管壳式换热器的设计要点1
管壳式换热器设计及软件开发

管壳式换热器设计及软件开发本文主要介绍管壳式换热器设计及软件开发的相关知识。
对管壳式换热器的基本概念、特点及用途进行简要阐述;详细介绍了管壳式换热器的设计要点和计算方法;探讨了管壳式换热器软件开发的流程和模块功能。
关键词:管壳式换热器、设计、软件开发、计算方法、流程管壳式换热器是一种广泛应用于化工、石油、能源等领域的传热设备,其作用是将热量从一种介质传递到另一种介质。
这种换热器的特点是结构紧凑、传热效率高、适用范围广等,因此备受。
本文将介绍管壳式换热器的设计及软件开发,以期为相关领域的研究和应用提供参考。
管壳式换热器的设计是整个换热器的核心部分。
在设计过程中,需要考虑传热面积、材料选择、结构设计、防腐蚀措施等多种因素。
同时,还需要根据不同的工艺条件和实际需求进行优化,以获得最佳的传热效果和经济效益。
具体来说,管壳式换热器设计的要点包括以下几个方面:工艺计算:根据实际工艺条件,进行传热面积、流速、压力等工艺参数的计算,以确定换热器的规格和型号。
材料选择:根据实际需求和使用环境,选择合适的材料,以保证换热器的耐腐蚀、耐高温、耐高压等特性。
结构设计:根据实际工艺条件和材料特性,设计换热器的结构,以获得最佳的传热效果和机械强度。
防腐蚀措施:针对不同的工艺条件和使用环境,采取相应的防腐蚀措施,以保证换热器的使用寿命。
在管壳式换热器的软件开发方面,需要结合实际需求进行流程设计和模块开发。
一般来说,管壳式换热器软件开发的流程包括以下几个步骤:需求分析:根据实际需求,明确软件的功能和性能要求,以及用户界面设计等。
数据输入:根据需求分析结果,设计数据输入界面,以方便用户输入相关工艺参数和技术要求。
计算及优化:利用相关算法和模型,对输入数据进行计算和优化,以获得最佳的换热器设计方案。
结果输出:将计算和优化结果以图表或报告的形式输出,以便用户进行评估和选择。
用户反馈及维护:根据用户反馈,不断完善软件功能和性能,确保软件的稳定性和可靠性。
管壳式换热器的设计

管壳式换热器的设计管壳式换热器是一种常用的换热设备,广泛应用于石油化工、冶金、电力、制药、食品等行业。
它由壳体、管束、管板、管箱等组成,能够有效地将两种介质之间的热量传递。
下面将从换热原理、设计要求和结构设计等方面进行详细介绍。
一、换热原理管壳式换热器通过管壳两侧的介质进行热量传递。
其中,一个介质在管内流动,被称为"壳侧流体",另一个介质在管外流动,被称为"管侧流体"。
壳侧流体通过壳体流动,而管侧流体则通过管束流动。
热量传递主要通过壳侧流体和管侧流体之间的传导和对流传热方式进行。
二、设计要求1.热量传递效果好:要求在换热器内两种介质之间实现高效的热量传递,以满足工艺要求。
2.压力损失小:为了保证介质流动的稳定性和降低能源消耗,设计时需要尽量减小换热器内的动能损失。
3.适应不同工艺条件:换热器的设计要能适应不同的流量、温度和压力等工艺条件的变动。
4.安全可靠:要求在设计中考虑到换热器的安全性和可靠性,尽量减少故障率。
三、结构设计1.壳体:壳体是换热器的外壳,一般采用钢质材料制造。
壳体的选择应考虑到介质的性质、压力和温度等参数,并采取相应的增强措施。
2.管束:管束是由多根管子组成的,一般采用金属材料或塑料制造。
管束的设计要考虑到介质对管材的腐蚀性、温度和压力等参数,同时也要考虑到换热面积的要求。
3.管板:管板位于管束两端,起到支撑和固定管束的作用,一般采用钢质材料制造。
管板的设计要考虑到壳侧和管侧流体的流动特性,并采用合适的孔洞布置,以保证流体的均匀流动。
4.管箱:管箱是安装在管板上的设施,主要用于集流壳侧流体并将其引导出换热器。
管箱的设计应考虑到壳侧流体的流动特性和流量等参数,以实现流体的顺畅流动。
在设计过程中,需要进行换热器的热力计算和结构力学计算,以确定壳体、管束和管板等部件的尺寸和选材。
同时,还需要根据不同工艺和使用条件的要求,进行热交换面积的计算和确定。
管壳式换热器结构设计

管壳式换热器结构设计在化工、石油和能源等领域中,管壳式换热器是一种广泛应用的高效换热设备。
本文将详细探讨管壳式换热器的结构设计,包括材料选择、传热原理和应用特点等方面的内容,旨在提高设备的传热效率和可靠性。
一、管壳式换热器的基本结构管壳式换热器主要由壳体、管束、折流板、进出口接管等部件组成。
其核心部分是管束,它由许多平行排列的传热管组成。
这些传热管的一端与壳体连接,另一端则通过封头与进出口接管相连。
在操作时,一种流体(例如水或油)在管内流动,另一种流体(例如蒸汽或冷凝液)在壳侧流动,两种流体通过管壁进行热交换。
二、材料选择与优化管壳式换热器的材料选择对其性能和可靠性至关重要。
壳体通常采用碳钢、不锈钢和钛等材料,而管束则通常采用不锈钢、铜和钛等具有优良传热性能和抗腐蚀性的材料。
在某些特殊情况下,还可以考虑对关键部位进行表面处理,以提高抗腐蚀性和耐磨性。
三、传热原理与优化管壳式换热器的传热原理主要是通过对流传热和热传导的组合来实现的。
为了提高设备的传热效率,可以采用以下措施:1、改变折流板的形状和布置,以增加壳侧流体的湍流度。
2、选择具有高导热系数的材料,以提高管壁的热传导性能。
3、适当增加管束数量和布置密度,以增加传热面积。
四、应用特点与优势管壳式换热器在各种工业领域中得到了广泛应用,主要特点有:1、结构紧凑,占地面积小,易于布置。
2、材料选择广泛,适用于各种不同的工艺条件和腐蚀性介质。
3、传热效率高,能够实现两种流体的有效热交换。
4、制造工艺成熟,操作维护方便,使用寿命较长。
五、结论本文对管壳式换热器的结构设计进行了全面分析,包括材料选择、传热原理和应用特点等方面的内容。
通过合理的结构设计,可以显著提高管壳式换热器的传热效率和可靠性,使其在各种工业领域中发挥更加重要的作用。
随着技术的不断进步,管壳式换热器的设计和制造水平也将不断提升,为工业生产带来更大的价值。
六、展望随着工业生产的不断发展和能源紧缺的压力日益增大,管壳式换热器的应用前景更加广阔。
管壳式换热器设计和选型

管壳式换热器设计和选型首先,管壳式换热器的设计需要根据具体的换热要求来确定,主要包括换热量、换热介质、流体流量和温度等参数。
根据设计要求,可以确定壳程和管程的尺寸、管道布置、换热面积等参数。
在设计过程中,需要考虑以下几个方面:1.热力计算:根据热源和热负荷的温度和流量要求,进行热力计算,确定所需的换热面积。
2.材料选择:根据工作介质的性质和工作条件,选择合适的材料,如不锈钢、铜合金等,以确保换热器的耐腐蚀性和耐高温性。
3.管道布置:根据介质的流态和流速等因素,确定管道的布置方式,如串流、并流、交叉流等,以实现最佳的换热效果。
4.换热面积:根据设计要求和换热性能,确定所需的换热面积,以满足换热要求。
5.清洗和维护:在设计过程中,要考虑到换热器的清洗和维护,选择合适的结构和材料,以方便换热器的维护和清洗。
在选型过程中,需要考虑以下几个因素:1.流体性质:选型时需要考虑流体的性质,包括流体的物理性质、压力和温度范围、粘度等。
不同的流体对换热器的要求不同,需要选择适合的换热器类型和材料。
2.温度和压力:根据工作条件确定换热器的温度和压力范围,选择符合要求的换热器。
3.环境限制:考虑到环境因素,如空间限制、气候条件等,选择适合的换热器尺寸和类型。
4.经济效益:综合考虑设备造价、运行费用、维护保养成本等因素,选择经济、高效的换热器。
5.供应商选择:选择有经验和信誉良好的供应商,确保提供优质的产品和服务。
总之,管壳式换热器的设计和选型需要根据具体的应用要求和工艺条件来确定,需要综合考虑热力计算、材料选择、管道布置、换热面积、清洗和维护等因素,并在选型过程中考虑流体性质、温度和压力、环境限制、经济效益和供应商选择等因素,以确保设计符合要求,选型合理可靠,并能够实现高效换热。
管壳式换热器的设计及计算

管壳式换热器的设计及计算管壳式换热器是常见的一种热交换设备,用于在流体之间进行热量传递。
它由一个外壳和多个热交换管组成。
在设计和计算管壳式换热器时,需要考虑以下几个方面:选择换热器类型、确定换热器尺寸、确定流体特性、计算热量传递量和压降等。
下面将详细介绍管壳式换热器的设计及计算过程。
首先,选择适合的换热器类型。
根据具体的应用和流体特性,可以选择不同类型的管壳式换热器,如定压式、定温式、冷凝器和蒸发器等。
每种类型的换热器都有特定的性能和适用范围,需根据实际需求确定。
接下来,确定换热器的尺寸。
首先要确定传热面积,这取决于所需的传热量和两种流体间的温度差。
一般来说,换热器的传热面积越大,传热效果越好。
然后确定换热器的外壳直径和长度,这取决于流体的流速、流量和压降要求。
根据流体速度和流量计算出流道的横截面积,再确定壳程内的流道数量,最后通过换热器的设计公式计算出外壳直径和长度。
确定流体特性是设计换热器的关键一步。
需要收集并分析流体的物性数据,如温度、压力、流速、密度、热容等。
这些参数将用于计算热量传递量和压降。
此外,还需要考虑流体的腐蚀性、粘度和污染物含量等因素,在选择材料时要注意其耐腐蚀性能和抗堵塞能力。
计算热量传递量是设计换热器的核心任务。
可以使用传热计算公式,如奥兹逊公式、Nusselt数公式等,根据流体的特性参数计算出传热系数。
传热系数与换热器的结构、流体速度和物性参数有关。
通过计算热传导、对流和辐射等传热机制,可以得到热量传递量的准确数值。
最后,要计算管壳式换热器的压降。
压降是流体通过换热器时产生的能量损失。
为了保证流体的正常流动和换热效果,需要控制良好的压降。
可以通过实验或计算公式,如达西公式和克尔文公式,预测换热器内的压降情况。
根据流体的流速、流量和物性参数,计算出壳程和管程内的压降,并进行整体的能量平衡计算。
综上所述,管壳式换热器的设计和计算包括选择换热器类型、确定尺寸、确定流体特性、计算热量传递量和压降等步骤。
换热器的注意要点

换热器的注意要点一.影响管壳式换热器腐蚀的主要因素:管壳式换热器的材料一般以碳钢、不锈钢为主,其中碳钢材质的管板在作为冷却器使用时,其管板与列管的焊缝经常出现腐蚀泄漏,泄漏物进入冷却水系统污染环境又造成物料浪费。
1.介质成分和浓度:浓度的影响不一,例如在盐酸中,一般浓度越大腐蚀越严重。
碳钢和不锈钢在浓度为50%左右的硫酸中腐蚀最严重,而当浓度增加到60%以上时,腐蚀反而急剧下降;2.杂质:有害杂质包括氯离子、硫离子、氰离子、氨离子等,这些杂质在某些情况下会引起严重腐蚀。
3.温度:腐蚀是一种化学反应,温度每提升10℃,腐蚀速度约增加1~3倍,但也有例外;4.ph值:一般ph值越小,金属的腐蚀越大;5.流速:多数情况下流速越大,腐蚀也越大。
二.防腐保护:针对换热器的防腐问题,传统方法以补焊为主,但补焊易使管板内部产生内应力,难以消除,可能造成换热器管板焊缝再次渗漏。
现在好多采用高分子复合材料的方法进行保护。
其具有优异的粘着性能及抗温、抗化学腐蚀性能,在封闭的环境里可以安全使用而不会收缩,特别是良好的隔离双金属腐蚀和耐冲刷性能,从根本上杜绝了修复部位的腐蚀渗漏,为换热器提供一个长久的保护涂层。
石家庄博特环保133 **** ****是一家专业从事换热器的设计、生产、安装调试的技术公司。
三.换热器的安装要点:1.热交换器应以最大工作压力的1.5倍做水压试验,蒸汽部分应不低于蒸汽供汽压力加0.3MPa;热水部分应不低于0.4MPa。
在试验压力下,保持10min压力不降。
2.管壳式换热器前端应留有抽卸管束的空间,即其封头于墙壁或屋顶的距离不得小于换热器的长度,设备运行操作通道净宽不宜小0.8m。
3.各类阀门和仪表的安装高度应便于操作和观察。
4.加热器上部附件(一般指安全阀)的最高点至建筑结构最低点的垂直净距应满足安装检测的要求,并不得小于0.2m。
管壳式换热器设计总结

管壳式换热器设计总结管壳式换热器是一种常见的热交换设备,广泛应用于化工、石油、制药等行业。
其设计涉及到许多方面,包括换热原理、结构设计、材料选择等。
本文将从这些方面对管壳式换热器的设计进行总结和分析。
管壳式换热器的换热原理是通过管内流体与壳侧流体之间的热传导来实现热量的交换。
管内流体一般为待加热或待冷却的介质,而壳侧流体一般为冷却剂或加热介质。
通过这种方式,可以实现两种介质之间的热量转移,达到加热或冷却的目的。
管壳式换热器的结构设计是十分重要的。
它由管束、壳体、管板、管侧流体进出口以及壳侧流体进出口等部分组成。
管束是换热的核心部分,通过将多根管子固定在管板上,形成流体的通道。
而壳体则是管束的外部保护壳,起到支撑和密封的作用。
管侧流体通过管侧进出口进入管束内,与管内流体进行热量交换,然后再通过壳侧进出口流出。
这样的结构设计,既保证了换热效率,又方便了设备的安装和维护。
管壳式换热器的材料选择也是十分重要的一环。
由于在换热过程中,介质可能存在腐蚀、高温等问题,因此需要选择耐腐蚀、耐高温的材料。
常见的材料有不锈钢、钛合金等。
对于特殊的工况,还可以采用陶瓷、镍基合金等材料。
在管壳式换热器的设计过程中,还需要考虑一些其他因素。
首先是换热面积的确定,它与换热效果直接相关。
一般来说,换热面积越大,换热效果越好。
其次是流体的流速和流量,它们对换热器的换热效果和压力损失有着重要影响。
此外,还需要考虑到换热器的尺寸和重量,以及设备的安全性和可靠性等方面。
在实际应用中,还需要根据具体的工况和要求进行换热器的定制设计。
例如,在高温高压的条件下,需要采用密封性好、耐高温高压的结构和材料;在对流体的温度变化要求较高的情况下,需要采用多级换热器或增加管程等方式来提高换热效果。
管壳式换热器的设计需要考虑多个方面的因素,包括换热原理、结构设计、材料选择等。
合理的设计可以提高换热效率,降低能耗,满足工业生产的需求。
同时,还需要根据具体的工况和要求进行定制设计,以提高设备的安全性和可靠性。
管壳式换热器的设计及选型指导

管壳式换热器的设计及选型指导
首先,设计管壳式换热器时需要确定换热器的传热负荷。
传热负荷是
根据换热介质的热容、进出口温度差以及流量等参数计算得出的。
对于不
同的工况和换热介质,传热负荷不同,因此需要根据具体情况进行计算。
其次,设计时需要确定管道的结构形式。
常见的管壳式换热器结构形
式有单通道、多通道和多分流型。
单通道结构适用于流量较小的换热介质,多通道和多分流型适用于流量较大的换热介质。
在确定结构形式时,需要
考虑换热效果、流体流动状态以及材料成本等因素。
然后,设计时需要选择合适的材料和密封方式。
管壳式换热器常用的
材料有碳钢、不锈钢、铜合金等。
材料的选择需要考虑介质的特性,如酸
碱性、腐蚀性等。
密封方式有悬挂式、焊接式、密封垫等,需要根据具体
工况选择合适的密封方式。
最后,进行选型时需要综合考虑换热器的性能和经济性。
性能指的是
换热器的传热效率、耐压能力、防腐性等。
经济性则包括材料成本、维护
费用等因素。
在选型时,需要根据实际情况进行权衡,选择最合适的换热器。
总之,管壳式换热器的设计和选型需要考虑传热负荷、结构形式、材
料选择、密封方式以及性能和经济性等因素。
通过合理的设计和选型,可
以使换热器的性能得到最大发挥。
同时,还需要注意换热器的安装、调试
和维护等工作,以确保其安全、可靠地运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管壳式换热器的设计要点换热器的设计过程包括计算换热面积和选型两个方面。
有关换热器的选型问题,前面已经讲过了,下面主要介绍管壳式换热器的设计要点及如何分析计算结果、调整计算,而设计出满足工艺需要的、传热效率高的换热器。
11.1设计计算的基本模型及换热器的性能参数换热器的性能主要是通过下列公式来描述的。
a.冷、热两流体间热量平衡Qreq=(WCpΔT)hot=(WCpΔT)coldW--流体质量流量Cp--流体的比热hot--热流体cold--冷流体ΔT--进出口温度差b.传热率方程Qact=(A)(ΔTm)(1/ΣR)ΣR=(1/hi)o+(1/ho)o+(Rf)o+(Rw)oΣR--总热阻A--传热面hi、ho--分别为两流体的传热膜系数Rf--两流体的污垢热阻Rw--金属壁面热阻ΔTm--平均温度差O--通常换热计算以换热管外表面为基准c. 传热率的估算Qact≥Qreqd. 对压力降的限制条件(ΔPi)act≤(ΔPi)allow(ΔPo)act≤(ΔPo)allowΔP--压力降下标i表示管内下标o表示管外11.2 换热器的计算类型换热器的计算类型常分为设计计算和校核计算两大类。
换热器计算一般需要三大类数据:结构数据、工艺数据和物性数据,其中结构数据的选择在换热器中最为重要。
在管壳式换热器的设计中包含有一系列的选择问题,如壳体型式、管程数、管子类型、管长、管子排列、折流板型式、冷热流体流动通道方式等方面的选择。
工艺数据包括冷、热流体的流量、进出口温度、进口压力、允许压降及污垢系数等。
物性数据包括冷、热流体在进出口温度下的密度、比热容、粘度、导热系数、表面张力。
a.设计计算 Design设计计算就是通过给定的工艺条件,来确定一台未知换热器的结构参数,并使其结构最优、尺寸最小。
对设计计算应先确定下列基本的几何参数:--管长--管间距--流向角--换热管外径及管壁厚b.校核计算 Rating校核计算就是评估一台已知换热器的传热性能,即通过校核设备的几何尺寸来看其是否能满足传热要求。
校核计算应已知下列基本的几何参数:--管程数--壳内径/管数--折流板间距/折流板数--管长/管间距--流向角--管内径/管壁厚11.2.1设计元素的选取设计计算时应考虑下列的几个基本设计元素:--壳体型式:TEMAE,F,G,J,K,X。
--壳内径:通常最大为2米。
--换热管几何尺寸:光管、翅片管管径(19mm,25.4mm等)管长系列(3m,5m,6m,7.2m等)--管子排列角:30°,60°,45°,90°--管间距:1.25 ~ 1.50倍的管子外径--折流板型式:单圆缺、双圆缺、管窗内不排管及为防止管子振动而加的支承板。
11.3 最终计算结果的分析目前,换热器计算常用的计算软件为美国的HTRI和英国的HTFS,这两大软件均为在国际上享有盛誉的传热设备专用计算软件。
当设计计算结束后,如何根据实际的工况,来判断计算结果是否满足要求,出现问题后如何解决,这对设计者来说都是很重要的,在评价最终设计计算时应考虑并校核以下各项。
11.3.1 总体设计尺寸细长型的换热器比短粗型要经济,通常情况下管长和壳径之比为5 ~ 10,但有时根据实际需要,长、径之比可增到15或20,但不常见。
对立式热虹吸再沸器,要控制其长、径比在3 ~ 10之内。
11.3.2 热阻大小首先根据流体的物系及实际经验来推断一下传热系数值是否合理,应特别注意管内雷诺数的大小。
在层流流动(管侧Re<2000,壳侧Re<300)和过渡区流动中,应使用分段计算的方式(HTFS程序无此功能),以确保传热系数值计算的正确。
在评估计算结果的同时,应考虑程序计算的精确度。
如果热阻在管侧和壳侧分布平衡,则该设计是好的,如果一侧热阻值过大,应该分析原因,分析管、壳侧冷、热流体的分布是否合理,如果是由于某一侧污垢系数过大而引起的,则可不必进一步修改原设计。
11.3.3 设计余量换热器设计计算时设计余量值的大小取决于计算精度、实际经验及对现场的操作控制等。
例如:对冷却水换热器,当水流速大于1.5m/s时,没必要给出过大的设计余量,过大的余量反而会造成水流速的降低。
但对层流和过渡区流动,由于计算精度不好,故需要给出较大的设计余量,通常需要在考虑了传热阻力值的大小和程序的计算精度后决定。
对再沸腾器,过大的设计余量反而是无益的,特别是在设备运转初期,会发生如控制困难等操作问题。
另外,有些设计计算,为了满足允许压降值的限制,可能会造成设计余量较大,此时应根据实际经验来判定计算结果是否正确或对允许压降值的大小作适当的调整。
11.3.4 压降的利用和分布允许压降必须尽可能加以利用,如果计算压降和允许压降有实质差别,则必须尝试改变设计参数。
在校核了计算所得压降值是否小于允许值之后,应对压降的分布作进一步的校核,这其中包括有进、出口接管处压降、错流和管窗流的压降,压力降必须大部分分布在换热率高的地方,如横掠管束的错流流动处;如果在接管或管窗处的压降占总压降的比例较大,应考虑增大接管尺寸及折流板间距。
一般对进、出口接管的压降希望控制在总压降的3 0%左右。
特别对有轴向接管的换热器,接管部分的压降最好控制在总压降的30%以下,否则会造成管子进口处的偏流。
为防止物流对壳程入口处的管子进行冲击,引起振动和腐蚀,一般均在换热器壳程进口处设置防冲板或分布器,在计算压降时要有所考虑。
另一个必须记住的事实是,允许压降是人为给定的,所以,如果在设计中允许压降得到了充分利用,而增加一点压降会增加很大的经济性,则应再行设计并考虑增加允许压降的可能性。
11.3.5 流速需校核管子进出口处、壳侧进口处和接管内的流速。
一般来说流体流速在允许压降范围内应尽量选高一些,以便获得较大的换热系数和较小污垢沉积,但流速过大会造成腐蚀并发生管子振动,而流速过小则管内易结垢。
对冷却水系统,设计计算时可参考下表中推荐的值(碳钢管)。
最小流速最大流速推荐值管侧 1.0 m/s 3.0 m/s 大于 1.5m/s壳侧 0.5 m/s 1.5 m/s 0.7 1.0m/s如果冷却水的流速低于上表中的最小流速,最好征得工艺工程师的同意增大允许压降或变化冷却水的流率。
对冷却水以外的单相和两相流用ρv2值判断。
对壳侧进口流速,按TEMA规定ρv2值不能超过5950 Kg/MS2(碳钢管)。
对管窗内不排管换热器,管窗流速应为错流速度的2 ~ 2.5倍,气体和蒸汽的流速可在8 ~ 30m/s之间。
11.3.6 壳侧流路分析HTRI程序在计算结果中对壳侧各流路给出了较详细的分析,可以参考下表中给 A,B,C, E,F流的推荐值。
流路A--折流板管孔和管子之间的泄漏流路;流路B--错流流路;流路C--管束外围和壳内壁之间的旁流流路;流路E--折流板和壳内壁之间的泄漏流路;流路F--管程分程隔板处的中间穿流流路。
流路名称Flow FractionB错流>0.6(湍流,Re>300)>0.4(层流,Re>300)B流路对传热有利,其值应尽量大。
C F 旁流0.1C,F值最好不超过 0.1,为满足这一条件,可使用密封装置。
对浮头式或小壳径壳体的换热器,如果C值较大,应使用密封装置。
对U型管或管程数较多的换热器,通常F值会较大,应考虑在管程分程隔板处使用密封装置(如密封垫或密封杆)或改变管子排列方式和折流板圆缺位置。
A泄漏流0.15应尽量减少泄漏,但当污垢系数超过0.0008m2h°C/kcal时,由于污垢可能会将管子和折流板管孔之间的间隙堵塞,因此,A值较大也无妨,但此时对壳侧压力损失应留有余量,最好计算一下。
一但间隙被堵塞,壳侧压降为多大。
E泄漏流0.05E值会造成温度剖面的变形,如果E值大于0.15,可使用双圆缺折流板。
最大限度地加大B-stream(错流),减少泄漏流,而事实上漏流不可能也不必要被全部阻止,因为安装换热器时总需要有间隙。
11.3.7对折流板的设计分析单圆缺和双圆缺折流板为管壳式换热器中常用的折流板型式,换热器中折流板的布置对设计计算有很大影响,一般从下面几各方面来检查原设计是否合理。
a.从流体流动、传热和污垢系数等方面考虑,最好将折流板的圆缺高度控制在壳体直径的20 ~ 30%,而板间距则控制在壳体直径30 ~ 50%之间,并不应小于50mm。
b.避免大圆缺小间距或小圆缺大间距的设计。
应优化选取折流板圆缺的大小和板间距大小,通常β值(折流板圆缺修正系数)最好在0.9 ~ 0.92之间。
c.除了管窗内不排管以外,流体的错流速度和在管窗内的流动速度不应相差太大,流体在 X-flow 和 Window 内的速度大并且越接近越好。
d.如果壳侧压降受到允许压降的限制,考虑使用双圆缺折流板,若还是不行,考虑变化壳体型式,选用TEMA的J、G、H、X型壳体。
11.3.8 有效平均温差在HTRI程序中是这样描述有效平均温差的:EffectiveMTD=(LMTD)(F)(DELTA)其中:LMTD为对数平均温差F=(TUBE)(BAFFLES)(F/G)(HOT/COLD)TUBE:即Ft,是对管侧多管程流动的修正系数。
通常设计计算时应保证Ft大于0.8。
当Ft小于0.8时,换热器的经济效益是不合理的,此时应另选其它流动型式,以提高 Ft值。
如:增加管程数或壳程数,或着用几台换热器串联,必要时亦可调整温度条件。
但在特殊情况下,如温度有0.5 ~ 1.0°C交叉时,Ft=0.75,也能接受。
BAFFLE:即折流板数修正系数。
当折流板数较少时,壳侧流体的混合流动性能较低,故需进行修正。
通常此值等于1.0。
DELTA: 温度变形系数。
这个系数是用来计算E流对温度差的影响大小的。
设计计算时希望δA>0.8,若δA<0.8,应考虑采用E流路小的折流板型式,也可增加换热器的串联数。
HOT/COLD:是对由于物性参数变化而造成的总传热系数变化的修正,通常为0.98~1.0。
F/G:在TEMAF型壳体和G型壳体中,有一纵向横隔板,F/G就是对通过此板的热量泄漏的修正。
如果F/G<0.95,考虑使用保温板或增加壳程串联数。
11.3.9 总传热系数首先从流体的相态、物性和以往经验上来分析计算结果是否合理。
另外,污垢系数的选取对传热系数也有很大的影响,对计算结果应综合分析,并结合实际经验来评定。
11.3.10 管子振动换热管的管束属于弹性体,被流过的流体扰动,离开其平衡位置,管子产生振动。
在壳侧,拉杆和隔板也有振动的倾向,但这些部件的刚性比管子大,所以不容易被激起振动。
设计计算结束后为保证换热器的稳定操作,应校核计算结果中的有关管振动各项数值,如:临界流动速度(criticalvelocity)、涡流脱落(vortexshedding)、湍流抖振(turbulentbuf feting)、声音共振(acousticresonance)和振幅等。