩形证明即可.(2)根据直角三角形斜边中线的性质证明即可.(3)分四种情形:如图3﹣1中,当MA=MD时.如图3﹣2中,当AM=AD时.如图3﹣3中,当DA=DM时,此时点P与D重合.如图3﹣4中,当MA=MD时,分别求解即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠A=90°,∵AE=EB,DF=FC,∴AE=DF,AE∥DF,∴四边形AEFD是平行四边形,∵∠A=90°,∴四边形AEFD是矩形.(2)证明:如图2中,连接PM.BM.∵四边形AEFD是矩形,∴EF∥AD,∵BE=AE,∴BO=OP,由翻折可知,∠PMB=∠A=90°,∴OM=OB=OP.(3)解:如图3﹣1中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵MA=MD,MH⊥AD,∴AH=HD=4,∵∠BAH=∠ABF=∠AHF=90°,∴四边形ABFH是矩形,∴BF=AH=4,AB=FH=5,∴∠BFM=90°,∵BM=BA=5,∴FM===3,∴HM=HF=FM=5﹣3=2,∵∠ABP+∠APB=90°,∠MAH+∠APB=90°,∴∠ABP=∠MAH,∵∠BAP=∠AHM=90°,∴△ABP∽△HAM,∴=,∴=,∴AP=.如图3﹣2中,当AM=AD时,连接BM,设BP交AM于F.∵AD=AM=8,BA=BM=5,BF⊥AM,∴AF=FM=4,∴BF===3,∵tan∠ABF==,∴=,∴AP=,如图3﹣3中,当DA=DM时,此时点P与D重合,AP=8.如图3﹣4中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵BM=5,BF=4,∴FM=3,MH=3+5=8,由△ABP∽△HAM,可得=,∴=,∴AP=10,综上所述,满足条件的P A的值为或或8或10.。

昆明中考数学试题及答案

昆明中考数学试题及答案

昆明中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是负数?A. -2B. 3C. 0D. 52. 若a > b > c,下列不等式正确的是:A. a - b > b - cB. a + b > b + cC. a - c > b - cD. a - b < b - c3. 圆的周长公式是:A. C = 2πrB. C = πr²C. C = 4πrD. C = 2πd4. 以下哪个是二次根式?A. √3B. √(2x-1)C. √x²D. √x5. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 26. 以下哪个是整式?A. 2x² + 3x + 1B. √x + 1C. 1/xD. 2x² + √x7. 如果一个三角形的三边长分别为a、b、c,且a + b > c,那么这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 任意三角形8. 以下哪个是方程的解?A. x = 1B. x = 2C. x = 3D. x = 49. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 210. 以下哪个是完全平方数?A. 3B. 4C. 5D. 6二、填空题(每题2分,共20分)11. 一个数的绝对值是它本身或它的相反数,这个数是________。

12. 一个数的立方根是它本身,这个数可以是________。

13. 一个数的倒数是1/x,这个数是________。

14. 一个数的平方是16,这个数是________。

15. 一个数的对数是2,这个数是________。

16. 一个数的平方根是4,这个数是________。

17. 一个数的立方是27,这个数是________。

18. 一个数的平方是9,这个数是________。

19. 一个数的倒数是-1/2,这个数是________。

昆明中考数学试题及答案

昆明中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 已知a = -3,b = 2,求a + b的值。

A. -1B. 1C. -5D. 5答案:A3. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π答案:B4. 如果一个三角形的三边长分别为3、4、5,那么这是一个什么类型的三角形?A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形答案:C5. 已知x = 2,求2x - 3的值。

A. 1B. -1C. -3D. 3答案:A6. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A7. 一个长方体的长、宽、高分别为2、3、4,求其体积。

A. 24B. 36C. 48D. 52答案:A8. 一个数的倒数是1/4,这个数是多少?A. 4B. 1C. 2D. 1/4答案:A9. 已知一个角的正弦值为1/2,这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:C10. 一个分数的分子是5,分母是8,这个分数化简后是多少?A. 5/8B. 1/2C. 1/4D. 1/8答案:B二、填空题(每题4分,共20分)11. 一个数的立方根是2,这个数是______。

答案:812. 一个圆的直径是14,求其周长(用π表示)。

答案:14π13. 已知一个直角三角形的两个直角边长分别为3和4,求斜边长。

答案:514. 一个数的绝对值是5,这个数可以是______或______。

答案:5或-515. 如果一个分数的分母是10,且这个分数等于0.25,那么分子是______。

答案:2.5三、解答题(共50分)16. 已知一个直角三角形的斜边长为13,一个直角边长为5,求另一个直角边长。

解:设另一个直角边长为x,根据勾股定理,有5² + x² = 13²25 + x² = 169x² = 144x = 12答案:另一个直角边长为12。

2020年云南省昆明市中考数学试卷及答案(word版).doc

2020年云南省昆明市中考数学一、选择题(每小题3分,满分27分)1、昆明小学1月份某天的气温为5℃,最低气温为﹣1℃,则昆明这天的气温差为( )A 、4℃B 、6℃C 、﹣4℃D 、﹣6℃答案:B2、如图是一个由相同的小正方体组成的立体图形,它的主视图是( )答案:D3、据2020年全国第六次人口普查数据公布,云南省常住人口为45966239人,45966239用科学记数法表示且保留两个有效数字为( )A 、4.6×107B 、4.6×106C 、4.5×108D 、4.5×107 答案;A4、小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )A 、91,88B 、85,88C 、85,85D 、85,84.5 答案:D5、若x 1,x 2是一元二次方程2x 2﹣7x+4=0的两根,则x 1+x 2与x 1•x 2的值分别是( )A 、﹣72,﹣2B 、﹣72,2C 、72,2D 、72,﹣2 答案:C6、列各式运算中,正确的是( )A 、3a•2a=6aB 22=C 2=D 、(2a+b )(2a ﹣b )=2a 2﹣b 2答案:B7、(2020•昆明)如图,在Y ABCD 中,添加下列条件不能判定Y ABCD 是菱形的是( )A 、AB=BCB 、AC ⊥BD C 、BD 平分∠ABC D 、AC=BD 答案:D8、抛物线y=ax 2+bx+c (a≠0)的图象如图所示,则下列说法正确的是( )A 、b 2﹣4ac <0B 、abc <0C 、12b a -<-D 、a ﹣b+c <0 答案:C9、如图,在Rt △ABC 中,∠ACB=90°,BC=3,AB 的垂直平分线ED 交BC 的延长线与D 点,垂足为E ,则sin ∠CAD=( )A 、14B 、13C D答案:A二、填空题(每题3分,满分18分.)10、当x 时,二次根式答案x≥511、如图,点D 是△ABC 的边BC 延长线上的一点,∠A=70°,∠ACD=105°,则∠B= .答案:35°.12、若点P (﹣2,2)是反比例函数k y x =的图象上的一点,则此反比例函数的解析式为 . 答案:y=4x13、计算:2()ab a b a a b a b ++÷--= . 答案:a14、如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形(即阴影部分)的面积之和为 cm 2.(结果保留π).答案:23π15、某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为 . 答案:90%三、简答题(共10题,满分75.)161020111()1)(1)2--+-.答案:解:原式+2﹣1﹣17、解方程:31122x x+=--. 答案:解:方程的两边同乘(x ﹣2),得3﹣1=x ﹣2,解得x=4.检验:把x=4代入(x ﹣2)=2≠0.∴原方程的解为:x=4.18、在Y ABCD 中,E ,F 分别是BC 、AD 上的点,且BE=DF .求证:AE=CF .答案:证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D ,∵BE=DF ,∴△ABE ≌△CDF ,∴AE=CF .19、某校在八年级信息技术模拟测试后,八年级(1)班的最高分为99分,最低分为40分,课代表将全班同学的成绩(得分取整数)进行整理后分为6个小组,制成如下不完整的频数分布直方图,其中39.5~59.5的频率为0.08,结合直方图提供的信息,解答下列问题:(1)八年级(1)班共有50名学生;(2)补全69.5~79.5的直方图;(3)若80分及80分以上为优秀,优秀人数占全班人数的百分比是多少?(4)若该校八年级共有450人参加测试,请你估计这次模拟测试中,该校成绩优秀的人数大约有多少人?答案:解:(1)4÷0.08=50,(2)69.5~79.5的频数为:50﹣2﹣2﹣8﹣18﹣8=12,如图:(3)18850×100%=52%,(4)450×52%=234(人),答:优秀人数大约有234人.20、在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题:(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.答案:解:(1)所画图形如下:(2)所画图形如下:∴A 2点的坐标为(2,﹣3).21、如图,在昆明市轨道交通的修建中,规划在A 、B 两地修建一段地铁,点B 在点A 的正东方向,由于A 、B 之间建筑物较多,无法直接测量,现测得古树C 在点A 的北偏东45°方向上,在点B 的北偏西60°方向上,BC=400m ,请你求出这段地铁AB 的长度.(结果精确到1m 2 1.4143 1.732≈≈,)答案:解:过点C 作CD ⊥AB 于D ,由题意知:∠CAB=45°,∠CBA=30°,∴CD=12BC=200, BD=CB•cos (90°﹣60°)=400×323,AD=CD=200,∴AB=AD+BD=200+2003≈546(m),答:这段地铁AB的长度为546m.22、小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆出获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?答案:解:(1)(2)不公平.理由:因为两纸牌上的数字之和有以下几种情况:1+1=2;2+1=3;3+1=4;1+2=3;2+2=4;3+2=5;1+3=4;2+3=5;3+3=6共9种情况,其中5个偶数,4个奇数.即小坤获胜的概率为为59,而小明的概率为49,∴59>49,∴此游戏不公平.23、A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C、D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C、D两县农用车的费用分别为每辆300元和150元,从B市运往C、D两县农用车的费用分别为每辆200元和250元.(1)设从A市运往C县的农用车为x辆,此次调运总费为y元,求y与x的函数关系式,并写出自变量x的取值范围;(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用?答案:解:(1)从A市运往C县的农用车为x辆,此次调运总费为y元,根据题意得:y=300x+200(42﹣x)+150(50﹣x)+250(x﹣2),即y=200x+15400,所以y与x的函数关系式为:y=200x+15400.又∵042050020x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得:2≤x≤42,且x 为整数,所以自变量x 的取值范围为:2≤x≤42,且x 为整数.(2)∵此次调运的总费用不超过16000元,∴200x+15400≤16000解得:x≤3,∴x 可以取:2或3,方案一:从A 市运往C 县的农用车为2辆,从B 市运往C 县的农用车为40辆,从A 市运往D 县的农用车为48辆,从B 市运往D 县的农用车为0辆,方案二:从A 市运往C 县的农用车为3辆,从B 市运往C 县的农用车为39辆,从A 市运往D 县的农用车为47辆,从B 市运往D 县的农用车为1辆,∵y=200x+154000是一次函数,且k=200>0,y 随x 的增大而增大,∴当x=2时,y 最小,即方案一费用最小,此时,y=200×2+15400=15800,所以最小费用为:15800元.24、如图,已知AB 是⊙O 的直径,点E 在⊙O 上,过点E 的直线EF 与AB 的延长线交与点F ,AC ⊥EF ,垂足为C ,AE 平分∠FAC .(1)求证:CF 是⊙O 的切线;(2)∠F=30°时,求OFES S ∆四边形AOEC 的值?答案:(1)证明:连接OE ,∵AE 平分∠FAC ,∴∠CAE=∠OAE ,又∵OA=OE ,∠OEA=∠OAE ,∠CAE=∠OEA ,∴OE ∥AC ,∴∠OEF=∠ACF ,又∵AC ⊥EF ,∴∠OEF=∠ACF=90°,∴OE ⊥CF ,又∵点E 在⊙O 上,∴CF 是⊙O 的切线;(2)∵∠OEF=90°,∠F=30°,∴OF=2OE又OA=OE ,∴AF=3OE ,又∵OE ∥AC ,∴△OFE ∽△AFC , ∴23OE OF AC AF ==,∴49OFE AFC S S ∆∆=,∴45OFE S S ∆=四边形AOEC .25、如图,在Rt △ABC 中,∠C=90°,AB=10cm ,AC :BC=4:3,点P 从点A 出发沿AB 方向向点B 运动,速度为1cm/s ,同时点Q 从点B 出发沿B→C→A 方向向点A 运动,速度为2cm/s ,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC 、BC 的长;(2)设点P 的运动时间为x (秒),△PBQ 的面积为y (cm 2),当△PBQ 存在时,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)当点Q 在CA 上运动,使PQ ⊥AB 时,以点B 、P 、Q 为定点的三角形与△ABC 是否相似,请说明理由;(4)当x=5秒时,在直线PQ 上是否存在一点M ,使△BCM 得周长最小,若存在,求出最小周长,若不存在,请说明理由.答案:解:(1)设AC=4x ,BC=3x ,在Rt△ABC 中,AC 2+BC 2=AB 2,即:(4x )2+(3x )2=102,解得:x=2,∴AC=8cm,BC=6cm ;(2)①当点Q 在边BC 上运动时,过点Q 作QH⊥AB 于H ,∵AP=x,∴BP=10﹣x ,BQ=2x ,∵△QHB∽△ACB, ∴QH QB AC AB =,∴QH=85x ,y=12BP •QH=12(10﹣x )•85x=﹣45x 2+8x (0<x≤3), ②当点Q 在边CA 上运动时,过点Q 作QH′⊥AB 于H′,∵AP=x,∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH′∽△ABC, ∴'AQ QH AB BC =,即:'14106x QH -=,解得:QH′=35(14﹣x ), ∴y=12PB•QH′=12(10﹣x )•35(14﹣x )=310x 2﹣365x+42(3<x <7); ∴y 与x 的函数关系式为:y=2248(03)533642(37)105x x x x x x ⎧-+<≤⎪⎪⎨⎪-+<<⎪⎩; (3)∵AP=x,AQ=14﹣x ,∵PQ⊥AB,∴△APQ∽△ACB,∴AP AQ PQ AC AB BC ==,即:148106x x PQ -==, 解得:x=569,PQ=143,∴PB=10﹣x=349,∴1421334179PQ BC PB AC==≠, ∴当点Q 在CA 上运动,使PQ⊥AB 时,以点B 、P 、Q 为定点的三角形与△ABC 不相似;(4)存在.理由:∵AQ=14﹣2x=14﹣10=4,AP=x=5,∵AC=8,AB=10,∴PQ 是△ABC 的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ 是AC 的垂直平分线,∴PC=AP=5,∴当点M 与P 重合时,△BCM 的周长最小, ∴△BCM 的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16.∴△BCM 的周长最小值为16.。

云南省昆明市部分中学2024届九年级下学期中考模拟数学试卷(含解析)

数学一、选择题:本题共15小题,每小题2分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.刘徽在《九章算术注》对负数做了很自然的解释:“两算得失相反,要令正、负以名之”.若收入100元记作+100元,那么支出30元应记作( )A. +30元B. ―30元C. +70元D. ―70元2.下列三星堆文物图案中,既是中心对称图形又是轴对称图形的是( )A. B.C. D.3.据华夏时报报告,经综合研判,预计2024年全国国内旅游人数将超过60亿人次,将60亿用科学记数法表示应为( )A. 60×108B. 6×109C. 0.60×1010D. 6×1084.如图,m//n,△ABC的顶点C在直线m上,∠B=70°,∠1=20°,则∠2的度数为( )A. 50°B. 40°C. 45°D. 60°5.下列计算正确的是( )A. a3⋅a3=a9B. (a2)2=a5C. (3a)2=6a2D. a5÷a2=a36.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD于点E,点F是BC的中点,若BD=10,则EF的长为( )A. 8B. 6C. 5D. 47.若y=x―1+2―2x―2,则(x+y)2024等于( )A. 1B. 5C. ―5D. ―18.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A.B.C.D.9.已知多边形的内角和等于外角和的5倍,则这个多边形的边数是( )A. 11B. 12C. 13D. 1410.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,…,请你推算22024的个位数字是( )A. 6B. 4C. 2D. 811.如图,在△ABC中,AB=AC=5,BC=2,以AB为直径的⊙O分别交AC、BC两边于点D、E,则△CDE的面积为( )A. 25B. 45C. 55D. 25512.关于x的一元二次方程x2―mx―4=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根13.某中学对延时服务选课意向进行了随机抽样调查,要求被调查者只能选择其中的一项,根据得到的数据,绘制不完整统计图如下,则下列说法中不正确的是( )A. 这次调查的样本容量是200B. 全校1200名学生中,估计选篮球课大约有400人C. 扇形统计图中,科技课所对应的圆心角是144°D. 被调查的学生中,选绘画课人数占比为20%14.如图,在矩形ABCD中,AB=6,BC=3,将矩形沿AC折叠,点D落在点D′处,则CF的长为( )A. 94B. 154C. 278D. 27415.“黔绣”的技师擅长在叶脉上飞针走绣,巧妙地将传统刺绣图案与树叶天然纹理完美结合,创作出神奇的“叶脉苗绣”作品.实际上,很多叶片本身都蕴含着黄金分割的比例,在大自然中呈现出优美的样子.如图,点P大致是AB的黄金分割点(AP>PB),如果AP的长为4cm,那么AB的长约为( )A. (25+2)cmB. (25―2)cmC. (25+1)cmD. (25―1)cm二、填空题:本题共4小题,每小题2分,共8分。

2020年云南省昆明市中考数学试卷及答案(Word解析版)

云南省昆明市2020年中考数学试卷一、选择题(每小题3分,满分24分,在每小题给出的四个选项中,只有一项是正确的。

)1.(3分)(2019•云南)﹣6的绝对值是()A.﹣6 B.6C.±6 D.考点:绝对值.专题:计算题.分析:根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可;解答:解:根据绝对值的性质,|﹣6|=6.故选B.点评:本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2019•昆明)下面几何体的左视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据左视图是从图形的左面看到的图形求解即可.解答:解:从左面看,是一个等腰三角形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(3分)(2019•昆明)下列运算正确的是()A.x6+x2=x3B.C.(x+2y)2=x2+2xy+4y2D.考点:完全平方公式;立方根;合并同类项;二次根式的加减法分析:A、本选项不能合并,错误;B、利用立方根的定义化简得到结果,即可做出判断;C、利用完全平方公式展开得到结果,即可做出判断;D、利用二次根式的化简公式化简,合并得到结果,即可做出判断.解答:解:A、本选项不能合并,错误;B、=﹣2,本选项错误;C、(x+2y)2=x2+4xy+4y2,本选项错误;D、﹣=3﹣2=,本选项正确.故选D点评:此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)(2019•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°考点:三角形中位线定理;平行线的性质;三角形内角和定理.分析:在△ADE中利用内角和定理求出∠AED,然后判断DE∥BC,利用平行线的性质可得出∠C.解答:解:由题意得,∠AED=180°﹣∠A﹣∠ADE=70°,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.故选C.点评:本题考查了三角形的中位线定理,解答本题的关键是掌握三角形中位线定理的内容:三角形的中位线平行于第三边,并且等于第三边的一半.5.(3分)(2019•昆明)为了了解2019年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2019年昆明市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是1000考点:总体、个体、样本、样本容量.分析:根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可.解答:解:A、2019年昆明市九年级学生的数学成绩是总体,原说法错误,故本选项错误;B、每一名九年级学生的数学成绩是个体,原说法错误,故本选项错误;C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故本选项错误;D、样本容量是1000,该说法正确,故本选项正确.故选D.点评:本题考查了总体、个体、样本、样本容量的知识,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.(3分)(2019•昆明)一元二次方程2x2﹣5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定考点:根的判别式.分析:求出根的判别式△,然后选择答案即可.解答:解:∵△=(﹣5)2﹣4×2×1=25﹣8=17>0,∴方程有有两个不相等的实数根.故选A.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2019•昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=356考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.解答:解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选C.点评:此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.8.(3分)(2019•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质分析:依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.解答:解:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P时AB的中点.故⑤正确.故选B.点评:本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.二、填空题(每小题3分,满分18分)9.(3分)(2019•昆明)据报道,2019年一季度昆明市共接待游客约为12340000人,将12340000人用科学记数法表示为 1.234×107人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将12340000用科学记数法表示为1.234×107.故答案为:1.234×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2019•昆明)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为y=﹣2x.考点:待定系数法求正比例函数解析式.分析:把点A的坐标代入函数解析式求出k值即可得解.解答:解:∵正比例函数y=kx的图象经过点A(﹣1,2),∴﹣k=2,解得k=﹣2,∴正比例函数的解析式为y=﹣2x.故答案为:y=﹣2x.点评:本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可,比较简单.11.(3分)(2019•昆明)求9的平方根的值为±3.考点:平方根.分析:根据平方根的定义解答.解答:解:∵(±3)2=9,∴9的平方根的值为±3.故答案为:±3.点评:本题考查了平方根的定义,是基础题,熟记概念是解题的关键.12.(3分)(2019•昆明)化简:=x+2.考点:分式的加减法.专题:计算题.分析:先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.13.(3分)(2019•昆明)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.考点:圆锥的计算.专题:计算题.分析:设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为⊙O的直径,则OB=AB=2cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.解答:解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为⊙O的直径,∴AB=4cm,∴OB=AB=2cm,∴扇形OAB的弧AB的长==π,∴2πr=π,∴r=(cm).故答案为.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.14.(3分)(2019•昆明)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有8个.考点:等腰三角形的判定;坐标与图形性质.专题:数形结合.分析:建立网格平面直角坐标系,然后作出符合等腰三角形的点P的位置,即可得解.解答:解:如图所示,使得△AOP是等腰三角形的点P共有8个.故答案为:8.点评:本题考查了等腰三角形的判定,作出图形,利用数形结合的思想求解更形象直观.三、解答题(共9题,满分58分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昆明市中考数学考试(含答案)
————————————————————————————————作者: ————————————————————————————————日期:

昆明市2015年初中学业水平考试
数学试卷
(全卷三个大题,共23小题,共6页;满分100分,考试时间120分钟)
注意事项:
1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题
卡上填写清楚,并认真核准条形码上的准考证号及姓名,在规定的位里贴好条形
码。

2.考生必须把所有的答案填写在答题卡上,答在试卷上的答案无效。

3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案选项框涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案选项框,不要填涂和勾划无关选项。


他试题用黑色碳素笔作答,答案不要超出给定的答题框。

4.考生必须按照规定的方法和要求答题,不按要求答题所造成的后果由本人负责。

5.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(每小题3分,满分24分,在每小题给出的四个选项中,只有一项是正确的;每小
题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑)
1.-5的绝对值是
A.5B.-5C.1
5
D.5
2.某校组织了“讲文明、守秩序、迎南博”知识竞赛活动,从中抽取了7名同学的参赛成绩如下(单位:分):80,90,70,100,60,80,80,则这组数据的中位数和众数分别是A.90,80 B.70,80C.80,80 D.100,80
3.由5个完全相同的正方体组成的立体图形如图所示,则他的俯视图是
4.如图,在⊿ABC中,∠B=40°过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为
A.60°
B.65°
C.70°
D.75°。

相关文档
最新文档