管壳式换热器设计说明书
U型管换热器设计说明书2

目录U型管换热器的特点 (1)结构设计 (2)1 管箱设计 (2)2 封头设计 (4)3 管板设计 (4)4 拉杆和定距管的确定 (6)5旁路挡板设计 (8)6 容器法兰的设计 (8)7 选取支座 (8)强度校核 (9)8 管箱筒体计算 (9)1计算条件: (9)2厚度及重量计算 (9)3压力试验时应力校核 (10)4压力及应力计算 (10)9壳程圆筒计算 (10)1计算条件 (10)2厚度及重量计算 (11)3压力实验时应力校核 (11)4压力及应力计算 (11)10开孔补强计算 (12)1计算条件 (12)2开孔补强计算 (13)3设计条件 (13)4开孔补强计算 (1414)5固定管板计算 (14)结束语 (15)参考文献 (16)U型管换热器的特点U型管换热器仅有一个管板,管子两端均固定在同一管板上,这一换热器的优点是:管束可以自由伸缩,不会因为管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
缺点:管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分部管不紧凑,所以管字数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分必须用壁较厚的管子。
这就影响了其适用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质不易结垢,高温、高压、腐蚀性强的场合。
本次课程设计的内容是U型管换热器,属管壳式(列管式)换热器,其设计分析包括热力设计、流动设计、结构设计以及强度设计。
其中以结构设计最为重要,U型管式换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。
其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。
对于列管式换热器,一般要根据换热流体的腐蚀性及其它特性来选择结构与材料,根据材料的加工性能,流体的压力和温度。
管壳式换热器工艺设计说明书

管壳式换热器工艺设计说明书1.设计方案简介1.1工艺流程概述由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,甲苯走壳程。
如图1,苯经泵抽上来,经管道从接管A进入换热器壳程;冷却水则由泵抽上来经管道从接管C进入换热器管程。
两物质在换热器中进行交换,苯从80℃被冷却至55℃之后,由接管B流出;循环冷却水则从30℃升至50℃,由接管D流出。
图1 工艺流程草图1.2选择列管式换热器的类型列管式换热器,又称管壳式换热器,是目前化工生产中应用最广泛的传热设备。
其主要优点是:单位体积所具有的传热面积大以及窜热效果较好;此外,结构简单,制造的材料范围广,操作弹性也较大等。
因此在高温、高压和大型装置上多采用列壳式换热器。
如下图所示。
1.2.1列管式换热器的分类根据列管式换热器结构特点的不同,主要分为以下几种:⑴固定管板式换热器固定管板式换热器,结构比较简单,造价较低。
两管板由管子互相支承,因而在各种列管式换热器中,其管板最薄。
其缺点是管外清洗困难,管壳间有温差应力存在,当两种介质温差较大时,必须设置膨胀节。
固定管板式换热器适用于壳程介质清洁,不易结垢,管程需清洗及温差不大或温差虽大但壳程压力不高的场合。
固定板式换热器⑵浮头式换热器浮头式换热器,一端管板式固定的,另一端管板可在壳体内移动,因而管、壳间不产生温差应力。
管束可以抽出,便于清洗。
但这类换热器结构较复杂,金属耗量较大;浮头处发生内漏时不便检查;管束与壳体间隙较大,影响传热。
浮头式换热器适用于管、壳温差较大及介质易结垢的场合。
⑶填料函式换热器填料函式换热器,管束一端可以自由膨胀,造价也比浮头式换热器低,检修、清洗容易,填函处泄漏能及时发现。
但壳程内介质有外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。
⑷U形管式换热器U形管式换热器,只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。
其缺点是管内不便清洗,管板上布管少,结垢不紧凑,管外介质易短路,影响传热效果,内层管子损坏后不易更换。
化工原理课程设计管壳式换热器的设计

西北大学化工学院列管式换热器的工艺设计说明书题目: 列管式换热器的工艺设计和选用课程名称: 化工原理课程设计专业: 化学工程与工艺班级: 09级学生姓名: 李哲学号: 2009115057指导教师: 吴峰设计起止时间:2012 年1月1日至2012 年 1月13日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用循环水将煤油油从230℃冷却到120℃。
柴油流量位28700kg/h;循环水初温为22℃,经换热后升温到46℃。
换热器的热损失可忽略。
管、壳程阻力压降不大于100kPa。
试设计能完成上述任务的列管式换换热器。
二、设计说明书的内容1、设计题目及原始数据;2、目录;3、设计方案的确定;4、工艺计算及主体设备设计;5、辅助设备的计算及选型;(主要设备尺寸、衡算结果等);6、设计结果概要或设计结果汇总表;7、参考资料、参考文献;目录一.设计任务及设计条件 (3)二.设计方案 (3)1.换热器类型选择 (3)2.流程选择 (3)3.流向选择 (3)三.确定物性数据 (3)四.估算传热面积 (3)五.工艺结构尺寸计算 (3)1.管径及管内流速选择 (3)2.传热管数和传热管程数 (4)3.平均传热温差校正及壳程数 (5)4.传热管排列和分程方法 (5)5.壳体内径 (5)6.折流板 (5)7.其他主要附件 (6)8.接管 (6)9.壁厚的确定、封头 (7)六.换热器核算 (7)(一).热流量核算 (7)1.壳程表面传热系数核算 (8)2.管程表面传热系数核算 (8)3.污垢热阻 (9)4.传热面裕度 (9)(二)传热管壁温及壳体壁温计算 (9)(三)阻力计算 (10)1.管程流体阻力计算 (10)2.壳程流体阻力计算 (10)七.换热器主要计算结果汇表 (11)八.主要符号说明 (11)九.换热器主要结构尺寸图和管子布置图 (12)十.参考文献 (15)一.设计任务及设计条件:用循环冷却水将流量为28700Kg/h 的煤油从230℃降至120℃,冷却水为清净河水,进口温度22℃,选定冷却水出口温度46℃,设计一台列管换热器完成冷却任务。
管壳式换热器毕业设计简介

管壳式换热器(过热蒸汽0.65MPa,295℃;水0.8MPa,50℃)摘要本设计说明书是关于固定管板是换热器的设计,设计依照GB151-1999《钢制管壳式换热器》进行,设计中对换热器进行化工计算、结构设计、强度计算。
设计第一步是对换热器进行化工计算,主要根据给定的设计条件估算换热面积,初定换热器尺寸,然后核算传热系数,计算实际换热面积,最后进行阻力损失计算。
设计第二步是对换热器进行结构设计,主要是根据第一步计算的结果对换热器的各零部件进行设计,包括管箱、定距管、折流板等。
设计第三步是对换热器进行强度计算,并用软件SW6进行校核。
最后,设计结果通过图表现出来。
关键词:换热器,固定管板,化工计算,结构设计,强度计算。
AbtractThe design statement is about the fixed tube sheet heat exchanger .In the design of the heat exchanger ,the chemical calculation,the structure design and the strength calculation must according to GB151-1999“Steel System Type Heat exchanger ”.The first step of the design is the chemical calculation .Mainly according to the given design conditions to estimate the heat exchanger area and select heat exchanger size.Then check the heat transfer coefficient, calculate the actual heat transfer area,and finally calculate the resistance loss.The second step of the design of heat exchanger is the structural design of the heat exchanger. The design of heat exchanger parts mainly according to the first step of calculation.such as tube boxes , the distance control tube, baffled plates .The third step of the design of heat exchanger is the strength calculation and using SW6 software to check. Finally, the design results are shown in figures.Key words: heat changer, fixed tude plate, chemical calculation,structure design, strength calculation.一、前言管壳式换热器是目前应用最广的换热设备,它具有结构坚固、可靠性高、适用性强、选材广泛等优点。
换热器设计说明书模板

换热器课程设计说明书专业名称:核工程与核技术姓名:***班级:***学号:***指导教师:***哈尔滨工程大学核科学与技术学院2017 年 1 月 13 日目录1 设计题目……………………………………………………………………………1.1 设计题目………………………………………………………………………1.2 团队成员………………………………………………………………………1.3 设计题目的确定过程…………………………………………………………2 设计过程……………………………………………………………………………3 热力计算……………………………………………………………………………4 水力计算……………………………………………………………………………5 分析与总结…………………………………………………………………………5.1 可行性评价和方案优选………………………………………………………5.2 技术分析………………………………………………………………………5.3 总结与体会……………………………………………………………………参考文献………………………………………………………………………………附录计算程序………………………………………………………………………1.1、设计题目设计一台管壳式换热器,把 18000 kg/h 的热水由温度 t 1 ’冷却至 t 1 ”,冷却水入口温度 t 2 ’,出口温度 t 2 ”,设热水和冷却水的运行压力均为低压。
初始参数:热水的运行压力:0.2MPa (绝对压力)冷却水运行压力:0.16MPa(绝对压力)热水入口温度 t 1 ’: 80℃;热水出口温度 t 1 ”: 50℃;冷却水入口温度 t 2 ’: 20℃;冷却水出口温度 t 2 ”: 45℃;1.3设计题目的确定过程首先,我们小组集中讨论了本次课程设计内容,即换热器设计的内容和具体细节上的要求,然后在组内达成了共识——求同存异。
u型管换热器设计说明书(1)

圆整为 24mm
(4).管板直径
根据容器法兰相关参数需要,取管板直径 D=473mm
考虑到金属的热膨胀尺寸,可由微小负偏差,但不允许有正偏
差。
(5).管板连接设计
由之前热力计算部分以确定布管方式选用正方形排布,布管限定
t 189 MPa
焊接接头系数取 0.85
8
0.5 400
0.623mm
2 189 0.85 0.5 0.5
又封头厚度因与筒体厚度相同以减少焊接所产生的应力,最终取封
头厚度为 8mm
2. 管箱短节设计:
管箱深
(1)管箱短节厚度设计:
度 300mm
管箱短节厚度与筒体厚度相同, 8mm
11
由 NB/T47020—47027-2012 查得长颈对焊法兰如下图所示: 其中:
D=565m m
L=26mm 螺栓 M24 C=26mm
(2)由上述数据可得 (3)预紧状态下的法兰力矩按下式计算:
12
(4)由机械设计手册查得 M20 的小径为 由此可得实际使用的螺栓总面积
(5)操作状态的法兰力矩计算: 作用于法兰内径截面上内压引起的轴向力 由下式计算:
,允许正偏差为,负偏差为 0,
即管孔为
(4) 折流板的固定
拉杆直
折流板的固定一般采用拉杆与定距管等原件与管板固定,其固 径
定形式由一下几种:
12mm
a. 采用全焊接法,拉杆一段插入管板并与管板固定,
拉杆长
每块折流板与拉杆焊接固定。
度
b. 拉杆一段用螺纹拧入管板,每块折流板之间用定距
8000mm
管壳式换热器传热计算示例终 用于合并

Pa;
取导流板阻力系数:
;
导流板压降:
壳程结垢修正系数: 壳程压降:
Pa ;(表 3-12)
管程允许压降:[△P2]=35000 Pa;(见表 3-10) 壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2] △P1<[△P1] 即压降符合要求。
Pa;
(2)结构设计(以下数据根据 BG150-2011)
m2; 选用φ25×2、5 无缝钢管作换热管; 管子外径 d0=0、025 m; 管子内径 di=0、025-2×0、0025=0、02 m; 管子长度取为 l=3 m; 管子总数:
管程流通截面积:
取 720 根 m2
管程流速: 管程雷诺数: 管程传热系数:(式 3-33c)
m/s 湍流
6)结构初步设计: 布管方式见图所示: 管间距 s=0、032m(按 GB151,取 1、25d0); 管束中心排管的管数按 4、3、1、1 所给的公式确定:
结构设计的任务就是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸, 选定材料并进行强度校核。最后绘成图纸,现简要综述如下:
1) 换热器流程设计 采用壳方单程,管方两程的 1-4 型换热器。由于换热器尺寸不太大,可以用一台,未考虑 采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点就是布管紧密。 2)管子与传热面积 采用 25×2、5 的无缝钢管,材质 20 号钢,长 3m,管长与管径都就是换热器的标准管子 尺寸。 管子总数为 352 根,其传热面积为:
3)传热量与水热流量
取定换热器热效率为η=0、98; 设计传热量:
过冷却水流量:
; 4)有效平均温差 逆流平均温差:
根据式(3-20)计算参数 p、R: 参数 P:
U型管换热器设计说明书

形式如下图:
(2)管板计算 按照 GB151——1999 管壳式换热器中 a 型连接方式管板的计算步骤进行下
列计算。 a)根据布管尺寸计算
在布管区围,因设置隔板槽和拉杆结构的需要,而未能被换 热管支撑的面积, 对于正方形排布
煤油在管中的流速为 0.8~1,取管程流体流速
常用换热管为
与
选用外径
管程流体体积流量可由煤油的要求流量的出:
n=20 N=4
换热管。
L=8m
取管数 由换热面积确定管程数和管长: 由于是 U 型管换热器,由 GB151-1999 管壳式换热器查得有 2,4 两种管程可 选。 初选管程为 4
考虑到常用管为 9m 管,为生产加工方便,选用单程管长 8m 又考虑到单程管长 8m 会使得换热器较长,在选取换热器壳体径时,尽量选取 较大的,以保证安全,因此换热器部空间较大,故选用较为宽松的正方形排 布。 换热管材料 由于管程压力大于 0.6MPa,不允许使用焊接钢管,故选择无缝冷拔钢管。
折流板间 距 200mm
计算压力
圆筒径由选定的圆筒公称直径得 设计温度下的圆筒材料的许用应力由选定的材料 Q345R 从 GB150.2 中查得
焊接接头系数
由于壳程流体为水,不会产生较严重的腐蚀,选取腐蚀 yu 量 又由于 Q345R 在公称直径为 400mm 是可选取得最小厚度为 8mm,则选择圆 筒厚度为 8mm 折流板间距: 折流板间距一般不小于圆筒径的五分之一且不小于 50mm;因此取折流板间 距为 200mm 核算传热系数: 由 GB151—1999 管壳式换热器得到包括污垢在的,以换热管外表面积为基准 的总传热系数 K 的计算公式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.设计题目及设计参数 (1)1.1设计题目:满液式蒸发器 (1)1.2设计参数: (1)2设计计算 (1)2.1热力计算 (1)2.1.1制冷剂的流量 (1)2.1.2冷媒水流量 (1)2.2传热计算 (2)2.2.1选管 (2)2.2.2污垢热阻确定 (2)2.2.3管内换热系数的计算 (2)2.2.4管外换热系数的计算 (3)2.2.5传热系数K计算 (3)2.2.6传热面积和管长确定 (4)2.3流动阻力计算 (4)3.结构计算 (5)3.1换热管布置设计 (5)3.2壳体设计计算 (5)3.3校验换热管管与管板结构合理性 (5)3.4零部件结构尺寸设计 (6)3.4.1管板尺寸设计 (6)3.4.2端盖 (6)3.4.3分程隔板 (7)3.4.4支座 (7)3.4.5支撑板与拉杆 (7)3.4.6垫片的选取 (7)3.4.7螺栓 (8)3.4.8连接管 (9)4.换热器总体结构讨论分析 (10)5.设计心得体会 (10)6.参考文献 (10)1.设计题目及设计参数1.1设计题目:105KW 满液式蒸发器 1.2设计参数:蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22;蒸发温度:t 0=2℃,t k =40℃,冷却水的进出口温度: 进口1t '=12℃; 出口1t "=7℃。
2设计计算 2.1热力计算 2.1.1制冷剂的流量根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg ,P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kgm04427.0v 31=,kgmv 3400078.0=图2-1 R22的lgP-h 图制冷剂流量skg skg h h Q q m 667.0250405105410=-=-=2.1.2冷媒水流量水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3,c p =4.192KJ/(Kg ·K)smsmt Q P 333'210vs 10011.5)710(192.471.999105)t (c q -⨯=-⨯⨯=-=‘ρ2.2传热计算 2.2.1选管为提高冷媒侧的对流换热系数,采用外螺纹管,根据资料【3】p71换热管用低翅片管序号3,规格φ16×1.5,如图所示:mm 25.1s f = mm 86.15d t = mm 5.1h = mm 11d i = mm 86.12d b =,每米管长管外表面积mm15.0a 2of =,螺纹管增强系数35.1=ϕ,铜管导热系数)·m (39802C W=λ图2-2 外螺纹管结构图 2.2.2污垢热阻确定冷媒水平均温度C t o s 5.9=,制冷剂C t o 20=,水的流速取s m s m u 15.1>=,根据资料【1】p198表9-1,管内污垢系数W C o2i m 000045.0=γ 管外污垢系数W C o2o m 00009.0=γ2.2.3管内换热系数的计算冷媒水的定性温度C t o s 5.9=,查物性表得:371.999mkg=ρ,7275.9=r p ,s m10330.126-⨯=υ ,)m (10285.572K W ⋅⨯=-λ,暂取水的流速smu 7.1=,管程设计为2程,每流程管子数317.11114.350114d q 422vs=⨯⨯⨯==uZ iπ,当Z=31时,冷媒水的实际流速为smsmzd q u ivs702.1311114.310011.544232=⨯⨯⨯⨯==π,1407710330.11011702.1Re 63=⨯⨯⨯==--υiud根据资料【2】6-15,828.947275.914077023.0r e 023.0u 3.08.03.08.0=⨯⨯==P R N ,)·m (4938)·(101110285.57828.94d ·o2o232iC WC m WNu a i =⨯⨯⨯==--λ2.2.4管外换热系数的计算平均传热对数温差:C C t t t t t Oo m 213.7510ln 510'"ln'"=-=∆∆∆-∆=∆管外换热系数45.0082.0002.3P θα=,其中20000-=-=w w t t t θ2.2.5传热系数0K 计算传热过程分成两部分:第一部分是热量经过制冷剂的传热过程,其传热温差为0θ;第二部分是热量经过管外污垢层、关闭、管内污垢层以及冷媒水的传热过程。
第一部分热流密度82.145.0082.100)2(88.10612.3-⨯===w t P q θαθ第二部分热流密度2100118.05.900009.003746.015.03980015.003454.015.0)000045.049381(5.9)1(m Wt t F F F F t q w woofiof iof ii-=+⨯+⨯+-=+++∆=γλδγα用试算法估算w t 的值,确定热流密度 表2-1由此取C t w o 207.4=,2m 465.4485q W=,Km Wt q K m·86.6120=∆=2.2.6传热面积和管长确定传热面积22300m 41.23m465.448510105q=⨯==Q F管子有效长度m52.231215.041.23l =⨯⨯=,取管长2.6m2.3流动阻力计算根据资料【1】p232(9-71),对于水,沿程阻力系数0305.0e3164.025.0==R ξ,冷媒水的总流动阻力:PaPa Pa PaN d l NP i42210527393)]12(5.1011.06.220305.0[702.171.99921)]1(5.1[u 21⨯<=+⨯+⨯⨯⨯⨯⨯=++=∆ξρ符合资料【4】p69表2.10允许压降,设计合理。
3.结构计算3.1换热管布置设计选用1-2型结构,Z=31,采用等边三角形与正方形的组合排列方式,查资料【4】p46表 2.3,换热管中心距s=22mm ,分程隔板槽两侧相邻管中心距mm 35l =E ,换热管在管板上的分布如图图3-1 管板布管图由图3-1可知,最外层换热管中心所在圆直径mm 87.230=φ 3.2壳体设计计算由上面计算得mm 87.230=φ,实际可取mm D 2730=,根据资料【6】p116表6-4,壳体壁厚选用经济型mm 6=δ,所以壳体内径mmmm S D D i 261)12273(20=-=-=3.3校验换热管管与管板结构合理性热交换器管束外缘直径受壳体内径的限制,在设计时要将管束外缘置于布管限定圆内,对于满液式蒸发器,根据资料【1】p205“最外部孔的边缘与外壳内表面的距离不赢小于5mm ”,布管限定圆直径mm 25110261=-=mm D L )(对于上述换热管布置设计由几何关系得出管束外缘直径mm mm D L 25187.246'<=,符合要求。
换热管长度与壳体直径之比1052.92732600<==D l c ,选用两个流程是合理的。
3.4零部件结构尺寸设计零部件结构尺寸设计包括:管板、端盖、分程隔板、支撑板、拉杆、连接管、支座、垫片和螺栓。
3.4.1管板尺寸设计管板选用直接焊于外壳上并延伸到壳体周围之外兼作法兰,管板与传热管的连接方式采用胀接法。
图3-2管板法兰 图3-3管板与圆筒的连接根据资料【3】表3-8管板最小厚度不小于13mm ,根据资料【6】P111表(6-6),查得与管子连接方式有关的系数1f =1.15,与管板兼做法兰有关的系数2f =1.30,由经验公式(6-4)得管板厚度:t=1f · 2f ·(17+0.0083i D )=1.15×1.30×(17+0.0083×261)=28.7mm,实际 可取t=30 mm. 取法兰外径:D=0D +(S+e S )×2=273+(24+18)×2=357mm 法兰厚度:f δ=30-5-3=22mm,螺栓所在圆的直径:a D =0D +S ×2=273+24×2=321mm, 周长:a C =D π∙=321×3.14=1007.94mm 。
3.4.2端盖根据资料【6】p113选端盖厚度6mm ,3.4.3分程隔板按资料【6】p20表6,分程隔板厚度选mmδ,分程隔板槽深4mm=8图3-4 分层隔板槽3.4.4支座根据资料【3】p75表3-9。
确定支座尺寸L=240mm,K=160mm.3.4.5支撑板与拉杆根据资料【4】P51,换热管外径14〈d〈25,所以拉杆直径取d=12mm,数量n取4根。
由前面选管长l=2.6m,根据表2.6可知,可取支撑板厚度为10mm,直接焊在拉杆上固定。
根据表2.5,本设计取支持板数量为2.图3-5 拉杆3.4.6垫片的选取材料:石棉,具有适当加固物(石棉橡胶板);厚度为1.5mm p=0.4MPa;参数为:垫片系数m=2.75,比压力y=25.5MPa.宽度:根据资料【4】P47,本设计筒体内径i D =261mm 〈700 mm 时,可选1013N ≤<,故可取垫片宽度N=12mm,垫片基本密封宽度066.42N b m m m m ==<,垫片的有效密封宽度06b b m m ==,06 6.42N b m m m m==<,所以垫片压紧力作用中心圆直径即为垫片接触面的平均直径,即G D =273+1×2+6×2=287mm. 预紧状态所需的最小压紧力:GF =3.14G D b y ∙∙ =3.14×287×6×25.5=137881N操作状态下所需的最小压紧力:6.28p G F D b m p=∙∙∙=6.28×287×6×2.75×1.569=N垫片在预紧状态下受到最大螺栓载荷的作用,可能因压紧过度而失去密封性能,为此垫片须有足够的宽度m in N 。
所需的垫片的最小厚度:[]min 2103.6196.38.98126.28 6.2828725.5b bG A N N m m D yσ⨯===<=∙⨯⨯其中,常温下的强度指标σ=530MPa,安全系数b N =2.7,故许用应力[]530196.32.7b bM pan σσ===,一定温度下的许用应力[]117tb M Pa σ=,实际螺栓面积b A =2103.62mm (见后面计算).所以最初选的垫片厚度符合要求。