人教版八年级上册课时练:第15章《分式》实际应用提优(一)

合集下载

人教版八年级上册数学 第十五章 分式实际应用题 综合复习练习题(含答案)

人教版八年级上册数学 第十五章 分式实际应用题 综合复习练习题(含答案)

人教版八年级上册数学第十五章分式实际应用题综合复习练习题
1.某装修工程,甲、乙两人可以合作完成,若甲、乙两人合作4天后,再由乙独作12天可以完成,已知甲独作每天需要费用580元.乙独作每天需费用280元.但乙单独完成的天数是甲单独完成天数的2倍.
(1)甲、乙两人单独作这项工程各需多少天?
(2)如果工期要求不超过18天完成,应如何安排甲乙两人的工期使这项工程比较省钱?
2.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?
3.新冠肺炎疫情爆发之后,全国许多省市对湖北各地进行了援助,广州市某医疗队备好医疗防护物资迅速援助武汉.
第一批医疗队员乘坐高铁从广州出发,2.5小时后,第二批医疗队员乘坐飞机从广州出发,两批队员刚好同时到达武汉.已知广州到武汉的飞行距离为800千米,高铁路程为飞行
距离的倍.
(1)求广州到武汉的高铁路程;
(2)若飞机速度与高铁速度之比为5:2,求飞机和高铁的速度.
4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.
(1)甲、乙二人每小时各做零件多少个?
(2)甲做几小时与乙做4小时所做机械零件数相等?
5.小明准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少6元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价各是多少?
(2)小明准备用自己的180元压岁钱购买这种笔和本子,计划180元刚好用完,并且笔和本子都买,请列出所有购买方案.。

人教版八年级上册数学课时练:第十五章《分式与分式方程》

人教版八年级上册数学课时练:第十五章《分式与分式方程》

课时练:第十五章《分式与分式方程》满分:100分限时:60分钟一.选择题(每题3分,共30分)1.解分式方程=时,去分母化为一元一次方程,正确的是()A.x+1=2(x﹣1)B.x﹣1=2(x+1)C.x﹣1=2 D.x+1=22.解分式方程时,去分母变形正确的是()A.﹣1+x=1+3(2﹣x)B.﹣1+x=﹣1﹣3(x﹣2)C.1﹣x=﹣1﹣3(x﹣2)D.1﹣x=1﹣3(x﹣2)3.若关于x的分式方程=有增根,则m的值是()A.m=﹣1 B.m=1 C.m=﹣2 D.m=24.若分式的值总是正数,a的取值范围是()A.a是正数B.a是负数C.a>D.a<0或a>5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.下列各式从左到右变形正确的是()A.B.C.D.7.如果把分式中的x和y都扩大5倍,那么分式的值()A.不变B.缩小5倍C.扩大2倍D.扩大5倍8.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.9.将()﹣1,(﹣3)0,(﹣2)3这三个数按从小到大的顺序排列,正确的顺序是()A.()﹣1<(﹣3)0<(﹣2)3B.(﹣3)0<(﹣2)3<()﹣1C.(﹣2)3<()﹣1<(﹣3)0D.(﹣2)3<(﹣3)0<()﹣110.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现同款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批同款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.C.D.二.填空题(每题4分,共20分)11.当x=时,分式的值为0.12.若关于x的分式方程﹣=1有增根,则a的值.13.可乐和奶茶含有大量的咖啡因,世界卫生组织建议青少年每天摄入的咖啡因不能超过0.000085kg,将数据0.000085用科学记数法表示为.14.南昌至赣州的高铁于2019年年底通车,全程约416km,已知高铁的平均速度比普通列车的平均速度快100km,人们的出行时间将缩短一半,求高铁的平均速度.设高铁的平均速度为x,则可列方程:.15.已知x2+5x+1=0,那么x2+=.三.解答题(共50分)16.解分式方程:(1);(2).17.先化简,再求值:,其中x=3.18.红旗连锁超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.甲乙进价(元/袋)m m﹣2售价(元/袋)20 13(1)求m的值;(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价﹣进价)不少于5200元,且不超过5280元,问该超市有几种进货方案?(3)在(2)的条件下,该超市如果对甲种袋装食品每袋优惠a(2<a<7)元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?19.学习了分式运算后,老师布置了这样一道计算题:,下面是一位同学有错的解答过程:=①=②=③=④;(1)该同学的解答过程的错误步骤是;(填序号),你认为该同学错误的原因是.(2)请写出正确解答过程.20.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?参考答案一.选择题1.解:去分母得:x+1=2,故选:D.2.解:方程整理得:=﹣﹣3,去分母得:1﹣x=﹣1﹣3(x﹣2),故选:C.3.解:方程两边同时乘以x﹣1,得m+1=﹣x,解得:x=﹣m﹣1,∵方程有增根,∴x=1,∴﹣m﹣1=1,∴m=﹣2,故选:C.4.解:由题意可知:a>0且2a﹣1>0,或a<0且2a﹣1<0,∴a>或a<0,故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:A.分式的分子和分母同时乘以10,应得,即A不正确,B.,故选项B正确,C.分式的分子和分母同时减去一个数,与原分式不相等,即C项不合题意,D.不能化简,故选项D不正确.故选:B.7.解:根据题意,得==.∴分式的值不变.故选:A.8.解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.9.解:∵()﹣1=4,(﹣3)0=1,(﹣2)3=﹣8,∴(﹣2)3<(﹣3)0<()﹣1.故选:D.10.解:设拖鞋原价每双为x元,则“双11”大减价期间该款拖鞋价格每双为(x﹣5)元,依题意,得:=﹣2.故选:D.二.填空题(共5小题)11.解:由题意得:x2﹣9=0,且3﹣x≠0,解得:x=﹣3,故答案为:﹣3.12.解:﹣=1,去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,2+2﹣a=2﹣2,解得a=4.故答案为:4.13.解:0.000085=8.5×10﹣5.故答案为:8.5×10﹣5.14.解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x﹣100)km/h,依题意,得:=.故答案为:=.15.解:∵x2+5x+1=0,∴x+=﹣5,则原式=(x+)2﹣2=25﹣2=23,故答案为:23三.解答题(共5小题)16.解:(1)方程两边同乘(x﹣2),得1﹣3(x﹣2)=﹣(x﹣1),解得:x=3,检验:当x=3时,x﹣2≠0,所以x=3是原分式方程的解;(2)方程两边同乘x(x+1),得5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,因此x=﹣1不是原分式方程的解,所以原分式方程无解.17.解:原式=÷=•=﹣,当x=3时,原式=﹣.18.解:(1)依题意得:=,解得:m=10,经检验m=10是原分式方程的解;(2)设购进甲种绿色袋装食品x袋,表示出乙种绿色袋装食品(800﹣x)袋,根据题意得,,解得:240≤x≤256,∵x是正整数,256﹣240+1=17,∴共有17种方案;(3)设总利润为W,则W=(20﹣10﹣a)x+(13﹣8)(800﹣x)=(5﹣a)x+4000,①当2<a<5时,5﹣a>0,W随x的增大而增大,所以,当x=256时,W有最大值,即此时应购进甲种绿色袋装食品256袋,乙种绿色袋装食品544袋;②当a=5时,W=4000,(2)中所有方案获利都一样;③当5<a<7时,5﹣a<0,W随x的增大而减小,所以,当x=240时,W有最大值,即此时应购进甲种绿色袋装食品240袋,表示出乙种绿色袋装食品560袋.19.解:(1)该同学的解答过程的错误步骤是②;该同学错误的原因是:用分式基本性质时,分母乘以(x+1),但是分子没有乘;故答案为:②,用分式基本性质时,分母乘以(x+1),但是分子没有乘;(2)====.20.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.。

人教版 八年级数学上册 第15章 分式 课时训练(含答案)

人教版 八年级数学上册 第15章 分式  课时训练(含答案)

人教版 八年级数学 第15章 分式 课时训练一、选择题1. 分式2x2-4与x 4-2x的最简公分母是( ) A .(x2-4)(4-2x)B .(x +2)(x -2)C .-2(x +2)(x -2)2D .2(x +2)(x -2)2. (2020·成都)已知x =2是分式方程1的解,那么实数k 的值为( ) A .3B .4C .5D .63. (2020·福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为株,则符合题意的方程是( )A.B. C. D.4. (2020·牡丹江)若关于x 的分式方程有正整数解,则整数m 的值是( )A. 3B. 5C. 3或5D. 3或45. 若关于x 的方程x +m x -3+3m3-x =3的解为正数,则m 的取值范围是( )A. m <92B. m <92且m ≠32C. m>-94 D. m>-94且m≠-346. (2020·长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x万件,依据题意得··············································································()A.B.C.D.7. 若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是 ()A.B.C.D.8. 把分式中的x,y的值都扩大为原来的2倍,则分式的值()A.不变B.扩大为原来的2倍C.扩大为原来的4倍D.缩小为原来的二、填空题9. 计算(-b2a)3的结果是________.10. (2020·郴州)若分式的值不存在,则.11. 分式方程5y-2=3y的解为________.12. 分式x x +1有意义的条件是________.13. 若y x -1·M =5xy x2-1,则分式M =________.14. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.15. 等式5(x -2)x (x -2)=5x 成立的条件是________.16. (2020·潍坊)若关于x 的分式方程有增根,则_________.三、解答题17. 先化简,再求值:a -4a ÷(a +2a2-2a -a -1a2-4a +4),其中a =2.18. 小强昨天做了一道题“对下列分式通分:”.他的解答如下,请你指出他的错误,并改正.解:==x-3,==3(x+1). 19. 如图是佳佳同学解方程=-2的过程.(1)佳佳的解法从第步开始出现错误;(2)请你写出正确的解答过程.20. 当x取何值时,式子(x+1)(x+2)x2+4x+4·3x+62x2-8÷1x2-4的值为负数?21. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版八年级数学第15章分式课时训练-答案一、选择题1. 【答案】D2. 【答案】B【解析】把x=2代入分式方程计算即可求出k的值.解:把x=2代入分式方程得:1=1,解得:k=4.故选:B.3. 【答案】A【解析】本题考查了列分式方程解应用题,根据少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱列分式方程A,因此本题选A.4. 【答案】D【解析】首先化分式方程为整式方程,然后解整式方程,最后讨论整数解即可求解.原方程可化为整式方程2x=m(x-1),∴x=,而分式方程有正整数解,∴m﹣2=1,m﹣2=2,∴m=3,m =4,经检验,符合题意,故选D.5. 【答案】B【解析】由x+mx-3+3m3-x=3,得x+mx-3-3mx-3=3,解得x=9-2m2,解方程组⎩⎪⎨⎪⎧9-2m2>09-2m2≠3,得m<92且m≠32,故选B.6. 【答案】B【解析】本题考查了分式方程应用,根据题意可知生产时间=数量÷效率,而且生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,所以,因此本题选B.7. 【答案】A[解析] 根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,有=.所以选项A符合题意.8. 【答案】D[解析] ==,故x,y的值都扩大为原来的2倍,分式的值缩小为原来的.二、填空题9. 【答案】-b38a3[解析] (-b2a)3=-b3(2a)3=-b38a3.10. 【答案】-1【解析】若分式的值不存在,则x+1=0,解得:x=-1,故答案为:-1.11. 【答案】y=-3[解析] 去分母,得5y=3y-6,解得y=-3.经检验,y=-3是分式方程的解.则分式方程的解为y=-3.12. 【答案】x≠-113. 【答案】5xx+1[解析] 由题意,得M=5xyx2-1÷yx-1=5xy(x+1)(x-1)·x-1y=5x x+1.14. 【答案】6 [解析] 因为对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,所以-2+a =0,4-b =0,解得a =2,b =4,则a +b =6.15. 【答案】x≠216. 【答案】3【解析】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.,解得.又∵关于的分式方程有增根,即,∴,,解得:,三、解答题17. 【答案】 解:原式=a -4a ÷[a +2a (a -2)-a -1(a -2)2]=a -4a ÷[(a +2)(a -2)a (a -2)2-a (a -1)a (a -2)2] =a -4a ÷a2-4-a2+a a (a -2)2(2分)=a -4a ·a (a -2)2a -4=a 2-4a +4.(4分)当a =2时,原式=(2)2-4×2+4=6-4 2.(7分)18. 【答案】解:小强的错误:①分式通分后,不能进行去分母运算;②第二个分式通分时,发生符号错误.改正如下:==-.19. 【答案】 解:(1)一(2)方程两边乘(x-3),得1-x=-1-2x+6,解得x=4.检验:当x=4时,x-3=4-3=1≠0,所以,x=4是原分式方程的解.20. 【答案】解: 原式=(x +1)(x +2)(x +2)2·3(x +2)2(x +2)(x -2)·(x +2)(x -2)=3x +32. 由式子(x +1)(x +2)x2+4x +4·3x +62x2-8÷1x2-4的值为负数,得3x +3<0, 解得x<-1.由x 2+4x +4≠0,2x 2-8≠0,x 2-4≠0,得x≠±2.故当x<-1且x≠-2时,式子(x +1)(x +2)x2+4x +4·3x +62x2-8÷1x2-4的值为负数.21. 【答案】解:(1)1(2)设该商品在乙商场的原价为x元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。

人教版八年级上册 第15章《分式》实际应用提优(一)【有答案】

人教版八年级上册  第15章《分式》实际应用提优(一)【有答案】

第15章《分式》实际应用提优(一)1.锦潭社区计划对某区域进行绿化,经投标,由甲、乙两个工程队一起来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.5倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用2天.(1)求甲、乙两工程队每天各能完成的绿化面积.(2)若计划绿化的区域面积是1900m2,甲队每天绿化费用是0.5万元,乙队每天绿化费用为0.3万元.①当甲、乙各施工几天,既能刚好完成绿化任务,又能使总费用恰好为12.2万元.②按要求甲队至少施工10天,乙队最多施工22天,当甲乙各施工几天,刚好完成绿化任务,又使得总费用最少(施工天数不能是小数),并求最少总费用.2.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)3.新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,购买A种消毒液花费了2500元,购买B种消毒液花费了2000元,且购买A种消毒液数量是购买B种消毒液数量的2倍,已知购买一桶B种消毒液比购买一桶A种消毒液多花30元.(1)求购买一桶A种、一桶B种消毒液各需多少元?(2)为了践行“把人民群众生命安全和身体健康摆在第一位”的要求,加强学校防控工作,保障师生健康安全,学校准备再次购买一批防控物资,其中A、B两种消毒液准备购买共50桶,恰逢商场对两种消毒液的售价进行调整,A种消毒液售价比第一次购买时提高了8%,B种消毒液按第一次购买时售价的9折出售,如果学校此次购买A、B两种消毒液的总费用不超过3260元,那么学校此次最多可购买多少桶B种消毒液?4.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?5.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1﹣5月份.每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%.今年1﹣5月份每辆车的销售价格是多少万元?6.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)7.近期受疫情影响,需要居家学习,某中学为方便教师线上直播授课,计划给教师配备电脑手写板.信息城现有甲、乙两种手写板,若每台甲种手写板的价格比每台乙种手写板的价格少300元,且用6000元购买甲种手写板的数量与用7500元购买乙种手写板的数量相同.(1)求每台甲种手写板和乙种手写板的价格;(2)若学校计划到信息城购买50台手写板,购买甲种手写板的数量不少于乙种手写板数量的2倍,信息城给出的优惠方案:一次性购买不少于10台乙种手写板,则乙种手写板的价格按原价七五折优惠,否则按原价购买.请你帮学校设计一种最省钱的购买方案.8.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?9.为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.10.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.解:(1)设乙队每天能完成绿化面积xm2,则甲队每天能完成绿化面积1.5xm2,由题意得:﹣=2,解得:x=50,经检验,x=50是该方程的根,1.5x=1.5×50=75(m2),∴甲、乙两工程队每天各能完成的绿化面积分别是75m2、50m2;(2)①设甲队施工a天,则乙队施工天刚好完成绿化任务,由题意得:0.5a+0.3×=12.2,解得:a=16,∴==14(天),∴甲队施工16天,乙队施工14天,既能刚好完成绿化任务,又能使总费用恰好为12.2万元;②设甲队施工m(m≥10)天,则乙队施工天刚好完成绿化任务,由题意得:≤22,解得:m≥10,总费用y=0.5m+0.3×=,∵>0,∴y的值随m值的增大而增大,∵m是正整数,且两队施工的天数都是正整数,∴m=12时,总费用y为最小值,最小值是:=12(万元),。

人教版初中数学八年级上册第15章 分式 课时培优练习(含答案解析) 改好

人教版初中数学八年级上册第15章 分式 课时培优练习(含答案解析)  改好

初中数学课时作业八上第十五章 分式15.1分式专题一 分式有意义的条件、分式的值为0的条件1.使代数式有意义,那么x 的取值范围是( ) A .x ≥0 B .x ≠1 C .x >0 D .x ≥0且x ≠12.如果分式的值为0,则x 的值应为 . 3.若分式的值为零,求x 的值.专题二 约分4.化简的结果是( ) A .2n 2 B . C . D . 5.约分:=____________. 6.从下列三个代数式中任选两个构成一个分式,并将它化简:4x 2-4xy +y 2,4x 2-y 2,2x -y .x -123273x x --2299x x x --6+222m mn n m mn-2+-m n m -m n m n -+m n m +29()2727a y x x y--状元笔记【知识要点】【温馨提示】1.分式的值为0受到分母不等于0的限制,“分式的值为0”包含两层意思:一是分式有意义,二是分子的值为0,不要误解为“只要分子的值为0,分式的值就是0”.2.分式的基本性质中的A、B、C表示的都是整式,且C≠0.3.分子、分母必须“同时”乘C(C≠0),不要只乘分子(或分母).4.性质中“分式的值不变”这句话的实质,是当字母取同一值(零除外)时,变形前后分式的值是相等的.但是变形前后分式中字母的取值范围是变化的.【方法技巧】1.分式的符号法则可总结为:一个负号随意跑,两个负号都去掉.就是说,分式中若出现一个负号,则此负号可“随”我们的“意”(即根据题目要求)跑到分子、分母以及分式本身三者中的任何一个位置上;若分式中出现两个负号,则可以将这两个负号同时去掉.2.分式的分子、分母系数化整问题的基本做法是分式的分子、分母都乘同一个“适当”的不为零的数,这里的“适当”的数又分两种情况:若分式分子、分母中的系数都是分数时,“适当”的数就是分子、分母中各项系数的所有分母的最小公倍数;若分式的分子、分母中各项系数是小数时,则“适当的数”就是10n,其中n是分子、分母中各项系数的小数点后最多的位数.最后根据情况需要约分时,则要约分.参考答案:1.D 解析:根据题意得:x≥0且x -1≠0.解得x≥0且x≠1.故选D .2.-3 解析:根据分式值为0,可得,解得x =-3. 3.解:∵的值为0,∴x 2-9=0且x 2-6x +9≠0.解x 2-9=0,得x =±3.当x =3时,x 2-6x +9=32-6×3+9=0,故x =3舍去.当x =-3时,x 2-6x +9=(-3)2-6×(-3)+9=36.∴当分式的值为0时,x =-3. 4.B 解析:==.故选B . 5. 解析:===. 6.解:答案不唯一,如:==.⎩⎨⎧≠-=-0302732x x 2299x x x --6+2299x x x --6+222m mn n m mn -2+-2()()m n m m n --m n m -3ax ay -29()2727a y x x y --29()27()a x y x y --()3a x y -3ax ay -2222444x xy y x y -+-2(2)(2)(2)x y x y x y -+-22x y x y-+15.2分式的运算 专题一 分式的混合运算1.化简的结果是( ) A . B . C . D . 2.计算.3.已知:÷-x +3.试说明不论x 为任何有意义的值,y 的值均不变.专题二 分式的化简求值4.设m >n >0,m 2+n 2=4mn ,则的值等于( ) A .BCD . 35.先化简,再求值:,其中=-2,b=1.221111x x ⎛⎫-÷ ⎪+-⎝⎭()21x 1+()21x 1-()21x +()21x -211x x x ---22x x y x +6+9=-92x x x +3-322m n mn-b a b b a b ab a +++2222-2-a6.化简分式,并从—1≤x ≤3中选一个你认为适合的整数x 代入求值.状元笔记【知识要点】222()1121x x x x x x x x --÷---+小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【温馨提示】1.分式的运算结果一定要化为最简分式或整式.2.分式乘方时,若分子或分母是多项式,要避免出现类似这样的错误.3.同分母分式相加减“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,特别是相减时,要避免出现符号错误.【方法技巧】1.分式的乘除运算归根到底是乘法运算,其实质是分式的约分.2.除式或被除式是整式时,可把它们看作分母是1的分式,然后依照除法法则进行计算.参考答案:1.D 解析:原式=.故选D . 2222()a b a b c c ++=2)1()1)(1(11)1)(1(1121-=+-⋅+-=-+÷+-+x x x x x x x x x2.原式. 3.解:÷-x +3 =×-x +3 =x -x +3=3.根据化简结果与x 无关可以知道,不论x 为任何有意义的值,y 的值均不变.4.A 解析:∵ ∴,,∴A . 5.解:原式====, 当=,时,原式=. 6.解:原式= = = =. ∵x ≠-1,0,1∴当x =2时,原式=.221(1)(1)11111x x x x x x x x +-+-=-==---22x x y x +6+9=-92x x x +3-32(3)(3)(3)x x x ++-()x x x -3+3224m n mn +=2226m n mn mn ++=2222m n mn mn +-=()()m n m n mn +-===b a b b a b a b a ++-+-))(()(2b a b b a b a +++-ba b b a ++-b a a +a 2-1=b 2122=+--22221()11x x x x x x x x -+-⋅---22(1)(1)1(1)(1)(1)(1)x x x x x x x x x x x --⋅-⋅--+--111x -+1x x +22213=+15.3分式方程 专题一 解分式方程1.方程的解是 .专题二 分式方程无解4.关于x 的分式方程无解,则m 的值是( ) A .1 B .0 C .2 D .–2专题三 列分式方程解应用题7.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是( )32x 31-x 1+=211x m x x -=--状元笔记【知识要点】1.分式方程分母中含未知数的方程叫做分式方程.2.解分式方程的一般步骤【温馨提示】1.用分式方程中各项的最简公分母乘方程的两边,从而约去分母.但要注意用最简公分母乘方程两边各项时,切勿漏项.2.解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.参考答案:1.x=6 解析:去分母,得2x+3=3(x-1),解得x=6,经检验x=6是原方程的解.3.解:方程两边乘x(x+2),得3x+x+2=4,解得x=.经检验:x=是原方程的解. 4.A 解析:方程两边成x -1,得x -2(x -1)=m ,解得x=2-m .∵当x=1时分母为0,方程无解,∴2-m=1,即m=1时,方程无解.故选A .7.B 解析:设甲班每天植树x 棵,则乙班每天植树(x+2)棵,甲班植60棵树所用的天数为,乙班植70棵树所用的天数,可列方程为=.故选B . 8.解:设原计划每天种棵树,实际每天种树棵,根据题意,得 . 解这个方程,得x=30.经检验x=30是原方程的解且符合题意.答:原计划每天种树30棵.9.解:不能相同.理由如下:设该校购买的乒乓球拍每副x 元,羽毛球拍每副(x +14)元,若购买的乒乓球拍与羽毛球拍的数量相同,则,解得x =35. 经检验x =35是原方程的解.但当x =35时,,不是整数,不合题意. 所以购买的乒乓球拍与羽毛球拍的数量不能相同.2121x 60270+x x 60270+x x 113x ⎛⎫+ ⎪⎝⎭4804804113x x -=⎛⎫+ ⎪⎝⎭1428002000+=x x 74001428002000=+=x x。

人教版八年级数学上册 第15章 分式 培优训练(含答案)

人教版八年级数学上册 第15章 分式 培优训练(含答案)

人教版 八年级数学 第15章 分式 培优训练一、选择题1. 若分式||x -1(x -2)(x +1)的值为0,则x 等于 ( ) A .-1B .-1或2C .-1或1D .12. 计算2x 2-1 ÷1x -1的结果是( ) A.2x -1B.2x 3-1C.2x +1D .2(x +1)3. (2020·成都)已知x =2是分式方程1的解,那么实数k 的值为( ) A .3B .4C .5D .64. 若△÷a 2-1a =1a -1,则“△”可能是( ) A.a +1aB.a a -1C.a a +1D.a -1a5. (2020·抚顺本溪辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000x =420080x - B .3000x +80=4200xC .4200x =3000x -80D .3000x =420080x +6. (2020·福建)我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.“其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( )A.62103(1)-=x x B.621031=-x C.621031-=x x D.62103=x7. 当分式的值为0时,x 的值是 ( )A .5B .-5C .1或5D .-5或5 8. △△△x △△△x △m x △3△3m3△x △3△△△△△△△m △△△△△△( )A. m <92B. m <92△m ≠32C. m >△94D. m >△94△m ≠△349. 关于x 的方程+=0可能产生的增根是 ( ) A .x=1B .x=2C .x=1或x=2D .x=-1或x=210. 已知=,则的值为 ( ) A .B .C .D .二、填空题11. 计算:y 2x2·x y =________.12. (2020·杭州)若分式11x +的值等于1,则x =________.13. 分式32(x +1),2x -15(x -1),2x +1x2-1的最简公分母是________________.14. 当a =________时,关于x 的方程x +1x -2=2a -3a +5的解为x =0.15. 对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,则a +b =________.16. 当a=________时,关于x的方程axa-1-2x-1=1的解与方程x-4x=3的解相同.三、解答题17. △△△△△△△△aa△b(1b△1a)△a△1b△△△a△2△b△13.18. △△△△△△△△(1△1a△1)÷a2△4a△4a2△a△△△a△△1.19. (2020·襄阳)(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?20. 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批新产品比乙工厂单独加工完成这批新产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.21. 甲、乙两商场自行定价销售同一种商品,销售时得到如下信息:信息1:甲商场将该商品提价15%后的售价为1.15元;信息2:乙商场将该商品提价20%后,用6元钱购买该商品的件数比提价前少买1件.(1)该商品在甲商场的原价为元.(2)求该商品在乙商场的原价是多少.(3)甲、乙两商场把该商品均按原价进行了两次价格调整.甲商场:第一次提价的百分率是a,第二次提价的百分率是b;乙商场:两次提价的百分率都是.(a>0,b>0,a≠b)甲、乙两商场中哪个商场提价较多?请说明理由.人教版八年级数学第15章分式培优训练-答案一、选择题1. 【答案】D[解析] 因为分式||x-1(x-2)(x+1)的值为0,所以|x|-1=0,x-2≠0,x+1≠0,解得x=1.2. 【答案】C3. 【答案】B【解析】把x=2代入分式方程计算即可求出k的值.解:把x=2代入分式方程得:1=1,解得:k=4.故选:B.4. 【答案】A[解析] △=a2-1a·1a-1=(a+1)(a-1)a·1a-1=a+1a.5. 【答案】D【解析】由“原来公司投递快件的能力每周3000件,”可知快递公司人数可表示为3000x人,由“快递公司为快递员更换了快捷的交通工具后投递快件的能力由每周3000件提高到4200件”,可知快递公司人数可表示为420080x+人,再结合快递公司人数不变可列方程:3000x=420080x+.故选项D正确.6. 【答案】A【解析】本题考查了列分式方程解应用题,根据少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱列分式方程A ,因此本题选A .7. 【答案】B [解析] 由分式的值为0,得-5=0,解得x=±5.但当x=5时,x 2-4x -5=0,故舍去,所以分式的值为0时,x 的值是-5.8. 【答案】B △△△△△x △mx △3△3m3△x △3△△x △mx △3△3mx △3△3△△△x △9△2m 2△△△△△⎩⎪⎨⎪⎧9△2m 2>09△2m 2≠3△△m <92△m ≠32△△△B.9. 【答案】C10. 【答案】D [解析] ∵=,∴=6. ∴a+=5.∴a+2=25,即a 2++2=25.∴=a 2++1=24. ∴=.二、填空题11. 【答案】12x12. 【答案】0 【解析】本题考查了分式的值的意义,因为分式11x +的值等于1,所以分子、分母相等,即x +1=1,解得x =0,当x =0时,分母x +1≠0,所以分式11x +的值等于1时,x =0,因此本题答案为0.13. 【答案】10(x +1)(x -1) [解析] 因为x2-1=(x +1)(x -1),所以三个分式的最简公分母是10(x +1)(x -1).14. 【答案】±1 [解析] 去分母,得x -a =a(x +1).整理,得(a -1)x =-2a.当a =1时,0·x =-2,该方程无解.当a≠1时,x =-2a a -1.若x =-1,则原分式方程无解,此时-1=-2a a -1,解得a =-1.综上可知,当a =±1时原分式方程无解.故答案为±1.15. 【答案】6 [解析] 因为对于分式x -b x +a,当x =-2时,无意义,当x =4时,值为0,所以-2+a =0,4-b =0,解得a =2,b =4,则a +b =6.16. 【答案】解:(1)方程两边同乘(9x -3),得2(3x -1)+3x =1.解得x =13.检验:当x =13时,9x -3=0,所以x =13不是原方程的解. 所以原分式方程无解.(2)方程两边同乘(x -1)(x +2),得x(x -1)=2(x +2)+(x -1)(x +2).解得x =-12.检验:当x =-12时,(x -1)(x +2)≠0.所以原分式方程的解为x =-12.(3)方程两边同乘x(x +1)(x -1),得三、解答题17. 【答案】△△△△△a a△b ·a△b ba △a△1b△1b △a△1b△a b .(4△)△△a△2△b△13△△△△△a b △2×3△6.(6△)18. 【答案】△△(1△1a△1)÷a 2△4a△4a 2△a △a△2a△1·a△a△1△△a△2△2△a a△2.△a △△1△△△△△a a△2△△1△1△2△13.19. 【答案】设原来每天用水量为x 吨,则现在每天用水量是45x 吨,根据题意,得 120120345x x -=,即1501203x x -=,解得x =10. 经检验,x =10是原方程的解且符合实际,则45x =8. 答:现在每天用水量是8吨.20. 【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. 依题意得-=10,解得x=40.经检验,x=40是原方程的解且符合题意.1.5x=60.答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.21. 【答案】 解:(1)1(2)设该商品在乙商场的原价为x 元.则-=1,解得x=1.经检验,x=1是原分式方程的解,且符合题意.答:该商品在乙商场的原价为1元.(3)乙商场提价较多.理由:由于原价均为1元,则甲商场两次提价后的价格为(1+a)(1+b)=(1+a+b+ab)元,乙商场两次提价后的价格为1+2=1+a+b+2元.因为2-ab=2>0,所以乙商场提价较多.。

八年级数学上册第十五章《分式方程》课时练习题(含答案)

八年级数学上册第十五章《分式方程》课时练习题(含答案)

八年级数学上册第十五章《15.3分式方程》课时练习题(含答案)一、选择题1.方程2152x x =+-的解是( ) A .=1x - B .5x = C .7x = D .9x = 2.若关于x 的分式方程322x m x x -=--有增根,则m 的值是( ) A .1B .﹣1C .2D .﹣2 3.关于x 的分式方程2m x x +--3=0有解,则实数m 应满足的条件是( ) A .m =﹣2B .m ≠﹣2C .m =2D .m ≠2 4.分式方程3262(2)x x x x =+--的解是( ) A .0 B .2 C .0或2 D .无解5.已知111,1a b b c=-=-,用a 表示c 的代数式为( ) A .11c b =- B .11a c =- C .1a c a -= D .1a c a -= 6.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .3x =-B .2x =-C .13x =D .13x 7.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3 B .m≤3且m≠2 C .m <3 D .m <3且m≠2 8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x -= B .3030101.5x x -= C .3630101.5x x -= D .3036101.5x x+= 二、填空题 9.方程11212x x =+-的解是______.10.定义一种新运算:对于任意的非零实数a ,b ,11b a b a ⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________.11.若关于x 的分式方程211111k k x x x +-=--+有增根,则k 的值为______. 12.某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为________人.13.若方程2111ax a x -=+-的解与方程63x=的解相同,则=a ________. 14.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 三、解答题15.解分式方程:2312x x x --=-.16.为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?17.科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?18.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?19.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?20.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.D2.C3.B4.D5.D6.A7.D8.A9.-310.12-##0.5-11.1或13-##13-或112.30013.1 3 -14.-1或5或1 3 -15.方程2312xx x--=-,224432x x x x x-+-=-,54x-=-,45x=,经检验45x=是分式方程的解,∴原分式方程的解为45x=.16.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.17.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.18.设乙班每小时挖x千克的土豆,则甲班每小时挖(100+x)千克的土豆,根据题意有:15001200100x x=+,解得:x=400,经检验,x=400是原方程的根,故乙班每小时挖400千克的土豆.19.(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x米.由题意可得:4000400051.2x x-= 解得:4003x = 经检验得:4003x =是原分式方程的解. ∴ 第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米. 答:小勇同学两次慢跑的速度各是4003米/分、160米/分. 20.解:(1)设一次性医用口罩单价为x 元,则N95口罩的单价为()10x +元 由题意可知,1600960010x x =+, 解方程 得2x =.经检验2x =是原方程的解,当2x =时,1012x +=.答:一次性医用口罩和N95口单价分别是2元,12元.(2)设购进一次性医用口罩y 只根据题意得212(2000)10000y y +-≤,解不等式得1400y ≥.答:药店购进一次性医用口罩至少1400只.。

人教版八年级上册课时练:第15章《分式》实际应用选择题提优(一)

人教版八年级上册课时练:第15章《分式》实际应用选择题提优(一)

八年级上册课时练:第15章《分式》实际应用选择题提优(一)1.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加入此项工作,且甲、乙两人工作效率相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8 B.7 C.6 D.52.父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为()A.1.1v B.1.2v C.1.3v D.1.4v3.某乡镇决定对一段长6 000米的公路进行修建改造.根据需要,该工程在实际施工时增加了施工人员,每天修建的公路比原计划增加了50%,结果提前4天完成任务.设原计划每天修建x米,那么下面所列方程中正确的是()A.+4=B.=﹣4C.﹣4=D.=+44.甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要()A.6天B.4天C.3天D.2天5.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()天数第3天第5天工作进度A.9天B.10天C.11天D.12天6.“五•一”期间,几名同学共同包租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元.则原来旅游同学的人数为()A.8人B.10人C.12人D.30人7.学校计划将120名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出6个小组,那么原计划要分成的小组数是()A.40 B.30 C.24 D.208.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时后甲追上乙.那么甲的速度是乙的()A.倍B.倍C.倍D.倍9.一组学生去春游,预计共需费用120元,后来又有2个参加进来,总费用不变,于是每人可少分摊3元,原来这组学生人数是()A.15人B.10人C.12人D.8人10.植树节时,某班学生平均每人植树6棵.如果单独由女生完成,每人应植树15棵,那么单独由男生完成,每人应植树()A.9棵B.10棵C.12棵D.14棵11.如图所示的电路的总电阻为10Ω,若R1=2R2,则R1,R2的值分别是()A.R1=30Ω,R2=15ΩB.R1=Ω,R2=ΩC.R1=15Ω,R2=30ΩD.R1=Ω,R2=Ω12.第二十届电视剧飞天奖今年有a部作品参赛,比去年增加了40%还多2部.设去年参赛的作品有b部,则b是()A.B.a(1+40%)+2 C.D.a(1+40%)﹣2 13.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时14.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元15.宏达公司生产了A型、B型两种计算机,它们的台数相同,但总价值和单价不同.已知A型计算机总价值为102万元;B型计算机总价值为81.6万元,且单价比A型机便宜了2400元.问A型、B型两种计算机的单价各是多少万元?对于上述问题用表格分析如下:如果设A型机单价为x万元,那么B型机单价为(x﹣0.24)万元.单价/万元总价/万元台数/台A型机MB型机N 则标记M,N空格中的信息为()A.81.6,B.81.6,C.102,D.102,16.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是()A.11岁B.12岁C.13岁D.14岁17.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m)上一直径两端A,B相向起跑,第一次相遇时离A点100m(AB上方),第二次相遇时离B点60m(AB下方),则圆形跑道的总长为()A.240m B.360m C.480m D.600m18.甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲、乙两人每天共加工35个玩具,则甲每天加工的玩具数为()A.15 B.20 C.18 D.1719.某项工作,甲单独完成需要40分钟;若甲、乙共同做20分钟后,乙需再单独做20分钟才能完成,则乙单独完成需要()A.40分钟B.60分钟C.80分钟D.100分钟20.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是()A.20元B.18元C.15元D.10元21.小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米.他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶()A.26千米B.27千米C.28千米D.30千米22.甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时23.某校举行少先队“一日捐”活动,七、八年级学生各捐款3000元,八年级学生比七年级学生人均多捐2元,“…”,求七年级学生人数?解:设七年级学生有x人,则可得方程=2,题中用“…”表示缺失的条件,根据题意,缺失的条件是()A.七年级学生的人数比八年级学生的人数少20%B.七年级学生的人数比八年级学生的人数多20%C.八年级学生的人数比七年级学生的人数多20%D.八年级学生的人数比七年级学生的人数少20%24.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.乙骑自行车的速度是()米/分.A.600 B.400 C.300 D.15025.某市需要铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时,每天铺设管道的长度比原计划增加10%,结果提前6天完成.求实际每天铺设管道的长度与实际施工天数.小宇同学根据题意列出方程﹣=6.则方程中未知数x所表示的量是()A.实际每天铺设管道的长度B.实际施工的天数C.原计划施工的天数D.原计划每天铺设管道的长度参考答案1.解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.2.解:设父亲的速度为x,根据题意得出:=,解得:x=1.2V.故选:B.3.解:设原计划每天修建x米,因为每天修建的公路比原计划增加了50% 所以现在每天修建x(1+50%)m,﹣=4,即:﹣4=,故选:C.4.解:设乙队单独完成总量需要x天,则×3+=1,解得x=2.经检验x=2是分式方程的解,故选:D.5.解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.6.解:设原来旅游同学的人数为x人,那么出发时共有同学x+2人.得:解得:x=8,检验符合题意.因此原来旅游同学的人数为8人.故选:A.7.解:设原计划要分成的小组数为x,则解得x=30,经检验,x=30是原方程的解,故选:B.8.解:设乙的速度为1,则甲的速度是x,根据题意得ax+a×1=bx﹣b×1ax﹣bx=﹣b﹣a(a﹣b)x=﹣b﹣ax=x=.故选:C.9.解:设原来这组学生有x人,那么出发时共有(x+2)人.由题意可得出方程为:,两边同乘x(x+2),得120(x+2)=120x+3x(x+2),整理,得x2+2x﹣80=0,解得:x=8或﹣10.经检验,x=8或﹣10都是原方程的根,但x=﹣10不合题意,舍去.∴x=8.故选:D.10.解:设单独由男生完成,每人应植树x棵.那么根据题意可得出方程:,解得:x=10.检验得x=10是方程的解.因此单独由男生完成,每人应植树10棵.故选:B.11.解:∵=+,R1=2R2∴=+,解得R2=15∴R1=2R2=30.故选:A.12.解:∵今年有a部作品参赛,比去年增加了40%还多2部,去年参赛的作品有b部,∴b×(1+40%)+2=a,∴b=.故选:C.13.解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8或x2=9,经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故选:C .14.解:设原计划每间直播教室的建设费用是x 元,则实际每间建设费用为1.2x 元,根据题意得:,解得:x =2000,经检验:x =2000是原方程的解,答:原计划每间直播教室的建设费用是2000元, 故选:C .15.解:设A 型机单价为x 万元,那么B 型机单价为(x ﹣0.24)万元, ∴A 型号总价M =102,台数为,B 型号总价为81.6万元,台数N =,故选:D .16.解:设现在孙子的年龄是x 岁,根据题意得,解得x =12,即现在孙子的年龄是12岁. 故选:B .17.解:设圆形跑道总长为2s ,又设甲乙的速度分别为v ,v ′,再设第一次在C 点相遇,根据题意得:,化简得:,100(2s ﹣60)=(s ﹣100)(s +60), 化简得s 2﹣240s =0, ∴s (s ﹣240)=0,解此方程得s =0(舍去)或s =240. 经检验s =240是方程的解;所以2S=480米.故选:C.18.解:设甲每天加工x个玩具,则乙每天加工(35﹣x)个玩具由题意得,=,解得:x=15,经检验,x=15是原方程的解,且符合题意,则35﹣x=20,即甲每天加工15个玩具,乙每天加工20个玩具.故选:A.19.解:设乙单独完成需要x分钟,由题意可知:20(+)+=1,解得:x=80,经检验,x=80是原方程的解,故选:C.20.解:设文学类图书平均价格为x元/本,则科普类图书平均价格为1.2x元/本,依题意得:﹣=100,解得:x=20,经检验,x=20是原方程的解,且符合题意.故选:A.21.解:设用自驾车方式上班平均每小时行驶x千米,则乘公交车方式上班平均每小时行驶(2x+9)千米,根据题意得:=,解得:x=27,经检验:x=27是所列分式方程的解,且符合题意,故选:B.22.解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则=.经检验x=20是原方程的根,且符合题意.则丙的工作效率是.所以一轮的工作量为:++=.所以4轮后剩余的工作量为:1﹣=.所以还需要甲、乙分别工作1小时后,丙需要的工作量为:﹣﹣=.所以丙还需要工作小时.故一共需要的时间是:3×4+2+=14小时.故选:C.23.解:∵七年级学生有x人,∴为七年级学生的人均捐款数,∴为八年级学生的人均捐款数,∴(1﹣20%)x为八年级的人数,∴缺失条件为八年级学生的人数比七年级学生的人数少20%.故选:D.24.解:设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟.故选:C.25.解:设原计划每天铺设管道x米,则实际每天铺设管道(1+10%)x,根据题意,可列方程:﹣=6,所以小宇所列方程中未知数x所表示的量是原计划每天铺设管道的长度,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时练:第15章《分式》实际应用提优(一)1.锦潭社区计划对某区域进行绿化,经投标,由甲、乙两个工程队一起来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.5倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用2天.(1)求甲、乙两工程队每天各能完成的绿化面积.(2)若计划绿化的区域面积是1900m2,甲队每天绿化费用是0.5万元,乙队每天绿化费用为0.3万元.①当甲、乙各施工几天,既能刚好完成绿化任务,又能使总费用恰好为12.2万元.②按要求甲队至少施工10天,乙队最多施工22天,当甲乙各施工几天,刚好完成绿化任务,又使得总费用最少(施工天数不能是小数),并求最少总费用.2.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)3.新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,购买A种消毒液花费了2500元,购买B种消毒液花费了2000元,且购买A种消毒液数量是购买B种消毒液数量的2倍,已知购买一桶B种消毒液比购买一桶A种消毒液多花30元.(1)求购买一桶A种、一桶B种消毒液各需多少元?(2)为了践行“把人民群众生命安全和身体健康摆在第一位”的要求,加强学校防控工作,保障师生健康安全,学校准备再次购买一批防控物资,其中A、B两种消毒液准备购买共50桶,恰逢商场对两种消毒液的售价进行调整,A种消毒液售价比第一次购买时提高了8%,B种消毒液按第一次购买时售价的9折出售,如果学校此次购买A、B两种消毒液的总费用不超过3260元,那么学校此次最多可购买多少桶B种消毒液?4.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?5.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1﹣5月份.每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%.今年1﹣5月份每辆车的销售价格是多少万元?6.在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)7.近期受疫情影响,需要居家学习,某中学为方便教师线上直播授课,计划给教师配备电脑手写板.信息城现有甲、乙两种手写板,若每台甲种手写板的价格比每台乙种手写板的价格少300元,且用6000元购买甲种手写板的数量与用7500元购买乙种手写板的数量相同.(1)求每台甲种手写板和乙种手写板的价格;(2)若学校计划到信息城购买50台手写板,购买甲种手写板的数量不少于乙种手写板数量的2倍,信息城给出的优惠方案:一次性购买不少于10台乙种手写板,则乙种手写板的价格按原价七五折优惠,否则按原价购买.请你帮学校设计一种最省钱的购买方案.8.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?9.为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.10.某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?参考答案1.解:(1)设乙队每天能完成绿化面积xm2,则甲队每天能完成绿化面积1.5xm2,由题意得:﹣=2,解得:x=50,经检验,x=50是该方程的根,1.5x=1.5×50=75(m2),∴甲、乙两工程队每天各能完成的绿化面积分别是75m2、50m2;(2)①设甲队施工a天,则乙队施工天刚好完成绿化任务,由题意得:0.5a+0.3×=12.2,解得:a=16,∴==14(天),∴甲队施工16天,乙队施工14天,既能刚好完成绿化任务,又能使总费用恰好为12.2万元;②设甲队施工m(m≥10)天,则乙队施工天刚好完成绿化任务,由题意得:≤22,解得:m≥10,总费用y=0.5m+0.3×=,∵>0,∴y的值随m值的增大而增大,∵m是正整数,且两队施工的天数都是正整数,∴m=12时,总费用y为最小值,最小值是:=12(万元),乙队施工==20(天),∴甲队施工12天,乙队施工20天,既能刚好完成绿化任务,又使得总费用最少,最少总费用为12万元.2.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.3.(1)解:设A种消毒液每桶x元,则B种消毒液每桶为(x+30)元,由题意得:,解得x=50,经检验:x=50是原方程的解,且符合题意,x+30=50+30=80.答:A种消毒液每桶50元,则B种消毒液每桶为80元.(2)价格调整后:A种消毒液每桶54元,则B种消毒液每桶为72元,设可购买a桶B种消毒液,则可购买(50﹣a)桶A种消毒液,由题意得:54(50﹣a)+72a≤3260,解得a≤31,∵a是整数,∴a最大等于31.答:学校此次最多可购买31桶B种消毒液.4.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.5.解:设今年1﹣5月份每辆车的销售价格为x万元,根据题意,得=.解得:x=4.检验:当x=4时,x(x+1)≠0 所以x=4是原方程的解.答:今年1﹣5月份每辆车的销售价格为4万元.6.解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知:=1.25×,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600﹣,∴1800﹣a﹣b=1800﹣(1600﹣)﹣b=200+,∵a≤1000,∴1600﹣≤1000,∴b≥533,∵a,b是整数,∴b是8的倍数,∴b的最小值是536,∴1800﹣a﹣b≥267,答:药店捐赠口罩至少有267个7.解:(1)设每台甲种手写板的价格为x元,则每台乙种手写板的价格为(x+300)元,由题意得:=,解得:x=1200,经检验得:x=1200是原方程的解,则x+300=1200+300=1500.答:每台甲种手写板的价格为1200元,每台乙种手写板的价格为1500元.(2)1500×0.75=1125(元),1200元>1125元,设购买乙种手写板y台,则购买甲种手写板(50﹣y)台,依题意有50﹣y≥2y,解得y≤,∵y是整数,∴y最大为16,∴一种最省钱的购买方案为:购买乙种手写板16台,购买甲种手写板34台.8.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.9.解:设原计划每天加工x个,根据题意,得,解得:x=400,经检验,x=400是原方程的解且符合题意.答:原计划每天加工400个.10.解:(1)设一次性医用外科口罩的单价是x元,则N95口罩的单价是(x+10)元,依题意有=,解得x=2,经检验,x=2是原方程的解,x+10=2+10=12.故一次性医用外科口罩的单价是2元,N95口罩的单价是12元;(2)设购进一次性医用外科口罩y只,依题意有2y+12(2000﹣y)≤10000,解得y≥1400.故至少购进一次性医用外科口罩1400只.。

相关文档
最新文档