2019研究生数学考试数一真题

合集下载

应用数学基础(习题)_2018级_天津大学研究生数学考试题

应用数学基础(习题)_2018级_天津大学研究生数学考试题

H(1) f (1) ,则 f (x) H (x)

16、已知函数 S(x) 为[0,2]上的三次样条函数, S(x) 1 x3 ax2 , 0 x 1, 2
S(x) (x 1)3 1 (x 1)2 b(x 1) c, 1 x 2 ,则 a

2
17、将区间[0,1]做 n 等分, h
二、填空题(共 20 分,每空 1 分)
1、设 E (3, 2],则 sup E
, inf E

2、设 A 是内积空间 X 的非空子集,且 0 A ,则 A A

()
3、 设 A 是赋范空间 (X,|| ||)的非空子集,则 ()
是包含 A 的最小子空间,
含 A 的最小闭集。 ()
是包
( ) 4、对给定的 (t) C[a,b], (t) 0 ,在实赋范空间 (C[a,b],|| ||) 上定义实的线性泛函
天津大学试卷专用纸
学院
专业

年级
学号
姓名
共6页 第1页
2018~2019 学年第一学期期末考试试卷 《应用数学基础》(共 6 页)
14、Hilbert 空间 H 的标准正交系{ei}是完全的,当且仅当 H 中不存在与每个 ei 都正交的
非零元素。
()
(考试时间:2019 年 1 月 15 日)
题号 一 二 三 四 五 六 七 八 九 成绩 得分 一、判断题(共 15 分,每小题 1 分)

年级
学号
姓名
共6页 第2页
11、设 M 是求解线性方程组 Ax b 的 Jacobi 迭代矩阵,则 det(eM ) _____。
12、设线性方程组

北京大学2019年数学分析试题及解答

北京大学2019年数学分析试题及解答
n→+∞
=
l, lim xn n→+∞
=
L,

{xn}
中有无穷项小于等于
l+c 2
,
有无穷项
大于
c.
从而
|xn+1 − xn|
有无穷多项大于等于
c−l 2
,
矛盾.
类似地,
存在
n2
> n1
使得
xn1 +c 2
< xn2
⩽ c.

此类推可取一个子列
{xnk }
,|xnk

c|

c−l 2k
,
此时
{xnk }
nπ 4
+
sin
nπ 4
)np
,
∑ +∞
sin
nπ 4
np
在 p > 1 时绝对收敛, 在 0 < p ⩽ 1 时条件收敛.
n=1
sin2
nπ 4
(np
+
sin
nπ 4
)np

sin2
nπ 4
n2p
=
1
− cos n2p
nπ 2
,
(n

+∞),
∑ +∞
sin2
nπ 4
因此 n=1
(np +sin
nπ 4
∫ +∞
这与
f ′(x) dx 有意义的 Cauchy 收敛原理矛盾.
1
注 裴礼文的《数学分析中的典型问题与方法》第二版第 249 页例 3.3.11 与本题几乎完全相同, 那里有另外一
种证明方法. 我写的这个解法是源于一个很经典的题目, 可以见《数学分析习题课讲义》上册第 396 页命题

2019年全国研究生考试数学(三)真题

2019年全国研究生考试数学(三)真题

全国硕士研究生入学统一考试数学试题全国硕士研究生入学统一考试数学试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 极限xx x 20)]1ln(1[lim ++→=. (2)dx ex x x⎰--+11)(=.(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧== 而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4) 设,A B 均为三阶矩阵,E 是三阶单位矩阵. 已知2AB A B =+, 202040202B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1)(--E A =.(5) 设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 的逆矩阵为B ,则a = .(6) 设随机变量X 和Y 的相关系数为0.5,0EX EY == ,222==EY EX , 则2)(Y X E += .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 曲线21x xe y = ( )(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. (2) 设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在1x =处连续,则0)1(=ϕ是()f x 在1x =处可导的 ( )(A) 充分必要条件. (B)必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. (3) 设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是 ( )(A) ),(0y x f 在0y y =处的导数等于零. (B)),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.(4) 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于( )(A) 2. (B) 3. (C) 4. (D) 5. (5) 对于任意二事件A 和B ( )(A) 若φ≠AB ,则,A B 一定独立. (B) 若φ≠AB ,则,A B 有可能独立.(C) 若φ=AB ,则,A B 一定独立. (D) 若φ=AB ,则,A B 一定不独立.(6) 设随机变量X 和Y 都服从正态分布,且它们不相关,则 ( )(A) X 与Y 一定独立. (B) (X ,Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.设 ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续.四 、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g -=,求.2222y g x g ∂∂+∂∂ 五 、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤ 六、(本题满分9分)设1a >,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,()t a 最小?并求出最小值.七、(本题满分9分)设()y f x =是第一象限内连接点(0,1),(1,0)A B 的一段连续曲线,(,)M x y 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求()f x 的表达式. 八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T )3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价?设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求,a b 和λ的值. 十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 的分布函数. 求随机变量()Y F X =的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P , )()()()()()()(B P A P B P A P B P A P AB P -=ρ称作事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ2003年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】2e【详解】方法1:xx x 20)]1ln(1[lim ++→,属于∞1型未定式极限,可以考虑利用重要极限求解.首先凑成重要极限形式:()200002ln(1)1ln(1)2ln(1)2lim lim 2lim[1ln(1)]lim 1ln(1)xx x x x x x x x xx xx x e e e →→→→+⋅++=++=++==方法2:xx x 20)]1ln(1[lim ++→=2ln[1ln(1)]0lim x x x e++→=2ln[1ln(1)]2ln(1)limlim2x x x x xxeee →→+++==(注意:l n[1ln(1)]ln(1)x x +++:)(2)【答案】)21(21--e【分析】对称区间上的定积分,有0()2()()()0()a a aaaf x dx f x dxf x f x dx f x --⎧=⎪⎨⎪=⎩⎰⎰⎰当为偶函数当为奇函数【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111=dx ex x--⎰11+012x xe dx -=⎰102x xde -=-⎰112[]xx xe e dx --=--⎰=)21(21--e .(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x xa dx dy+⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】 应先化简,从2AB A B =+中确定1)(--E A .2AB A B =+⇒222AB B A E E -=-+⇒E E A B E A 2)(2)(=---⇒E E B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5) 【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(6)【答案】6【分析】本题的核心是逆向思维,利用协方差公式()cov(,)()()E XY X Y E X E Y =+. 涉及公式:(1)22()()[()]D X E X E X =-,(2)()()()2cov(,)D X Y D X D Y X Y +=++(3)XY ρ=【详解】方法1:由方差定义的公式和相关系数的定义22()()[()]D X E X E X =-202,=-= 同理()2D Y =,1cov(,)212XY X Y ρ==⨯=.所以 222()()[()]()()E X Y D X Y E X Y D X Y EX EY +=+++=+++()()()2cov(,) 6.D X Y D X D Y X Y =+=++=方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y +=+得:222()(2)E X Y E X XY Y +=++222()EX E XY EY =++42()E XY =+再利用()()()(,)E XY Cov X Y E X E Y =+⋅,得2)(Y X E +()()42[(,)]Cov X Y E X E Y =++⋅由方差定义的公式,有22()()[()]D X E X E X =-202,=-= 同理()2D Y =,再由相关系数的定义XY ρ=得,cov(,)XY X Y ρ=2)(Y X E +42420.52 6.XY ρ=+=+⨯⨯=二、选择题 (1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim (),()x f x c c →±∞=为常数,y c =为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim [()]x x x x x x yk b f x kx x →∞→∞→+∞→+∞→-∞→-∞==-,y kx b =+为曲线的一条斜渐近线;而是否存在铅直渐近线,应看函数是否存在无定义点,且00lim ,lim x x x x y y +-→→=∞=∞,则0x x =为曲线的一条垂直渐近线.【详解】1.y x ±∞→lim 极限均不存在,故曲线不存在水平渐近线;2.1lim lim 21==∞→∞→x x x e x y ,2221212001lim()lim1lim 0u u x x u u e u xe x u x e u uu -→∞→→--=-=:, 所以曲线有斜渐近线y x =.3.在0x =处21xxe y =无定义,且1222111ln 000lim lim lim lim xxx e xx xx x x x xe ee e ++++→→→→====∞,故 0x =为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选()D .(2)【答案】()A【详解】被积函数中含有绝对值,应当作分段函数看待,利用()f x 在1x =处左右导数定义讨论即可.32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ+++→→→--=⋅=++⋅=--, 32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ---→→→--=-⋅=-++⋅=---, 由于()f x 在1x =处可导的充分必要条件是左、右导数相等,所以.0)1()1(3)1(3=⇔-=ϕϕϕ故应选()A .(3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 正确.(4)【答案】(C)【分析】 利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B , 又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似. 同理有()111P A E P P AP P EP B E ----=-=-所以,矩阵A E -与矩阵B E -相似. 又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--, 所以有秩(2)A E -+秩()A E -= 秩(2)B E -+秩()B E -=4,故应选(C).(5)【答案】B【详解】本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.当{}{}0,0P A P B ≠≠时,若,A B 相互独立,则一定有{}{}{}0P AB P A P B =≠,从而有AB ≠∅. 可见,当,A B 相互独立时,往往,A B 并不是互斥的.AB ≠∅推不出{}{}{}P AB P A P B =⋅, 因此推不出,A B 一定独立,排除(A);若AB =∅,则{}0P AB =,但{}{}P A P B 是否为零不确定,{}{}{}P AB P A P B ≠. 因此(C),(D) 也不成立,故正确选项为(B).(6)【答案】C .【分析】本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(,)X Y 服从二维正态分布时,不相关与独立才是等价的.有结论如下:① 若X Y 与均服从正态分布且相互独立,则(,)X Y 服从二维正态分布.如果X Y 与都服从正态分布,甚至X Y 与是不相关,也并不能推出(,)X Y 服从二维正态分布.② 若X Y 与均服从正态分布且相互独立,则bY aX +服从一维正态分布. ③ 若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关. 【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+-- 1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim (1)sin x x xx xπππππ-→--=+- 令1u x =-,则当1x -→时,0u +→,所以1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+-1sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u uπππππ+→--=+⋅ 2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim2u u uπππππ+→+-+洛 2201sin (1)lim 2u u ππππ+→-+洛110ππ+== 定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续. 又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂ 221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v∂∂=-∂∂ 从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v ⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂所以 222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()22222220sin()sin()sin sin sin .2xy xy DDt r r r t I e x y dxdy e e x y dxdye e d r rdr d r dr e e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdt e A t sin 0⎰-=π,则000sin cos cos cos ttt t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰ 0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【详解】()f t 的驻点即满足()f t 的一阶导数为零的点,它是关于a 的函数.由0ln )(=-='a a a t f t ,得唯一驻点.ln ln ln 1)(aa a t -= 求()t a 的最小值,即求函数aaa t ln ln ln 1)(-=在1a >时的最小值, 22211111ln ln ln ln ln 1ln ln ln ()0(ln )(ln )(ln )a a aa a a a a a t a a a a a ⋅---'=-=-=-=得唯一驻点.e e a =当e e a >时,lnln 0,1lnln 0a a >-<,从而0)(>'a t ,这时()t a 单调递增;当e e a <时,lnln 0,1lnln 0a a <->,从而0)(<'a t ,这时()t a 单调递减. 因此当e a e =时()t a 为最小值,此时ee t e 11)(-=为极小值,也是最小值.七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可. 【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以 316)()](1[213+=++⎰x x dt t f x f x . 两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅=利用一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解公式 ()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰ 所以此方程为标准的一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx xx x +-⎰ Bx=.12Cx x ++曲线过点(1,0)B ,故0f =(1),代入,故有20C +=,从而2C =-. 所以.)1(21)(22-=-+=x x x x f八【详解】(1) 在时刻t 的剩余量()y t 可用总量A 减去销量()x t 得到,即)()(t x A t y -==kt A -, ].,0[T t ∈再T 时刻将数量为A 的该商品销售完,得0A kT -=,即Ak T=.因此, ,)(t TAA t y -= ].,0[T t ∈ (2) 由于()y t 随时间连续变化,因此在时间段[0,]T 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T 0)(1表示(函数()f x 在[,]a b 上的平均值记为⎰-ba dx x f ab .)(1). 所以,)(t y 在[0,]T 上的平均值为⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββαααM =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a M M M (第一行乘以-1加到第三行,第二行乘以-1 加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a M M M . (1) 当1-≠a 时,有行列式12310a ααα=+≠,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以321,,βββ可由向量组(I)线性表示.同样,行列式12360βββ=≠,秩(3),,321=βββ,故321,,ααα可由向量组(II)线性表示.因此向量组(I)与(II)等价.(2) 当1a =-时,有),,,,(321321βββαααM ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201M M M . 由于秩(321,,ααα )≠秩(),,1321βαααM ,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I)与(II)不等价. 【评注1】涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析:因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I)与(II)等价.(2) 当1a =-时,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠1231(,,,)r αααβ =3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 即向量组(I)与(II)不等价.【评注2】 向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】 题设已知特征向量,应想到利用定义:λαα=*A . 又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ,由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1(由式(1),(2)解得1=b 或2-=b ;由式(1),(3)解得 2.a =因此42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bbA +=+=λ 所以,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂.一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X = ,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量1, ,0, .A X A ⎧=⎨⎩若出现若不出现 随机变量X 和Y 的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示. 显然,若有(){}E XY P AB =,(){}(){},E X P AE Y P B ==以及=,=即可,这只需定义1,,0, .A X A ⎧=⎨⎩ 若出现若不出现 1,0, .B Y B ⎧=⎨⎩若出现,若不出现 【详解】 (1) 由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2) 考虑随机变量X 和Y :1,0,A X A ⎧=⎨⎩若出现若不出现 1,0,B Y B ⎧=⎨⎩若出现若不出现由条件知,X 和Y 都服从01-分布:{}{}01~X P A P A ⎛⎫ ⎪ ⎪⎝⎭,{}{}01~.Y P B P B ⎛⎫ ⎪⎝⎭ 由离散型随机变量的数字特征,(){}1ni i i i E X x P X x ==⋅=∑,()()()22D X E X EX =-易见 (){}E X P A =,(){}E Y P B =;(){}{}D X P A P A =, (){}{}D Y P B P B =; 由协方差的定义()()(){}{}{}(,).Cov X Y E XY E X E Y P AB P A P B =-=-因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质1ρ≤,所以题目中定义的 .1≤ρ。

2021-2019年宁波大学考研743农学基础数学初试试卷(A卷)

2021-2019年宁波大学考研743农学基础数学初试试卷(A卷)

(答案必须写在考点提供的答题纸上)(答案必须写在考点提供的答题纸上),X相互独立同分布,,5。

令5ε>,从切比雪夫不等式直接可得1(答案必须写在考点提供的答题纸上)(答案必须写在考点提供的答题纸上)科目代码: 743 150 科目名称: 农学基础数学一. 选择题:1-8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选 项符合题目要求。

1. 下列判断正确的是( ).A 、设函数()f x 在区间[,]a b 上有定义, 在(,)a b 内可导,当()()0f a f b <时, 则一定存在(,)a b ξ∈, 使()0f ξ=.B 、设函数()f x 在区间[,]a b 上有定义, 在(,)a b 内可导,则存在(,)a b ξ∈, 使()()()()f a f b f b a ξ'−=−.C 、当lim n n x →∞存在时, lim n n x →∞一定存在.D 、若()lim n n n x y →∞⋅存在, 且n lim 0n x a →∞=≠,则一定有:lim n n y →∞一定存在.2. 已知 求 ( ).A 、2,0,0B 、1,1,0C 、-2,0,0D 、0,1,1 3. 设2()()lim2()x af x f a x a →−=−, 则在x a =处( ). A 、()f x 的导数存在, 且()0f a '≠. B 、 ()f x 取得极大值. C 、()f x 取得极小值. D 、()f x 的导数可能不存在. 4. 下列反常积分一定发散的是( ). A 、B 、C 、D 、5. 设三阶方阵A ,非线性方程组 () 有两个解,则下面关于的解的情况叙述不正确的是( ). A 、 一定有无穷多解 B 、是 的解 C 、 是 的解 D 、是的解 6. 设A 是 矩阵,B 是矩阵,则齐次方程组( ).A 、当 时仅有零解;B 、当 时必有零解;C 、当时仅有零解; D 、当时必有零解;7. 对于任意两个随机变量X 和Y ,若D (X-Y )=DX+DY ,则( ).A 、DXY =DXDYB 、 Cov(X ,Y )=0C 、X 和Y 独立D 、 X 和Y 不独立 8. 设随机变量)(~λP X ,且)4()3(===X P X P ,则=λ( ). A 、3 B 、 2 C 、 1 D 、 4(答案必须写在考点提供的答题纸上)科目代码: 743 150 科目名称: 农学基础数学二. 填空题:9-16小题,每小题4分,共32分。

(完整版)2019考研数学一真题及答案解析参考,推荐文档

(完整版)2019考研数学一真题及答案解析参考,推荐文档

2019年考研数学一真题一、选择题,1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当时,若与是同阶无穷小,则0→x x x tan -k x =k A.1. B.2.C.3.D.4.2.设函数则是的⎩⎨⎧>≤=,0,ln ,0,)(x x x x x x x f 0=x )(x f A.可导点,极值点. B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.3.设是单调增加的有界数列,则下列级数中收敛的是{}n u A. B...1∑∞=n n nu nn nu 1)1(1∑∞=-C.. D..∑∞=+⎪⎪⎭⎫ ⎝⎛-111n n n u u ()∑∞=+-1221n nn u u4.设函数,如果对上半平面()内的任意有向光滑封闭曲线都2),(y xy x Q =0>y C 有,那么函数可取为⎰=+Cdy y x Q dx y x P 0),(),(),(y x P A..B..32yx y -321yx y -C.. D..y x 11-yx 1-5.设是3阶实对称矩阵,是3阶单位矩阵.若,且,则二次型A E E A A 22=+4=A 的规范形为Ax x T A.. B..232221y y y ++232221y y y -+C.. D..232221y y y --232221y y y ---6.如图所示,有3张平面两两相交,交线相互平行,它们的方程)3,2,1(321==++i d z a y a x a i i i i 组成的线性方程组的系数矩阵和增广矩阵分别记为,则A A ,A..3)(,2)(==A r A r B..2(,2)(==A r A r C..2(,1)(==A r A r D..1)(,1)(==A r A r 7.设为随机事件,则的充分必要条件是B A ,)()(B P A P =A.).()()(B P A P B A P += B.).()()(B P A P AB P =C.((A B P B A P =D.).()(B A P AB P =8.设随机变量与相互独立,且都服从正态分布,则X Y ),(2σμN {}1<-Y X P A.与无关,而与有关.μ2σB.与有关,而与无关.μ2σC.与都有关.2,σμD.与都无关.2,σμ2、填空题:9~14小题,每小题4分,共24分.9.设函数可导,则= .)(u f ,)sin (sin xy x y f z +-=yz cosy x z cosx ∂∂⋅+∂∂⋅1110.微分方程满足条件的特解.02'22=--y y y 1)0(=y =y 11.幂级数在内的和函数 .nn n n ∑∞=-0)!2()1()0∞+,(=)(x S12.设为曲面的上侧,则=.∑)0(44222≥=++z z y x dxdy z x z⎰⎰--224413.设为3阶矩阵.若线性无关,且,则),,(321αααA =21αα,2132ααα+-=线性方程组的通解为.0=x A 14.设随机变量的概率密度为 为的分布函数,X ⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F X 为的数学期望,则 .X E X {}=->1X X F P E )(3、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)设函数是微分方程满足条件的特解.)(x y 2'2x e xy y -=+0)0(=y (1)求;)(x y (2)求曲线的凹凸区间及拐点.)(x y y =16.(本题满分10分)设为实数,函数在点(3,4)处的方向导数中,沿方向b a ,222by ax z ++=的方向导数最大,最大值为10.j i l 43--=(1)求;b a ,(2)求曲面()的面积.222by ax z ++=0≥z 17.求曲线与x 轴之间图形的面积.)0(sin ≥=-x x ey x18.设,n =(0,1,2…)dx x xa nn ⎰-=121(1)证明数列单调减少,且(n =2,3…){}n a 221-+-=n n a n n a (2)求.1lim-∞→n nn a a19.设是锥面与平面围成的锥体,求的形Ω())10()1(2222≤≤-=-+z z y x 0=z Ω心坐标.20.设向量组,为的一个基,T T T a )3,,1(,)2,3,1(,)1,2,1(321===ααα3R 在这个基下的坐标为.T )1,1,1(=βT c b )1,,((1)求.c b a ,,(2)证明,为的一个基,并求到的过度矩阵.32,a a β3R ,,32a a β321,,a a a 21.已知矩阵与相似⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----=20022122x A ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=y B 00010012(1)求.y x ,(2)求可可逆矩阵,使得P .1B AP P =-22.设随机变量与相互独立,服从参数为1的指数分布,的概率分布为X Y X Y 令{}{}),10(,11,1<<-===-=p p Y P p Y P XYZ =(1)求的概率密度.z (2)为何值时,与不相关.p X Z (3)与是否相互独立?X Z 23.(本题满分11分)设总体的概率密度为X ⎪⎩⎪⎨⎧<≥--=,0,2)(),(222μμσσA σx x u x e x f 其中是已知参数,是未知参数,是常数,来自总体的简μ0>σA n X …X X ,,21X 单随机样本.(1)求;A(2)求的最大似然估计量2σ2019年全国硕士研究生入学统一考试数学试题解析(数学一)1.C2.B3.D4.D5.C6.A7.C8.A9.yx x y cos cos +10.23-xe 11.x cos 12.33213.为任意常数.,T)1,2,1(-k k 14.3215.解:(1),又,)()()(2222c x ec dx e ee x y x xdxx xdx+=+⎰⎰=---⎰0)0(=y 故,因此0=c .)(221x xex y -=(2),22221221221)1(x x x ex ex ey ----=-=',222221221321221)3()3()1(2x x x x ex x ex x xe x xey -----=-=---=''令得0=''y 3,0±=x x)3,(--∞3-)0,3(-0)3,0(3),3(+∞y ''-+-+y凸拐点凹拐点凸拐点凹所以,曲线的凹区间为和,凸区间为和)(x y y =)0,3(-),3(+∞)3,(--∞,拐点为,,.)3,0()0,0()33(23---e )3,3(23-e16.解:(1),,)2,2(by ax z =grad )8,6()4,3(b a z =grad 由题设可得,,即,又,4836-=-ba b a =()()108622=+=b a z grad 所以,.1-==b a (2)=dxdy y z x z S y x ⎰⎰≤+∂∂+∂∂+=22222)()(1dxdy y x y x ⎰⎰≤+-+-+22222)2()2(1====dxdy y x y x ⎰⎰≤+++22222441ρρρθπd d ⎰⎰+20224120232)41(1212ρπ+⋅.313π17.18.19.由对称性,,2,0==y x =⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--===ΩΩ10212101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ.4131121)1()1(1212==--⎰⎰dz z dz z z 20.(1)即,123=b c βααα++11112311231b c a ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解得.322a b c =⎧⎪=⎨⎪=-⎩(2),所以,则()23111111=331011231001ααβ⎡⎤⎡⎤⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,,()233r ααβ=,,可为的一个基.23ααβ,,3R ()()12323=P αααααβ,,,,则.()()1231231101=0121002P ααβααα-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦,,,,21.(1)与相似,则,,即,解得A B ()()tr A tr B =A B =41482x y x y -=+⎧⎨-=-⎩32x y =⎧⎨=-⎩(2)的特征值与对应的特征向量分别为A ,;,;,.1=2λ11=20α⎛⎫ ⎪- ⎪ ⎪⎝⎭2=1λ-22=10α-⎛⎫ ⎪ ⎪⎪⎝⎭3=2λ-31=24α-⎛⎫⎪ ⎪ ⎪⎝⎭所以存在,使得.()1123=P ααα,,111212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦的特征值与对应的特征向量分别为B ,;,;,.1=2λ11=00ξ⎛⎫ ⎪ ⎪ ⎪⎝⎭2=1λ-21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭3=2λ-30=01ξ⎛⎫⎪ ⎪⎪⎝⎭所以存在,使得.()2123=P ξξξ,,122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦所以,即112211=P AP P AP --=Λ1112112B P P APP P AP ---==其中.112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦22.解:(I )的分布函数Z (){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从而当时,;当时,0z ≤()zF z pe =0z >()()()()1111z zF z p p e p e --=+--=--则的概率密度为.Z ()(),01,0zzpez f z p e z -⎧<⎪=⎨->⎪⎩(II )由条件可得,又()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,从而当时,,即不相关.()()1,12D X E Y p ==-12p =(),0Cov X Z =,X Z (III )由上知当时,相关,从而不独立;当时,12p ≠,X Z 12p =121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -⎧⎫⎧⎫⎧⎫⎧⎫≤≤=≤≤=≤≥-+≤≤⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎛⎫⎛⎫==- ⎪⎪⎝⎭⎝⎭而,,显12112P X e -⎧⎫≤=-⎨⎬⎩⎭121111112222222P Z P X P X e -⎛⎫⎧⎫⎧⎫⎧⎫≤=≤+≥-=-⎨⎬⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎩⎭⎝⎭然,即不独立. 从而不独立.1111,2222P X Z P X P Z ⎧⎫⎧⎫⎧⎫≤≤≠≤≤⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,X Z ,X Z 23. 解:(I )由,()2221xAedx μσμσ--+∞=⎰t=201t e dt +∞-==⎰从而A =(II )构造似然函数,当()()22112212,,1,2,,,,,,0,ni i n x i n A e x i n L x x x μσμσσ=--⎧∑⎛⎫⎪≥= ⎪=⎨⎝⎭⎪⎩L L 其他,1,2,,i x i n μ≥=L 时,取对数得,求导并令其()22211ln ln ln 22ni i n L n A x σμσ==---∑为零,可得,解得的最大似然估计量为()22241ln 1022ni i d L n x d μσσσ==-+-=∑2σ.()211n ii x n μ=-∑。

1978-2019年全国硕士研究生入学统一考试(数学一)真题及部分答案

1978-2019年全国硕士研究生入学统一考试(数学一)真题及部分答案

历年考研数学一真题1987-20191987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2x y x =⋅取得极小值. (2)由曲线ln y x=与两直线e 1y x=+-及y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+2z t =+及121111x y z +++==都平行且过原点的平面方程为_____________.(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)L xy y dx x x dy -+-⎰= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分) (1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x∂∂∂∂ (2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2()()lim1,()x af x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值 (C)()f x 取得极小值 (D)()f x 的导数不存在 (2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s (D)依赖于s ,不依赖于t (3)设常数0,k >则级数21(1)n n k n n∞=+-∑(A)发散 (B)绝对收敛 (C)条件收敛 (D)散敛性与k 的取值有关 (4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于(A)a (B)1a(C)1n a - (D)na六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分) 问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量X 的概率密度函数为221(),xx f x-+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤, 求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域.(3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________. (3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是(A)与x ∆等价的无穷小 (B)与x∆同阶的无穷小(C)比x ∆低阶的无穷小 (D)比x ∆高阶的无穷小 (2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处(A)取得极大值 (B)取得极小值(C)某邻域内单调增加 (D)某邻域内单调减少 (3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则(A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处(A)条件收敛 (B)绝对收敛(C)发散 (D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤ααα线性无关的充要条件是(A)存在一组不全为零的数12,,,,s k k k 使11220s s k k k +++≠ααα(B)12,,,s ααα中任意两个向量均线性无关(C)12,,,s ααα中存在一个向量不能用其余向量线性表示(D)12,,,s ααα中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x y u yf xg yx=+其中函数f 、g 具有二阶连续导数,求222.u u x y x x y∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,x y y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x =六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M 沿直线y =(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y (2)求一个满足1-=PAP B的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________.(3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分) 设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________. (2)设()f x 是连续函数,且10()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lxy ds +⎰=_____________.(4)向量场div u在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x >时,曲线1sin y x x=(A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线 (D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是(A)(1,1,2)- (B)(1,1,2)-(C)(1,1,2) (D)(1,1,2)-- (3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是(A)11223c y c y y ++ (B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +--- (D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,n n S x b n x x π∞==-∞<<+∞∑其中12()sin ,1,2,3,,n b f x n xdx n π==⎰则1()2S -等于(A)12- (B)14-(C)14(D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合 (D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分) (1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y∂∂∂ (2)设曲线积分2()c xy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分)将函数1()arctan 1x f x x+=-展为x 的幂级数.五、(本题满分7分)设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln exx π=-⎰在区间(0,)+∞内有且仅有两个不同实根.七、(本题满分6分)问λ为何值时,线性方程组13x x λ+= 123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式. 八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值.(2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件AB的概率()P AB =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线 34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim()x x x a x a→∞+-=_____________.(3)设函数()f x =111x x ≤>,则[()]f f x =_____________.(4)积分2220e y x dx dy -⎰⎰的值等于_____________. (5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xx F x f t dt -=⎰则()F x '等于(A)e (e )()x x f f x ---- (B)e (e )()x x f f x ---+(C)e (e )()x x f f x ---(D)e (e )()x x f f x --+ (2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x + (B)1[()]n n f x +(C)2[()]n f x(D)2![()]n n f x(3)设a 为常数,则级数21sin()[n na n∞=∑ (A)绝对收敛 (B)条件收敛(C)发散 (D)收敛性与a 的取值有关 (4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x (A)不可导 (B)可导,且(0)0f '≠(C)取得极大值 (D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα(B)1211212()2k k ++-+ββααα (C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e x y y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数0(21)n n n x ∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞ 则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设 21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1ex x y --+=-(A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线 (D)既有水平渐近线又有铅直渐近线 (2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于(A)e ln 2x(B)2e ln 2x(C)eln 2x+(D)2eln 2x+(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7 (C)8 (D)9 (4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰ (B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰ (D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有(A)=ACB E (B)=CBA E(C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分) (1)求20lim ).x π+→(2)设n 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线 220yz x ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分) 设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分) 已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程e cos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x-+ 00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π处收敛于_____________. (4)微分方程tan cos y y x x'+=的通解为y=_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 其中0,0,(1,2,,).i i a b i n ≠≠=则矩阵A的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限(A)等于2 (B)等于0 (C)为∞ (D)不存在但不为∞(2)级数1(1)(1cos )(n n a n∞=--∑常数0)a >(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线(A)只有1条 (B)只有2条(C)至少有3条 (D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为 (A)0 (B)1(C)2 (D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212- (B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分) (1)求x x →(2)设22(e sin ,),x z f y x y =+其中f 具有二阶连续偏导数,求2.zx y∂∂∂ (3)设()f x = 21exx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e x y y y -'''+-=的通解.五、(本题满分8分) 计算曲面积分323232()()(),xaz dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分) 设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分) 在变力F yzizxj xyk=++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β (1)将β用123,,ξξξ线性表出. (2)求(n n A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }X E X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)x F x dt x =->⎰的单调减少区间为_____________.(2)2232120x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为1(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小(C)高阶无穷小 (D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰ (B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π(B)4π(C)3π(D)2π(4)设曲线积分[()e ]sin ()cos xL f t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x--(B)e e 2x x--(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则(A)6t =时P 的秩必为1 (B)6t =时P的秩必为2(C)6t ≠时P 的秩必为1 (D)6t ≠时P的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sin cos ).x x x x→∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.ba ab >七、(本题满分8分) 已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分) 设随机变量X的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________. (3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________. (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M << (B)MP N<<(C)N MP <<(D)P MN<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件 (D)既非充分条件又非必要条件(3)设常数0,λ>且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与λ有关 (4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c = (D)4a c =- (5)已知向量组1234,,,αααα线性无关,则向量组1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________. (3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,)π处的值为_____________. (4)设区域D为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________. (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M << (B)MP N<<(C)N MP <<(D)P MN<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件 (D)既非充分条件又非必要条件 (3)设常数0,λ>且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与λ有关 (4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =-(C)4a c = (D)4a c =- (5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设 2221cos()cos()tx t y t t udu ==-⎰,求dy dx 、22d y dx在t =的值.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x+⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdyx y z +++⎰⎰其中S是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分) 设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且()lim0,x f x x →=证明级数11()n f n ∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=AA 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分) 设随机变量X和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+(1)求Z 的数学期望EZ 和DZ 方差. (2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx ⎰= _____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R=_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设有直线:L321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上(C)垂直于π (D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是(A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>->(C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的(A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件 (4)设(1)ln(1n n u =-则级数 (A)1n n u ∞=∑与21nn u ∞=∑都收敛 (B)1n n u ∞=∑与21nn u ∞=∑都发散(C)1n n u ∞=∑收敛,而21nn u ∞=∑发散 (D)1n n u ∞=∑收敛,而21nn u ∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B (D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,y u f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求110()().x dx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)L xydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分) 假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥= 则{max(,)0}P X Y ≥=____________.十一、(本题满分6分) 设随机变量X 的概率密度为()X f x = e 0x- 00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设2lim()8,x x x a x a →∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e x y y y '''-+=的通解为_____________. (4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0(C)1 (D)2 (2)设()f x 具有二阶连续导数,且()(0)0,lim1,x f x f x→'''==则(A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值 (C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >=且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a nλ∞=-∑(A)绝对收敛 (B)条件收敛(C)发散 (D)散敛性与λ有关 (4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b - (B)12341234a a a a b b b b +(C)12123434()()a a b b a a b b -- (D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +===试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z zx x y y∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分) 设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y轴上的截距等于01(),x f t dt x⎰求()f x 的一般表达式.。

广东财经大学数学分析考研真题试题2018、2019年

广东财经大学数学分析考研真题试题2018、2019年

欢迎报考广东财经大学硕士研究生,祝你考试成功!(第 1 页 共 1 页) 广东财经大学硕士研究生入学考试试卷考试年度:2018年 考试科目代码及名称:614-数学分析(自命题)适用专业:071400 统计学[友情提醒:请在考点提供的专用答题纸上答题,答在本卷或草稿纸上无效!] 《数学分析》 [共150分]一、计算题(6题,每题10分,共60分)1.求极限()21sin 1lim 1x x x →-- 。

2.设函数()f x 在a 可导,求极限()()02lim 2t f a t f a t t →+-+ 。

3.求不定积分 。

4.求极限230lim 1nn x dx x→∞+⎰ 。

5.判别级数12!n n n n n ∞=∑的敛散性。

6.求复合函数的偏导数:(),,,u f x y x s t y st ==+= 。

二、应用题(4题,每题15分,共60分)1.已知圆柱形罐头盒的体积是V (定数),问它的高与底半径多大才能使罐头盒的表面积达到最小?2.求一条平面曲线方程,该曲线通过点(1,0)A ,并且曲线上每一点(,)P x y 的切线斜率是22,x x R -∈。

3.求以下曲线绕指定轴旋转所成旋转体的侧面积:2,06y x x =≤≤,绕x 轴。

4.已知矩形的周长为24cm ,将它绕其一边旋转而成一圆柱体,试求所得圆柱体体积最大时的矩形面积。

三、证明题(2题,每题15分,共30分)1.证明:若存在常数c ,n N ∀∈,有21321||||||n n x x x x x x c --+-++-< ,则数列{}n x 收敛。

2.证明:方程2sin (0)x x a a -=>至少有一个正实根。

欢迎报考广东财经大学硕士研究生,祝你考试成功!(第 1 页 共 1 页)广东财经大学硕士研究生入学考试试卷考试年度:2019年 考试科目代码及名称:601-数学分析(自命题) 适用专业:071400 统计学[友情提醒:请在考点提供的专用答题纸上答题,答在本卷或草稿纸上无效!]一、计算题(6题,每题10分,共60分)1.求数列极限();!)!2(!)!22(lim 1n n n n n -+++∞→2.求函数极限 ();sin 1ln sin tan lim 20x x x x x +-→3.设是可微函数,由所确定函数.求φ0),=--bz cy az cx (φ),(y x f z =. yz b x z a ∂∂+∂∂4.求函数级数的和函数和收敛域.∑+∞=-12n nx xe 5.设,确定使得满足方程 y x ex y x f 42),(-=ααf .122⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂x f x x x y f 6.设.求全微分xyz u =.3u d 二、应用题(4题,每题15分,共60分)1.已知满足求的取值范围.,x y ()22+21.x y -=w =2.曲线在点处得切线与轴得正向所夹得角度是多⎪⎩⎪⎨⎧=+=4222y y x z )5,4,2(x 少?3.求由方程确定的隐函数的二阶导数012=-+y x e xy )(x y y =).(''x y 4.求不定积分.⎰xdx e x sin 三、证明题(2题,每题15分,共30分)1. 已知在区间上连续. 求证)(x f ],[b a ().)()()(2122⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛⎰⎰-b a n n b a dx x f a b dx x f n2. 已知证明存在唯一使得 .,0为自然数n x >),(10∈θ.11lim 00+==+→⎰n xe dt e x x x t n n θθ且。

(完整版)2019研究生数学考试数一真题

(完整版)2019研究生数学考试数一真题

2019年考研数学—真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答案纸指定位置上。

(1)当0x →时,若tan x x -与k x 是同阶无穷小,则k = (A )1. (B )2. (C )3.(D )4.(2)设函数(),0,ln ,0,x x x f x x x x ⎧≤⎪=⎨>⎪⎩则0x =是()f x 的A.可导点,极值点.B.不可导点,极值点.C.可导点,非极值点.D.不可导点,非极值点.(3)设{}n u 是单调递增的有界数列,则下列级数中收敛的是A.1mn n u n=∑B.()111mnn nu =-∑ C.111mn n n u u =+⎛⎫- ⎪⎝⎭∑D.()2211mn n n u u +=-∑ (4)设函数()2,xQ x y y=..如果对上半平面()0y >内的任意有向光滑封闭曲线C 都有()(),,0CP x y dx Q x y dy +=⎰Ñ,那么函数(),P x y 可取为A.23x y y-.B.231x y y-. C.11x y-. D.1x y-. (5)设A 是3阶实对称矩阵,E 是3.阶单位矩阵。

若22A A E +=,且4A =,则二次型T x Ax 的规范形为A.222123y y y ++.B.222123y y y +- C.222123y y y --D.222123y y y ---(6)如图所示,有3张平面两两相交,交线相互平行,他们的方程()1231,2,3i i i i a x a y a z d i +++= 组成的线性方程组的系数矩阵和增广矩阵分别记为,A A ,则A.()()2,3r A r A ==..........B.()()2,2r A r A == C.()()1,2r A r A ==..........D.()()1,1r A r A ==(7)设A ,B 为随机事件,则()()P A P B =的充分必要条件是 ....A..()()()P A B P A P B =+U .........B.()()()P AB P A P B =.C.()()P AB P BA =..................D.()()P AB P AB =(8)设随机变量X 与Y 相互独立,且都服从正态分布()2,N μσ,则{}1P X Y -< A.与μ无关,而与2σ有关..........B.与μ有关,而与2σ无关. C.与2,μσ都有关..................D.与2,μσ都无关.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. ()9 设函数()f u 可导,()sin sin z f y x xy =-+,则11cos cos z zx x y y∂∂⋅+⋅=∂∂(10)微分方程22220yy y --=满足条件()01y =的特解y =.......(11)幂级数()()012!nnn x n ∞=-∑在()0,+∞内的和函数()S x = ()12设∑为曲面()222440x y z z ++=≥的上侧,则z=()13设()123,,A ααα=为三阶矩阵,若12,αα线性无关,且312=2ααα-+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年考研数学—真题及答案解析
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答案纸指定位置上。

(1)当0x →时,若tan x x -与k x 是同阶无穷小,则k = (A )1. (B )2. (C )3.
(D )4.
(2)设函数(),0,
ln ,0,x x x f x x x x ⎧≤⎪=⎨>⎪⎩则0x =是()f x 的
A.可导点,极值点.
B.不可导点,极值点.
C.可导点,非极值点.
D.不可导点,非极值点.
(3)设{}n u 是单调递增的有界数列,则下列级数中收敛的是
A.1m
n n u n
=∑
B.()
1
11m
n
n n
u =-∑ C.111m
n n n u u =+⎛⎫- ⎪⎝
⎭∑
D.()22
11
m
n n n u u +=-∑ (4)设函数()2,x
Q x y y
=
..如果对上半平面()0y >内的任意有向光滑封闭曲线C 都有()(),,0C
P x y dx Q x y dy +=⎰,那么函数(),P x y 可取为
A.2
3x y y
-.
B.231x y y
-. C.11x y
-. D.1x y
-
. (5)设A 是3阶实对称矩阵,E 是3.阶单位矩阵。

若22A A E +=,且4A =,则二次型T x Ax 的规范形为
A.222123y y y ++.
B.222
123y y y +- C.222123y y y --
D.222123y y y ---
(6)如图所示,有3张平面两两相交,交线相互平行,他们的方程()1231,2,3i i i i a x a y a z d i +++= 组成的线性方程组的系数矩阵和增广矩阵分别记为,A A ,则
A.()()2,3r A r A ==..........
B.()()
2,2r A r A == C.()()1,2r A r A ==..........D.()()
1,1r A r A ==
(7)设A ,B 为随机事件,则()()P A P B =的充分必要条件是 ....A..()()()P A B P A P B =+.........B.()()()P AB P A P B =.
C.()()P AB P BA =..................
D.()()
P AB P AB =
(8)设随机变量X 与Y 相互独立,且都服从正态分布()2,N μσ,则{}1P X Y -< A.与μ无关,而与2σ有关..........B.与μ有关,而与2σ无关. C.与2,μσ都有关..................D.与2,μσ都无关.
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...
指定位置上. ()9 设函数()f u 可导,()sin sin z f y x xy =-+,则
11cos cos z z
x x y y
∂∂⋅+⋅=∂∂
(10)微分方程22220yy y --=满足条件()01y =的特解y =.......
(11)幂级数()(
)012!n
n
n x n ∞
=-∑在()0,+∞内的和函数()S x = ()12设∑为曲面()222440x y z z ++=≥
的上侧,则z
=
()13设()123,,A ααα=为三阶矩阵,若12,αα线性无关,且312=2ααα-+。

则线性方程组0
Ax =的通解为
()14设随机变量X 的概率密度为(),02,
2
0,x
x f x ⎧<<⎪=⎨⎪⎩其他,()F x 为X 的分布函数,EX 为x 的数学期望,则(){}1P F X EX >-=
三、解答题:15——23小题,共94分,请将解答写在答题纸指定位置上,解答应写出文字说明,证明过程或演算步骤。

()15(本题满分10分)设函数()y x 是微分方程22
x y xy e -
'+=满足条件()00y =的特解.
()1.求()y x
()2.求曲线()y y x =的凹凸区间及拐点
()16本题满分10分)设,a b 为实数,函数222z ax by =++在点()3,4处的方向导数中,沿方向
34l i j =--的方向导数最大,最大值为10. .....()1求,a b ;
.....()2求曲面()2220z ax by z =++≥的面积;
()17(本题满分10分),求曲线()sin 0y e x x x =-≥与x 轴之间图形的面积
(18)(本题满分10
分)设()1
01,2,3...n a x n ==⎰
(1)证明:{}n a 单调递减,且()21
2,3 (2)
n n n a a n n --=⋅=+ (2)1
lim n
n n a a →∞-
(19)(本题满分10分)设Ω是由锥面()()22
21(01)x y z z z +---≤≤与平面0z <围成的锥体,求Ω的行心坐标。

(20)(本题满分11分)已知向量组
(Ⅰ)12321111,0,2443a ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,(Ⅱ)12321011,2,3313a a a βββ⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥===⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦
,若向量组(Ⅰ)和向量组(Ⅱ)等价,求α的取值,并将3β用123,ααα线性表示
(21)(本题满分11分)已知矩阵22122002A x --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦与21001000B y ⎡⎤
⎢⎥=-⎢⎥
⎢⎥⎣⎦
相似, (1)求,x y ;
(2)求可逆矩阵P 使得1P AP B -=;
(22)(本题满分11分)设随机变量X 与Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为{}{}1,11P Y p P Y p =-===-.令Z XY = (1)求Z 的概率密度;
(2)p 为何值时,X 与Z 不相关;
(3)X 与Z 是否相互独立;
(23)(本题满分11分)设总体X 的概率密度为
()()
2
222
,,0,x A e x f x x μσμσσμ--⎧⎪≥=⎨⎪<⎩
其中μ是已知参数,0σ>是未知参数,A 是常数,12,,,n X X X 是来自总体X 的简单随机样
本,
(1)求A ;
(2)求2σ的最大似然估计量;。

相关文档
最新文档